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Isolated or nonsyndromic cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex
etiology. A 10-cM genome scan of 388 extended multiplex families with CL/P from seven diverse populations
(2,551 genotyped individuals) revealed CL/P genes in six chromosomal regions, including a novel region at 9q21
(heterogeneity LOD score ). In addition, meta-analyses with the addition of results from 186 more[HLOD] p 6.6
families (six populations; 1,033 genotyped individuals) showed genomewide significance for 10 more regions,
including another novel region at 2q32-35 ( ). These are the first genomewide significant linkage resultsP p .0004
ever reported for CL/P, and they represent an unprecedented demonstration of the power of linkage analysis to
detect multiple genes simultaneously for a complex disorder.

Introduction

Orofacial clefts, particularly cleft lip (CL), cleft palate
(CP), and cleft lip with or without cleft palate (CL/P),
are very common structural birth defects with a complex
etiology (Murray 2002). Birth prevalence ranges from
1/500 to 1/2,000, depending on the population, with
Native American and Asian populations having the high-
est prevalence and African populations having the low-
est. Individuals with these disorders often require mul-
tidisciplinary treatment into adulthood. In addition to
the financial costs of such treatment, individuals with oro-
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facial clefts and their families experience health burdens,
such as increased morbidity and mortality, and a variety
of psychosocial implications (Berk and Marazita 2002).
Despite 1200 years of research, the complex etiology of
orofacial clefts in humans remains unclear, although the
pace of discovery has quickened in recent years.

In 1757, the first description of a family with several
affected members was published (Trew 1757). Many
other studies followed that evaluated the family patterns
of orofacial clefts (Marazita 2002a). The consensus from
these studies was that there is a familial component to
orofacial clefts but not a straightforward single gene-
dominant or -recessive pattern. Indeed, statistical mod-
eling of recurrence risk data in families with orofacial
clefts suggests that 2–14 loci are likely to be involved
(Schliekelman and Slatkin 2002).

Recently, investigators have been attempting to locate
the genes predisposing to orofacial clefting, using linkage
and/or association methods. The groundwork for these
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Figure 1 Summary of the 10-cM genome scan of CL/P in the CIDR-7 studies. A, Summary of the maximum summed multipoint HLOD
for each chromosome, under both dominant (DOM) and recessive (REC) genetic models for CL/P. B–F, Summed multipoint HLOD plots for
each chromosome that had a maximum summed HLOD �3.2 (under the best genetic model for each chromosome).

studies was laid by application of complex statistical an-
alyses that allowed direct comparison of multifactorial
and single-gene models in CL/P (reviewed by Marazita
[2002b]), which demonstrated that single-gene models
provided an equal or better fit to the family data than
did the “large number of equal and additive loci” speci-
fied by standard multifactorial models (Marazita 2002b).
The possibility that one or a few loci might explain
orofacial clefts made linkage and association studies
feasible.

After several negative linkage and association studies,
the first positive linkage finding with orofacial clefting
was at the F13A locus on chromosome 6p (Eiberg et al.
1987), and the first positive allelic association was be-
tween CL/P and a TaqI RFLP in the transforming growth
factor a (TGFA) locus (Ardinger et al. 1989). Since those
early linkage and association studies, there have been
many others (Marazita 2002a, 2002b). Positive linkage
and/or association results in CL/P, CP, or both have been
found, primarily on seven chromosomes (1, 2, 4, 6, 14,
17, and 19) (Marazita 2002a).

The first CL/P genome scan reported results in English

affected sib pairs (Prescott et al. 2000); since then, 12
additional genome scans have been performed (see table
1), each of which identified a number of positive signals,
although no single study produced results that reached
the standard levels of genomewide significance. Clearly,
for complex traits such as orofacial clefts, large numbers
of families and/or combined results across studies are
essential. Therefore, a consortium of four research
groups (M.L.M./L.L.F., J.C.M., A.C.L., and M.A.-B.)
was formed to undertake genome scans of a large num-
ber of extended multiplex families with nonsyndromic
CL/P (NS CL/P) from seven populations (see table 1).

