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Abstract 

Short-term hydrothermal generation scheduling (STHTGS) is the optimization process through which decisions are made about 
the commitments of thermal generators and the allocation of hydro energy resources in the planning horizon (1 day to 1 week), 
while satisfying a large set of technical constraints. Uncertainty in this problem may appear in different modelling parameters, 
but the extended stochastic version of the STHTGS problem may lead to impractical solution times. This paper discusses the 
application of a parallelized stochastic mixed-integer linear program (SMILP) to solve the stochastic STHTGS problem. In order 
to decrease simulation time a scenario-based decomposition approach based on the progressive hedging (PH) algorithm is 
proposed. Computational experiments are conducted in two multi-processor nodes of a cluster for different numbers of stochastic 
scenarios. The algorithm is tested in the Chilean Central Interconnected System using a problem instance considering a weekly 
horizon with hourly resolution. Results show that the PH algorithm has good convergence properties, needing only a few 
iterations to converge. Furthermore, as PH generates similarly sized sub-problems, the parallel version of the algorithm scales up 
quite well as the number of scenarios is increased. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of SINTEF Energi AS. 
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1. Introduction 

Generation scheduling in hydrothermal power systems is a computationally challenging optimization problem 
whose purpose is to find the optimal allocation of thermal and hydro energy resources to minimize present and 
future operation costs. This work deals with short-term hydrothermal generation scheduling (STHTGS), where the 
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decision variables are the unit commitments of thermal generators and the allocation of hydro energy resources in 
the planning horizon. Thus, STHTGS combines two power system optimization problems: the unit commitment 
problem (UC) [1] and the hydrothermal coordination problem (HC) [2].  

STHTGS can be a very challenging problem. On the one hand, the unit commitments are integer decisions, 
making the optimization problem NP-complete. On the other hand, use of stored hydro energy in the current 
scheduling horizon will preclude its use in the future, thus increasing future operating costs and requiring 
coordination with medium and long-term operational planning models. Thus, optimal allocation of hydro resources 
must minimize the sum of the immediate operation costs (mostly fuel costs of thermal units) and the water cost 
(opportunity cost of using the water now instead of in the future), while satisfying a large set of technical constraints 
[2]. These constraints are related to energy balance in each bus, power flows in the transmission network, 
transmission losses modelling, technical operation limits of generation and transmission equipment, loading ramps, 
min-up times and min-down times, stability and security, primary and secondary reserve requirements, and water 
balance constraints for reservoirs and cascading hydro. Many different formulations and optimization methods have 
been proposed in the literature for the STHTGS problem (see [3] for a review). 

Uncertainty in this problem is usually pervasive, as it may appear in different modelling parameters (e.g. demand, 
availability of hydro resources, wind/solar generation, and so on). Although uncertainty in the short-term operational 
planning horizon (1 day to 1 week) has traditionally been ignored, emergence of new technologies (e.g. wind and 
solar power, demand response, smarter grids) are now forcing system operators to modify their models to explicitly 
manage the uncertainty at the generation scheduling stage. The deterministic STHTGS problem is already quite 
complex and computationally intensive, and its extended stochastic version may lead to impractical solution times. 

The objective of this work is to discuss the application of a parallelized stochastic mixed-integer linear program 
(SMILP) to solve the stochastic STHTGS problem in real-sized systems. The paper is structured as follows: Section 
2 presents the mathematical formulation (based on SMILP) of the stochastic STHTGS; Section 3 discusses the 
decomposition of the stochastic STHTGS using the Progressive Hedging (PH) algorithm and the parallelization of 
the solution process; Section 4 provides details about the implementation of the algorithm; Section 5 describes the 
Chilean Central Interconnected System (Sistema Interconectado Central, SIC) on which the computational tests 
were conducted; Section 6 presents results focused on the computational performance of the parallelized stochastic 
SMILP formulation. Finally, Section 7 presents conclusions and directions for further research. 

2. Problem formulation using SMILP 

2.1. Deterministic Formulation of the STHTGS problem 

The thermal generation costs for a single hour are shown in equation (1), where Pt,g is generation for generator g; 
Yt,g is 1 if generator g is started in t; Zt,g  is 1 if generator g is shutdown in time t. Cop, Con, and Coff are the variable 
operation cost, the start cost and the shutdown cost for each generator, respectively.  

