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Abstract

In this paper we investigate the tail behaviour of a random variable S which may be viewed

as a functional T of a zero mean Gaussian process X ; taking special interest in the situation
where X obeys the structure which is typical for limiting processes occurring in nonparametric

testing of (multivariate) independency and (multivariate) constancy over time. The tail

behaviour of S is described by means of a constant a and a random variable R which is defined

on the same probability space as S: The constant a acts as an upper bound, and is relevant for

the computation of the efficiency of test statistics converging in distribution to S: The random
variable R acts as a lower bound, and is instrumental in deriving approximation for the upper

percentage points of S by simulation.
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1. Introduction

Let d be an integer greater than or equal to 2, let M be a subset of Rd ; and let E be
a space of real-valued functions defined on M: The object of interest in this paper is
the tail behaviour of a separable zero mean Gaussian process X ¼ fXðtÞgtAM taking

values in the space E; or rather the tail behaviour of a random variable S ¼ TðXÞ
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where T : E-R is of the type

Tð f Þ ¼ sup
vAV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qvð f ; f Þ

p
ð1Þ

for every fAE: Here V is some index set, and Qv is a symmetric bounded bilinear
form on E for every vAV : Typically, the random variable S has a quite intricate
distribution.
As one may show that any T of the form (1) is sublinear and positive

homogeneous, it follows from Theorem 5.2 in [7] that there exists a constant a such
that

lim
y-N

y�2 log PðS4yÞ ¼ �a=2: ð2Þ

Our first aim is to establish methods for the actual computation of the constant a:
Our second aim is to construct a random variable R (with a less intricate distribution
than S), such that the random variable R

(i) is defined on the same probability space as S; and satisfies

PðRpSÞ ¼ 1; ð3Þ

(ii) has the same tail behaviour as S; in the sense that

lim
y-N

y�2 log PðR4yÞ ¼ �a=2; ð4Þ

where the constant a is as in (2).

The motivation for the present study comes from the theory of statistical tests,
where random variables S emerge as the limit in distribution under the null
hypothesis of a sequence of test statistics. Examples will be given shortly.
As the constant a provides a convenient rough description of the limiting

distribution of the test statistic at hand, the verification of (2) is a key step in the
comparison of statistical tests. In fact, (2) appears as a condition in results for
determining approximate Bahadur efficiency (cf. [5]), in results guaranteeing the
coincidence of limiting approximate Bahadur efficiency and limiting Pitman
efficiency (cf. [27,44]), and in deviation results (cf. [24,35,36]). Deviation results are
in turn needed for the computation of Bayes risk efficiency (cf. [38]), intermediate
efficiency (cf. [26]) and exact Bahadur efficiency (cf. [5]). Refer to Chapter 1 in [36]
and Chapter 10 in [40] for additional information on efficiency concepts.
For a given testing problem each of the efficiency concepts mentioned above may

be used to select an ‘‘optimal’’ statistical test. However, when applying the selected
test the rough description a is no longer sufficient, and additional precision is needed
to determine the critical value (that is, a selected upper percentage point of the test
statistic) and/or the attained significance level of the test. In such a situation we
resort to the random variable R in order to obtain a more detailed description of tail
behaviour of S:
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We take a special interest in the situation where the time space and the covariance
function both have product structure; that is, we have M ¼ M1 � M2 and

Kððs1; s2Þ; ðt1; t2ÞÞ ¼ K1ðs1; t1ÞK2ðs2; t2Þ ð5Þ

for every si; tiAMi ði ¼ 1; 2Þ: An important example is the situation where M is

equal to ½0; 1
2; and X coincides with the process G ¼ fGðt1; t2Þg0pt1;t2p1; a mean zero

Gaussian process with covariance function

EGðs1; s2ÞGðt1; t2Þ ¼ fminðs1; t1Þ � s1t1gfminðs2; t2Þ � s2t2g ð6Þ

for 0ps1; s2; t1; t2p1: In literature, the Gaussian process G is called the Wiener
pillow ([37, p. 137]; inspired by the fact that Gðt1; t2Þ ¼ 0 almost surely for all ðt1; t2Þ
on the boundary of the unit square), the completely tucked Brownian sheet [42, p.
368] or the tied-down Kiefer process [11, p. 320]. We shall refer to G as the Brownian
pillow. One may view the Brownian pillow as a two-parameter generalization of the
Brownian bridge (that is, a one-parameter zero mean Gaussian process BðtÞ defined
on the unit interval [0,1] with covariance function EBðsÞBðtÞ ¼ minðs; tÞ � st for
0ps; tp1).
Limiting random variables of the type TðGÞ occur in certain nonparametric

statistical applications, such as in nonparametric testing of bivariate independence
(cf. [6,12–14,18,22]), and nonparametric testing of univariate constancy over time (cf.
[11,21]).
Other mean zero Gaussian processes which obey (5) emerge as limiting processes

in nonparametric testing of multivariate independence (for instance, the p-variate

Hoeffding, Blum, Kiefer and Rosenblatt process with M ¼ ½0; 1
p and covariance
function