In addition, we performed a meta-analysis in which
results from the seven populations were combined with
six other published genome scans of CL/P (see table 1).
Various methods have been proposed for meta-analysis
in genetic studies, dating back to Fisher (1925), that re-
quire either tests of the same hypotheses or the same
statistical tests across studies. The 13 available genome
scans of NS CL/P did not test the same hypotheses
(i.e., different marker sets were used) and did not all
calculate the same statistics. Therefore, we applied the
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genome scan meta-analysis (GSMA) method (Wise et
al. 1999; Levinson et al. 2003). Simulation studies that
used this method detected linkage with power compa-
rable to or greater than that obtained by performance
of a combined linkage analysis of all data (Levinson et
al. 2003). The major goal of the current study was to
identify those genomic regions that contain genes pre-
disposing to CL/P across populations.

Material and Methods

Study Populations

There were 13 study populations with genome scans
available for families with NS CL/P (summarized in table
1). There were 574 families in the 13 populations, with
5,990 individual family members. Of the total family
members, 3,584 were genotyped (1,267 affected; 2,317
unaffected). Most of the studies involved extended mul-
tiplex kindreds; that is, multigenerational families with
at least two affected individuals. One study involved
affected sib pairs (England), and all or part of the fami-
lies in four studies were consanguineous (India, Turkey-
A, Turkey-B, and Syria). Two countries each had two
genome scans (China-A and China-B; Turkey-A and Tur-
key-B). Note that each genome scan consisted of unique
families—that is, there is no overlap between the families
of China-A and China-B or between those of Turkey-A
and Turkey-B. The India study had 38 families geno-
typed by Marshfield (Center for Medical Genetics), of
which 11 families were also genotyped as part of CIDR-
7 (see below).

The phenotype analyzed in each study was NS CL/P;
in all studies, families were ascertained through probands,
and additional relatives were recruited. For families to
be included, it was necessary that the proband have iso-
lated CL with or without CP (i.e., no other anomalies)
and that no other family member have an indication of
a clefting syndrome (e.g., lip pits). Each study included
evaluations of family members by clinical geneticists to
rule out syndromic forms of CL/P. Each study had ap-
proval by the appropriate institutional review boards;
to participate, all study subjects provided informed con-
sent. Refer to each study reference for more specific de-
tails on ascertainment, genotyping, and family structures
(see table 1).

Genome-Scan Genotyping

Seven of the studies (Philippines, China-B, India, Co-
lombia, United States-Pittsburgh, United States-Ohio, and
Turkey-B; 388 families) (see table 1) were part of a col-
laborative genome-scan project (between M.L.M./L.L.F.,
J.C.M., A.C.L., and M.A.-B.) and thus were all geno-
typed by the Center for Inherited Disease Research
(CIDR) at the same time. We will refer to these studies

as the “CIDR-7 studies.” The other six studies (186
additional families) were genotyped either by CIDR, by
Marshfield Laboratories Mammalian Genotyping Ser-
vice (Center for Medical Genetics), or in-house by study
investigators (see table 1 for details). In most cases, We-
ber screening-set markers were used (Yuan et al. 1997);
that is, high-quality STRPs with an average spacing of
∼9 cM (with a range of 1–19 cM). For details of the
markers and genotyping, refer to the Web sites for CIDR
and Marshfield and to the references for each genome
scan (see table 1).

Statistical Genetic Analyses of Genome-Scan Markers

Each of the 13 studies analyzed the genome-scan data
in a variety of ways, by use of both parametric and model-
free methods of linkage analysis and, in most cases, also
by application of tests of linkage in the presence of as-
sociation, such as the transmission/disequilibrium test
(TDT) (see individual references for details). When dif-
ferent studies have exactly the same markers and exactly
the same analysis methods, it is straightforward to com-
bine results. The CIDR-7 families were genotyped for
exactly the same markers and were analyzed using the
same methods as in M.L.M.’s research group. For the
other six studies, different markers were used, and, in
some cases, different statistical analyses were performed.
Therefore, results across all 13 studies were combined
into a meta-analysis (see the “GSMA” section).

For purposes of combining the results from the CIDR-
7 studies, we utilized multipoint parametric linkage
statistics, in particular the heterogeneity LOD score
(HLOD). HLODs are based on the admixture hetero-
geneity test (Smith 1963), in which the recombination
fraction (v) and the proportion of linked families (a) are
estimated simultaneously. Recent simulation studies have
shown that, although the estimate of the proportion of
linked families may not be precise, HLODs are a power-
ful method for detecting linkage in the presence of het-
erogeneity (Greenberg and Abreu 2001; Vieland et al.
2001; Hodge et al. 2002). The descent-graph method
(Sobel et al. 1996; Sobel and Lange 1996; Lange 2002)
implemented in the computer program SIMWALK2 was
used for the multipoint HLOD calculations of the CIDR-
7 data.