  (1) 

In the deterministic unit commitment problem (UC), the objective is to minimize the sum of the thermal 
generation costs and the cost of unserved energy during a certain horizon. When large hydro storages need to be 
considered, the STHTGS problem extends the UC problem using the following objective function: 

  (2) 

where VolT,r is hydro energy (in MWh) in reservoir r in the last period of the scheduling horizon, T; and USEt,n is 
the unserved energy in bus n. All hourly decision variables are indexed in time t  T. VoLL is the value of lost load 
for the system. Hydro power plant efficiency is considered constant during the scheduling horizon.  

The committed thermal generating units and the hydro generators must be able to meet the system load at every 
hour during the scheduling horizon. The cost minimization is also subject to a number of operating, transmission, 
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security, and hydro constraints (see [1, 2] for details), including cascading hydro constraints. The transmission 
system is modelled as a DC power flow with all the transmission constraints formulated upfront. 

If stored hydro energy is used during the current scheduling horizon, future operating costs will increase. In order 
to decouple long/mid-term decisions from the short-term hydrothermal coordination activity, hydro energy has a 
Future Cost Function FCFr for each reservoir r, exogenously given by medium- and long-term models (see [2]). 

2.2. SMILP formulation of the stochastic STHTGS problem 

In SMILP [4,5], the uncertainty of the input variables is represented through a finite number of scenarios (S). Let 
define Qs as the set of all constraints for scenario s. If we now group for each scenario s all first-stage decision 
variables in vector xs and the second-stage variables in vector ys, the objective function in equation (2) can be 
rewritten for each scenario s as equation (3). 

  (3) 

Then, the deterministic formulation of the STHTGS is replicated for each of the S scenarios (with individual 
probability ws) to define S sub-problems that are then linked in a master problem through an additional set of 
constraints called non-anticipativity constraints. The non-anticipativity constraints force those decisions than need to 
be made now (first-stage variables, that is thermal unit commitments and final volumes in the hydro storages) to be 
the same for all scenarios, as equation (4) shows. 

  

  (4) 

The resulting optimization problem is a two-stage SMILP whose size is approximately S-times the original 
deterministic problem. Notice that the objective function is the expected value of the total system costs. 

3. Problem decomposition using PH 

Due to the large size of stochastic programming applications, decomposition methods are usually required. For a 
review of different decomposition methods applied to stochastic programming, see [6,7]. The Progressive Hedging 
(PH) algorithm was proposed by Rockefeller and Wets in [8] in order to allow scenario-based decomposition of 
large stochastic linear programs. If the solution times for each scenario are similar, the problem is well-suited for 
parallelism.  

To solve the stochastic STHTGS in a reasonable time, a scenario-based decomposition approach based on the 
progressive hedging (PH) algorithm is proposed and used in this work. PH has recently been successfully used for 
the stochastic unit commitment problem [9-11] and for medium-term operational planning of hydrothermal systems 
[12].  

PH is an augmented Lagrangian decomposition method, as it relaxes the non-anticipativity constraints of the 
SMILP while adding penalty terms to the objective function. This creates similarly-sized sub-problems, lending 
itself nicely to parallelism and high-performance computing (HPC). After solving all sub-problems, before starting a 
new iteration the PH algorithm updates the multipliers associated to the non-anticipativity constraints based on the 
distance between the first-stage variables. The process is repeated until all first-stage variables are identical. 

First, an optimal solution is obtained independently for each scenario, without enforcing the non-anticipativity 
constraints. Then, a candidate non-anticipative solution is proposed as the average of the independent solutions. 
Next, a vector of multipliers associated to the non-anticipativity constraints are updated. These multipliers are 
included in the augmented objective function, together with a quadratic proximal term to accelerate convergence to a 
non-anticipative optimal solution. The algorithm stops when the rst-stage variables (unit commitments of thermal 
units) for all scenarios converge to the average, that is, when the non-anticipativity constraints are satisfied. In our 



80   Esteban Gil and Juan Araya  /  Energy Procedia   87  ( 2016 )  77 – 84 

tests for the STHTGS problem, the algorithm may converge in as little as two iterations, although this may increase 
for different sets of scenarios and for different hydrological conditions. The convergence criterion is set by the size 
of the distance between the vectors of the first-stage variables. 

Notice that in each iteration the sub-problems are solved independently, communicating with the master problem 
only when they have finished. Thus, the formulation, parametrization, solution, and result extraction for each sub-
problem can be conducted in parallel. 

4. Parallel implementation 

The algorithm is implemented in Fortran 95 [13, 14] using the GNU compiler for x64 architecture. Fortran is a 
very popular programming language for HPC applications [15]. The solution of each sub-problem is obtained using 
CPLEX [16], using 2 cores per thread.  

As in our implementation each parallel task (the solution of each sub-problem) is similar (only its 
parameterization is different), a domain decomposition is performed (Single Instruction Multiple Data, SIMD). 
Parallelization is conducted using a hybrid OpenMP [17] and MPI model, with Message Passing Interface (MPI) 
protocol through Open MPI [18] between the nodes and shared memory programming using OpenMP inside each 
node.  

The computational experiments are conducted in two multi-processor nodes of a cluster. Each node has 2 Intel E5 
Xeon processors with 6 cores each, so each of the two nodes has 12 cores available. As indicated before, CPLEX 
uses 2 cores per thread, so each node can run up to 6 CPLEX threads simultaneously. 

We tested both a shared memory architecture (using a single node) and a distributed memory architecture (using 
both nodes of the cluster). In the shared memory architecture all processors have access to the same physical 
memory, while in the distributed memory architecture network communications are used to access memory on the 
di�erent machines where tasks are executing. 

First, the program reads the input les and parametrizes the model. Then, the tasks of creating, solving, and 
extracting the solutions of the sub-problems generated by the PH algorithm are executed. Parallel processing was 
implemented in the tasks of creating, solving, and extracting the solutions. The solutions of each optimization sub-
problem are retrieved and average values and simplex multipliers needed in each iteration of the PH algorithm are 
calculated. Finally, if the algorithm has converged the program writes the solution les. Otherwise, the program goes 
back, updates the multipliers, and performs another iteration of the PH algorithm. 

5. Test system and sub-problem size 

The algorithm is tested in the Chilean Central Interconnected System (Sistema Interconectado Central, SIC), 
Chile's largest interconnected system serving nearly 92% of the country's population. It has an installed generation 
capacity of about 14.1 GW (2014), of which approximately 42.3% is hydro (reservoir and run-of-river, some in 
cascading hydro schemes) and 55.6% is thermal (coal-fired, combined-cycle and open-cycle gas-fired, and some 
fuel-oil and diesel-based peaking plants), with the remaining capacity being wind and solar.  

Our model of the SIC is composed of 152 buses and 202 transmission lines, 330 generators, of which 205 are 
thermal and 11 hydro with significant water storage. The remaining generators are wind farms, run-of-river, and 
cascading hydro units.  

An instance of the problem for the SIC considering a weekly horizon and using hourly resolution is solved for 
different numbers of stochastic scenarios. If S is the number of scenarios, the PH algorithm decomposes the full 
problem into S sub-problems, each with 33116 rows (constraints) and 427010 columns (variables). As there are 
integer variables, the optimization is formulated as a mixed-integer program (MIP) that can be solved using the 
Branch & Bound algorithm of CPLEX. After the Presolve and Aggregator routines of CPLEX, each sub-problem 
has 24691 rows, 367786 columns, with 962716 non-zero coefficients.  
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6. Computational simulation results 

Our results show that in general the PH algorithm has nice convergence properties for the stochastic STHTGS 
problem. We have identified three main issues affecting the speed of convergence of PH applied to the stochastic 
STHTGS problem: (1) Diversity of the scenarios, as scenarios that are too similar will lead to solutions of first-stage 
variables that are too similar in the first iteration; (2) Amount of water available during the scheduling period, as wet 
conditions do not require switching intermediate and peaking units so much as dry conditions; (3) The size of the 
penalization factors for not complying with the non-anticipativity constraints in the PH algorithm. 

In the case presented here, the PH algorithm only needed two iterations to converge, due to the wet conditions of 
the simulated case and partly due to the lack of diversity on the defined scenarios. Next, we will present 
computational results both for the shared memory and the distributed memory architectures. 

6.1. Results with a shared memory architecture 

Computational simulation results in terms of solution time are presented in Figures 1, 2, and 3 for a shared 
memory architecture. These results only use a single node of the cluster, hence having 12 cores available. 

 

 

Fig. 1. Solution time against number of threads in use, for different numbers of stochastic scenarios S. 

Figure 1 shows how the solution time decreases as we use a larger number of threads, considering different 
numbers of stochastic scenarios. For a single scenario (S=1) we observe no benefit in using more than a single 
thread, as there is nothing to parallelize. In general, using more threads reduces simulation time, but there is little or 
no benefit of using more threads than the number of scenarios modeled.  