The inheritance of each marker in each of the CIDR-
7 study populations was analyzed with PedCheck
(O’Connell and Weeks 1998) to test for inconsistencies
due to nonpaternity or other errors. Parametric linkage
approaches such as the HLOD approach used here re-
quire estimates of marker-allele frequencies and param-
eters of the genetic model. Allele frequencies were esti-
mated in the founders of the families, separately by study
population because the seven populations were of di-
verse ethnicities. HLOD calculations were done under
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the best-fitting dominant and recessive models for each
study population (estimated from segregation analysis;
see individual references). Maximizing LOD scores over
a range of genetic models is valid for simultaneously
evaluating linkage and determining the most likely ge-
netic model (without adjustment to significance levels and
without need to correct for ascertainment), provided that
there is indeed linkage (Hodge and Elston 1994). Fur-
thermore, if an oligogenic model is suspected (as seems
likely for CL/P) or if significant heterogeneity exists, some
of the causal genes may act in a dominant fashion and
others in a recessive one.

To combine the multipoint results across the CIDR-7
studies, we summed the multipoint HLODs. Because each
study population had different allele-frequency estimates
and different genetic-model parameters, it was not pos-
sible simply to perform a combined linkage analysis over
all families. Further, simulation studies by Vieland et al.
(2001) showed that combined HLOD analyses that pool
multiple data sets resulted in a loss of power for detecting
linkage, compared with summing the HLODs from in-
dividual studies.

The meta-analysis method that was used to combine
the results from all 13 studies (see the “GSMA” section)
can combine any statistics; for maximum consistency
across studies, we utilized linkage statistics, including
affected–sib pair tests (identical-by-descent–based sta-
tistics) from the England study, model-free two-point NPL
statistics from the Argentina/Mexico/Iowa study, and
two-point parametric LOD scores from all other studies.
For the CIDR-7 families, we calculated two-point LOD
scores using the Elston-Stewart algorithm (Elston and
Stewart 1971), employing the LINKAGE program with
recent updates to speed calculations (VITESSE and FAST-
LINK) (Cottingham et al. 1993; Terwilliger and Ott 1994;
O’Connell and Weeks 1995).

GSMA

To combine the genome-scan results across all 13 stud-
ies, a meta-analysis procedure was necessary. There are
many proposed methods for combining results across
diverse studies. Fisher (1925) proposed a simple and
elegant method for combining probabilities from tests of
significance across multiple studies. Province (2001) sup-
plied an update to incorporate certain modern linkage
and association statistics that are truncated at 0.0. In
Fisher’s method, it is not necessary that the same statistic
be used for calculating P values across studies; however,
it is necessary that the P values arise from tests of the
same hypothesis—that is, tests of linkage or association
to the same marker. To combine P values across “i”
studies, sum the quantity: ( ), where is the P�2 ln P Pi i

value in the ith study (Fisher 1925); for parameters that
are truncated at 0.0, use (ProvinceP p 1/(2 ln 2) p .72

2001). Various other methods have also been proposed
(reviewed by Wise et al. [1999], Province [2001], and
Levinson et al. [2003]) that require either tests of the
same hypotheses or that the same statistical tests be ap-
plied across studies.

The 13 available genome scans of NS CL/P did not
test the same hypotheses (i.e., different marker sets were
used) and did not all calculate the same statistics. There-
fore, we applied the GSMA method (Wise et al. 1999;
Levinson et al. 2003) to combine data across studies. The
GSMA is a nonparametric rank ordering method that
can combine genome-scan methods across studies with
different markers and different statistical tests. In simu-
lation studies, the GSMA detected linkage with power
comparable to or greater than that obtained by per-
forming a combined linkage analysis of all data (Lev-
inson et al. 2003).

For the GSMA procedure, the genome was divided
into bins, with bin width selected such that there were
at least two bins on the smallest chromosome and that
at least one marker was genotyped within each bin. There-
fore, for combining the current 10-cM genome scans, a
bin width of 30 cM was selected (130 bins across the
genome). For each of the 13 studies, bins were assigned
a rank (R, with values of 1–130) according to the maxi-
mum-linkage statistic of markers in each bin. Any tied
bins were assigned equal Rs on the basis of the mean of
the sequential ranks for those bins.