Beyond six scenarios, we observe that the incremental benefits of using a greater number of threads decrease. 
Although the node has 12 cores available, each thread of CPLEX uses 2 cores, so if we employ more than 6 
scenarios we will have to wait for the first 6 scenarios to finish before we can solve the rest, severely hindering the 
performance of the parallelization. 

Figure 2 shows the same results from a different perspective. The simulation time seems to increase nearly 
linearly with the number of scenarios. Although the benefits of the parallelization scheme in terms of solution time 
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reduction are clear, we observe that there is little benefit of using more than 6 threads, even as the numbers of 
scenarios keeps increasing.  

 

 

Fig. 2. Solution time against number of stochastic scenarios, for different numbers of threads in use. 

 

Fig. 3. Observed speedup using twelve threads for different number of stochastic scenarios. 
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Figure 3 measures up the performance of the parallel program showing the observed speedup as the number of 
scenarios increase. The observed speedup is calculated as the ratio between the solution time for the serial execution 
and the parallel execution. With a single scenario, there is almost no benefit for using the twelve threads. 
Furthermore, as PH generates similarly sized sub-problems, the parallel version of the algorithm scales up quite well 
as the number of scenarios is increased. Again, beyond six scenarios, the improvements in observed speedup are 
more modest. 

6.2. Results with a distributed memory architecture 

For up to six scenarios, running in a single node (i.e. shared memory architecture) or in both nodes of the cluster 
(i.e. distributed memory architecture) makes little difference, as in both cases there are sufficient cores available to 
run all the threads simultaneously. For more than 6 scenarios, however, the distributed memory scheme allowed to 
run all threads simultaneously as more cores were available (24 instead of 12), thus allowing to run 12 instead of 6 
threads at the same time. As a consequence, as the number of scenarios and the number of parallel tasks increases, 
the distributed memory architecture showed better performance in terms of simulation time than the shared memory 
architecture. 

When running with 8 scenarios, for example, the distributed memory architecture was 1.47 times faster than the 
shared memory architecture. For 10 scenarios, it was 1.53 times faster, and for 12 scenarios it was 1.78 times faster. 
Notice, however, that despite having twice as many cores available, the distributed memory architecture is not twice 
as fast as the shared memory architecture. This is a consequence of parallel overhead, that is, the amount of time 
required to coordinate the parallel tasks. There is also some overhead caused by the time necessary for the remote 
processors to communicate through the network and pass their results to the master problem, which needs to 
calculate the average of the first-stage decision variables in order to update the multipliers and the penalties on the 
objective function of the PH algorithm before starting the next iteration. 

7. Conclusions 

This paper proposed a SMILP formulation of the STHTGS problem that was decomposed through the PH 
algorithm. The paper also proposed a strategy for parallelizing the solution both for shared memory and distributed 
memory schemes. Results showed that PH converges relatively fast for the stochastic STHTGS problem. Insights on 
computer simulation time were provided, and variations on the number of threads and scenarios were evaluated. 
Since PH decomposes the main problem by scenario (thus generating similarly sized sub-problems) our results show 
that parallelism and potentially the use of HPC are very good alternatives to reduce simulation times for the 
STHTGS problem. 

This work was intended as a pilot study to explore the advantages and potential for using HPC in the stochastic 
STHTGS for the SIC. Despite the relatively modest computational resources used for this article, they were 
su�cient to explore the use of PH, to identify challenges and advantages of the di�erent architectures, and to 
specify the size and characteristics of the cluster for running the problem in a more realistic setting. 

A challenge for using PH in STHTGS is the existence of integer variables, as the sub-problems may be more 
di�cult to parallelize because of the variability of sub-problem solve times. A possible line for future research is to 
explore further the tradeoff between number of scenarios and simulation times, as recent reports for the unit 
commitment problem have pointed out that the benefits of increasing the number of scenarios in the SMILP 
formulation beyond a certain point may be rather limited. 

Convergence in the case study shown in this paper was relatively fast. Additional tests have shown us that the 
method may take more iterations to converge if the scenarios are more diverse and if the amount of water in the 
system is more limited, as more intermediate and peaking thermal units may be needed to operate in this case, 
causing more differences between the solutions to each sub-problem. Thus, another line for further research would 
be to study the convergence properties of the PH algorithm when the scenarios are more diverse and to make 
comparisons for both wet and dry conditions. 
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