Because the 13 study populations covered a wide range
of sample sizes (see table 1), we weighted the R statistics
on the basis of sample size. Optimal weighting strategies
are not determined for the GSMA (Wise et al. 1999; Lev-
inson et al. 2003), but simulation studies showed that
weighting increased the power of the GSMA to detect
linked loci (Levinson et al. 2003). We used a weighting
factor based on the total number of genotyped individ-
uals—the ranks within each study were multiplied by

�N genotyped
.�mean N genotyped

Weighting factors for each study are listed in table 1.
For combining the rank results across studies, the av-

erage rank ( ) for each bin was calculated across allRavg

13 studies. The probability distribution for unweighted
R is derived (Wise et al. 1999); however, for weighted
Rs, the probability distribution must be determined em-
pirically. To determine statistical significance, the resulting

distribution was then compared with its empiricRavg

probability distribution, derived from 1,000 simulations
under the assumption that ranks were assigned randomly
(GSMA P values [denoted “ ” by Levinson et al.Pavg

(2003)]). The (Levinson et al. 2003) probabilities alsoPord

were calculated for each bin to provide additional in-
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formation about interpreting the GSMA results with re-
spect to linkage to each bin (see the “Statistical Signifi-
cance” section below). The probability for a rank isPord

the Pavg Rank/order—in other words, that bin’s place in the
order of average ranks—and quantifies the consistency
of the Ravg across simulations.

The GSMA procedure was done across the entire set
of 13 studies, then repeated for three subgroups: “East
Asian,” “white,” and “other.” Table 1 lists the compo-
sition of the subgroups, including the weighting factors
used within each subgroup. Note that, unlike the East
Asian and white subgroups, the “other” subgroup is a
catch-all category (with no particular biological mean-
ing). Within the “other” subgroup, there are studies of
South Americans, Indians, Turks, and Syrians, but there
are not enough families in any of those groups to have
sufficient power to analyze them separately.

The GSMA identified 30-cM bins that are best sup-
ported across the studies. To narrow the regions of posi-
tive findings, we propose an extension of the GSMA that
involves repeating the GSMA with different bin starting
points and then determining the minimum region of
maximum significance (MRMS). We repeated the GSMA
twice, shifting the starting point for the binning proce-
dure first to 10 cM and then to 20 cM. This determined
the 10-cM MRMS for each positive finding. Given that
all genome scans averaged 10 cM between markers, 10
cM is the limit of resolution for this meta-analysis.

Candidate-Gene–Analysis Methods (Markers on 9q21)

To pursue the highly significant results on 9q21, five
candidate genes that lie within or immediately adjacent
to the one- and two-LOD intervals of the peak HLOD
score were selected for additional studies. SNPs for four
of these genes (PTCH, ROR2, TGFBR1, and ZNF189)
were genotyped in 219 multiplex Filipino families; mi-
crosatellite markers for two of the genes (FOXE1 and
TGFBR1) were genotyped in 99 Chinese, 50 Indian, and
18 Turkish families.

The TDT was used to assess association in the pres-
ence of linkage disequilibrium between the markers and
CL/P. The family-based association-test (FBAT) exten-
sion of the TDT (Laird et al. 2000; Rabinowitz and Laird
2000; Horvath et al. 2001) was used to assess associa-
tion between alleles at each marker and CL/P, plus as-
sociation between CL/P and haplotypes of SNPs within
candidate genes. Linkage was assessed using the methods
described in sections above. Since TGFBR1 was assessed
in all the data sets, the Fisher (1925) method was used
to combine the TGFBR1 results across studies.

Statistical Significance

For determining genomewide significance for the mul-
tipoint-linkage calculations of the CIDR-7 families, stan-

dard guidelines (Lander and Kruglyak 1995) were fol-
lowed. The desired a-level of .05 was divided by 400
(the approximate number of genome-scan markers) to
yield .000125; therefore, the corresponding LOD-score
threshold for genomewide significance was 3.2.

For the GSMA, result-interpretation guidelines pre-
sented by Levinson et al. (2003) were followed. By use
of a Bonferoni correction, the criterion for genomewide
significance for any particular bin would be .05/130 p

. In the situation where more than one bin is likely.0004
to contain a linked locus, Levinson et al. (2003) deter-
mined (from simulation studies) that, if the GSMA P
value (“ ” in the notation of Levinson et al. [2003])Pavg

and the Pord were both �.05 for a particular bin, then
that bin was highly likely to contain a linked gene.
Therefore, we considered the GSMA results to have ge-
nomewide significance either if the GSMA/MRMS P
value was �.0004 or if both the P value and Pord were
�.05.

Results

Figure 1 summarizes the results of the combined mul-
tipoint linkage analyses of NS CL/P in the CIDR-7 popu-
lations. Six regions on five chromosomes had summed
HLODs �3.2 (chromosomes 1p12-13, 6p23, 6q23-25,
9q21, 14q21-24, and 15q15). There were nine additional
regions with summed HLODs between 2.0 and 3.2 (see
figs. 1A and A1 [online only]).

Figure 2 summarizes the results of the initial GSMA
for all 13 studies. Depicted are the for each of theRavg

130 bins, across all chromosomes, with the thresholds
for P values of .05 and .01 indicated. Figure 3 provides
a graphical representation of the bin-shifting procedure
and the MRMS results for the six chromosomes with
the most significant GSMA/MRMS results (see fig. A2
[online only] for all chromosomes). Under the MRMS
procedure, the significance increased for most of the
regions that were positive in the initial GSMA, whereas
some regions that were not significant in the initial GSMA
were significant after rebinning. Supplemental figure A3
(online only) shows the GSMA results, by population
subgroup, for each chromosome. Table 2 summarizes the
genomewide significant results from the combined analy-
ses of the CIDR-7 studies as well as the GSMA/MRMS
of the 13 studies and of the population subgroups.

Of the six regions of genomewide significance in the
CIDR-7 analyses, two also had genomewide significance
in the meta-analysis (6q23-25 and 14q21-24). One re-
gion, 2q32-35, had a genomewide-significant GSMA P
value ( ), whereas nine additional regions metP p .0004
the combined genomewide significance criteria of both
P and (Levinson et al. 2003) (table 2).P � .05ord

For the markers in 9q21 genes PTCH, ROR2,
TGFBR1, and ZNF189 (see fig. 4), linkage and associa-
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Figure 2 GSMA of 13 CL/P-study populations. Depicted are the for each of the 130 bins, across all chromosomes. The horizontalRavg

lines indicate the values corresponding to empirical P values of .05 and .01, as determined by simulation.Ravg

tion were assessed and results combined across studies
by use of the Fisher (1925) method. Positive associations
were found with four of the candidate genes (ROR2

; PTCH SNP haplotype ; TGFBR1P p .02 P p .007
; and FOXE1 ), and suggestive linkageP p .02 P p .002

was found with FOXE1 (summed maximum LOD p
; ).1.54 v p 0.05

Discussion

Combined results from 13 genome scans were remark-
able, given the genetic complexity of CL/P; one region
(9q21) had an HLOD of 6.6, and another (2q32-35) had
a meta-analysis P value of .0004. This demonstrates the
great utility of the GSMA in combining disparate data
sets. Further, we summarize here a new extension of the
GSMA to determine the MRMS. The combined GSMA/
MRMS allowed us to narrow the regions of significance
from 30 cM to 10 cM (fig. 3 and table 2). It is interesting
that some statistically significant regions were discovered
only during one of the repeat bin–shifted GSMAs used
to determine the MRMS (table 2), highlighting the im-
portance of utilizing bin shifting when applying the
GSMA.

The chromosomal regions that had statistical genome-
wide significance in this study include many of the regions
reported elsewhere for NS CL/P but also identify two
highly significant novel regions, 9q21 and 2q32-35. Posi-
tive association results (indicating close proximity to a

CL/P locus) were also found with four of the five se-
lected candidate genes on 9q21. Overall, 16 regions on
12 chromosomes had genomewide-significant results (ta-
ble 2). Six other regions on four chromosomes had sug-
gestive results (HLOD between 2 and 3 and/or GSMA/
MRMS P value !.05 but ). The finding ofP 1 .05ord

multiple chromosomal regions with statistically signifi-
cant results is consistent with an oligogenic model for
CL/P, as proposed elsewhere (Farrall and Holder 1992;
Mitchell and Risch 1992; Schliekelman and Slatkin
2002).

Table 2 summarizes all results of genomewide signifi-
cance and indicates potential cleft candidate genes in each
positive region. A brief discussion of the most notable
results by chromosome follows. Although not summa-
rized in detail, several regions also have chromosomal
rearrangements reported in CL/P (Brewer et al. 1998,
1999).

Chromosome 1

The 1q32 region is the location for interferon regu-
latory factor–6 (IRF6) that was identified recently as the
locus involved in van der Woude syndrome (VDWS
[MIM 119300]) (Kondo et al. 2002). Our group recently
has found highly significant evidence of association be-
tween IRF6 and CL/P (Zucchero et al., in press), with
TDT in a sample of 3,350 nuclear families�9P ! 10
(some families from CIDR-7). The current results that
demonstrate linkage to the IRF6 region provide pow-
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Figure 3 Graphs of the MRMSs for the six chromosomes with the most significant GSMA/MRMS results for the 13 CL/P-studypopulations.
These graphs summarize the MRMS process, repeating the GSMA with bin shifting to narrow the statistically significant region. The dashed
vertical lines indicate the 10-cM MRMS for each chromosome. A–F, Graph of chromosomes 1, 2, 6, 14, 17, and 18, respectively.

erful support for the IRF6-association findings. It is in-
teresting that there was only a weak linkage signal to
the IRF6 locus itself ( ) (Zucchero et al., inLOD ! 1.0
press); thus, the current study demonstrates the utility
of combining genome scans across studies to detect sub-
tle effects.

Chromosome 2

The 2q32-35 region had the most highly significant
GSMA results in the current study ( ) and con-P p .0004
tains the gene for the DNA-binding protein SATB2
(a.k.a. “KIAA1034”) that has been identified elsewhere,
through translocation-breakpoint analysis, as a gene in-
volved in cleft palate (FitzPatrick et al. 2003) and that
also shows site- and stage-specific expression in murine
palate development.

The 2p13 region contains TGFA, the gene with the
first reported association with CL/P (Ardinger et al. 1989)

and numerous confirmatory reports (Mitchell 1997;
Marazita 2002a). TGFA has ∼40% sequence homology
with epidermal growth factor (EGF) and competes with
EGF for binding to the EGF receptor. The results for
the 2p13 region did not reach genomewide significance
but were suggestive ( ; GSMA ;HLOD p 2.67 P p .001

).P p .18ord

Chromosome 4

Chromosome 4 is a notable omission from the list of
chromosomes with positive results in this study. Two
regions on chromosome 4 have had positive linkage or
association results in the literature: homeobox 7 (MSX1
4p16.1 [MIM 106600] and 4q21-31) (Marazita 2002a).
Regarding 4p16.1, positive associations between CL/P
and MSX1 have been reported (Marazita 2002a), hypo-
dontia with oral clefts is due to MSX1, mouse Msx1
knockouts have cleft palate, and complete sequencing of
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Figure 4 Diagram of chromosome 9q21, with one- and two-LOD support intervals and candidate genes depicted

the MSX1 gene showed mutations in ∼2% of NS CL/P
cases (Jezewski et al. 2003). If an MSX1 variant is a
low-frequency gene predisposing to CL/P or if MSX1 is
a modifier of expression, it would be difficult to detect
by use of linkage methods. The fact that relationships
between CL/P and both MSX1 and IRF6 were detected
using nonlinkage approaches highlights the necessity of
applying diverse, complementary approaches for ade-
quately delineating complex traits.

MSX1-related CL/P may be limited to certain popu-
lation groups; in the subgroup-specific GSMA/MRMS
analyses, there was a borderline significant result (P p

) near the MSX1 region in the “other” subgroup but.05
not in the white or East Asian subgroups.

Chromosome 9

Region 9q21 had the most significant linkage result
and also was suggestive in the GSMA/MRMS ( ;P p .01

). Mutations in the gene for the human homo-P p .058ord

log of patched (PTCH [9q22.3]) cause basal cell nevus
syndrome (Gorlin syndrome [MIM 109400]), in which
∼5% of cases have CL/P. Furthermore, PTCH maps to
the region homologous to the clf2 locus in the mouse
(Juriloff 2002). Receptor tyrosine kinase–like orphan re-
ceptor 2 (ROR2 [9q22]) is selectively expressed in—and
particularly important for—the chondrocyte lineage.
Transforming growth factor b receptor type 1 (TGFBR1
[9q33-q34]) mediates the induction of several genes in-
volved in cell-matrix interactions, including the TGFB
superfamily (thought to be developmental regulators of
cell proliferation and differentiation). The gene for zinc
finger protein 189 (ZNF189 [9q22-q31]) is one of the
estimated 300–700 ZNF genes in the human genome.
ZNFs bind nucleic acids and regulate transcription. Mu-
tations in the forkhead domain–containing transcription
factor FOXE1 (a.k.a. “TTF2” or “TITF2” [9q22]) are
associated with congenital hypothyroidism, thyroid agen-
esis, and cleft palate in humans and mice (Castanet et
al. 2002; Dathan et al. 2002). The forkhead gene family

(Fox), originally identified in Drosophila, encodes tran-
scription factors with a conserved 100–amino acid DNA-
binding motif called the “forkhead domain” (Lehman
et al. 2003) and regulates many diverse developmental
processes in eukaryotes. We assessed linkage and asso-
ciation with each of these five potential candidates, and
we found positive associations with PTCH, ROR2,
TGFBR1, and FOXE1 and suggestive linkage with
FOXE1. A major current focus of our research group
is fine mapping of this region.

Chromosome 14

The region containing transforming growth factor b

3 (TGFB3) (14q24) was significant in both CIDR-7 and
the GSMA/MRMS. The mouse Tgfb3 knockout has cleft
palate, and there are some positive results from associa-
tion studies of CL/P and TGFB3 (Marazita 2002a). We
also recently found suggestive evidence that the CL/P
phenotype within ectrodactyly-ectodermal dysplasia-
clefting syndrome (EEDC1) maps to 14q, indicating that
genes involved in NS CL/P may modify the phenotypic
expression of the EEC1 gene (Ray et al., in press).

Chromosome 17

The 17q21 region had significant results in the GSMA/
MRMS analyses and suggestive results in the CIDR-7
linkage analysis ( ). It is notable that thisHLOD p 2.23
region is syntenic with the region harboring the mouse
clf1 mutation (Juriloff 2002). Further, one of the early
associations observed with NS CL/P was with the gene
for retinoic acid receptor a that maps near this region
(RARA [17q12]) (Marazita 2002a).

Chromosome 19

Linkage and association have been seen in a few studies
between CL/P and APOC2, BCL3, or nearby anonymous
markers (19q13) (Marazita 2002a). The current results
for 19q13 are also suggestive ( ; GSMAHLOD p 2.66
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; ). Genes in this region includeP p .012 P p .088ord

TGFB1 (19q13.1) and polio-virus receptor (PVR)/polio-
virus receptor–like 2 (PVRL2), both at 19q13.2-q13.3.
It is interesting that mutations of PVRL1 (11q23-q24)
cause the autosomal recessive Margarita Island clefting
syndrome, in which it has been suggested that heterozy-
gotes have an increased risk of clefting (Sozen et al. 2001).
A family segregating a balanced translocation and clefting
has its breakpoint in the CLPTM1 gene in this region
(Yoshiura et al. 1998).

* * *

The studies summarized here combine results from
diverse populations of families with CL/P. Therefore, the
positive results necessarily will be those that are in com-
mon across populations. Note that a number of chromo-
somes had population subgroup–specific differences in
the patterns of GSMA results (summarized in table 2).
There is no formal test of heterogeneity within the GSMA,
but the results summarized in table 2 (also see fig. A3
[online only]) could guide prioritization for fine-map-
ping and gene identification in particular population
subgroups.

In summary, the remarkably significant evidence for
linkage from this large study demonstrates the advantage
of combining data sets to further our understanding of
the genetics of a complex trait such as CL/P. This is an
unprecedented demonstration of the power of linkage
analysis to detect simultaneously multiple genes for a
truly non-Mendelian disease in which no single major
genes are evident. To identify and characterize those
genes, fine mapping and candidate-gene sequencing has
begun in our research groups, as have investigations of
gene-gene interactions and genotype-phenotype corre-
lations. After almost 250 years of research regarding the
familial nature of CL/P, evidence is accumulating that a
relatively small number of chromosomal regions contain
causal genes for NS CL/P. With the molecular and sta-
tistical tools available today, and with our rich resource
of extended multiplex families with CL/P, this becomes
a manageable number of chromosomal regions to char-
acterize in order to identify the causal genes for CL/P.
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