Qp
i¼1 fminðsi; tiÞ � sitig) and in nonparametric testing of multivariate

constancy over time (for instance, the p-variate Gaussian processes with M ¼ ½0; 1
p
and covariance function

fFðminðs1; t1Þ;y;minðsp�1; tp�1ÞÞ � Fðs1;y; sp�1ÞFðt1;y; tp�1Þg

� fminðsp; tpÞ � sptpg

of Theorem 2.6.1 in [11, p. 153]).
The structure of the paper is as follows. In Section 2 we first consider the situation

in which no structure is imposed on the ‘‘time space’’ M; the results are exemplified
using the Brownian bridge. In Section 3 we explore the situation where the time
space and the covariance function obey (5); the results are exemplified using the
Brownian pillow. In Section 4 we discuss the use of the random variable R in
simulating upper percentage points of S: In Section 5 we consider the extension of
Proposition 3.2.1, the main result of Section 3, to more general classes of functionals.
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2. General Gaussian processes

2.1. Reproducing kernel Hilbert space

Let M be the closure of an open bounded domain in Rd ; and let X be a separable
zero mean Gaussian process defined on M: Define the covariance function K :M �
M-R by Kðs; tÞ ¼ EXðsÞXðtÞ for s; tAM: As a covariance function is nonnegative
definite, there exists a unique Hilbert space H such that the reproducing property

/ f ;Kðt; �ÞSH ¼ f ðtÞ for every tAM;

holds for every fAH (cf. [1, Eq. (3.9), p. 67]). The Hilbert space H is called the
reproducing kernel Hilbert space belonging to X : Refer to [4] for the general theory
of reproducing kernels.
If the set M is equipped with a s-additive measure m so that the covariance

function K belongs to the space L2ðM � M; m� mÞ; then one may describe the
reproducing kernel Hilbert space belonging to X by means of the ordered
eigenvalues ft1Xt2X?X0g and the corresponding normalized eigenfunctions of
the operator Km defined by

Km f ðtÞ ¼
Z

M

Kðs; tÞf ðsÞ dm for every fAL2ðM; mÞ:

It is well known that the operatorKm is self-conjugate and compact (cf. [32]). Hence,

by the Hilbert-Schmidt theorem (cf. [30, p. 78]) it has a complete orthonormal system
of eigenfunctions fh1; h2;yg and corresponding eigenvalues ft1; t2;yg that
converges to zero. That is, hj and tj solve the integral equationZ

M

Kðs; tÞhjðsÞ dm ¼ tjhjðtÞ ð7Þ

and hj and hk satisfyZ
M

hjðsÞhkðsÞ dm ¼
1 for j ¼ k;

0 for jak:

(

AsKm is nonnegative definite due to the fact that Kðs; tÞ is a covariance function, we
see that t1Xt2X?X0: If the sum

P
j tj is finite (which is the case when the

covariance function Kðs; tÞ is continuous and the measure m is absolutely continuous
with respect to Lebesgue measure), thenKm is a trace-class operator, and the kernel

K is represented in the form

Kðs; tÞ ¼
XN
j¼0

tjhjðsÞhjðtÞ;

where the convergence is uniform on M � M (see, for instance, [28] for the general
theory of trace-class operators).
Lemma 1 follows by Theorem 3.16 in [1, p. 75].
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Lemma 1. The reproducing kernel Hilbert space H belonging to X is given by

H ¼ f : f ¼
X

jX1;tja0

bjhj;
X

jX1;tja0

ðbjÞ2

tj

oN

8<
:

9=
;;

and has scalar product

/ f ; gSH ¼
X

jX1;tja0

1

tj

Z
M

f ðsÞhjðsÞ dmðsÞ
� � Z

M

gðsÞhjðsÞ dmðsÞ
� �

:

Let us remark that the Hilbert space H is uniquely defined by the kernel K and
does not depend on the choice of the absolutely continuous measure m; although the
eigenfunctions fhig and the eigenvalues ftig may be different for different measures.

2.2. Tail behaviour of a Gaussian process

For the reproducing kernel Hilbert space H belonging to X consider a positive
homogeneous sublinear functional T :H-R (that is Tð f ÞX0;Tðlf Þ ¼
jljTð f Þ;Tð f þ gÞpTð f Þ þ TðgÞ for all f ; gAH; lARÞ and define its H-norm by

jjT jjH ¼ sup
fAOH

Tð f Þ;

where OH denotes the unit ball in H: The relevance of this norm for describing the
right-hand tail of the distribution of S ¼ TðXÞ is shown by the next inequality
appearing in the proof of Theorem 5.2 in [7].

Inequality 2.1 (Inequality of Borell). Let T be a positive homogeneous sublinear

functional on H: Suppose there exists x0 such that PðSpx0Þ is positive, and

let x satisfy PðZpxÞpPðSpx0Þ; where Z is a standard normal random variable.

Then

PðSXxÞpPðZ4xþ jjT jj�1H ðx � x0ÞÞ

for every x4x0:

The Inequality of Borell implicitly provides an exponential bound for PðSXxÞ; as
readily follows from the next inequality (cf. [41, p. 850]).

Inequality 2.2 (Mill’s ratio). Let Z be a standard normal random variable. Then, for

all y40;

ðy�1 � y�3Þ 1ffiffiffiffiffiffi
2p

p e�y2=2pPðZ4yÞpy�1 1ffiffiffiffiffiffi
2p

p e�y2=2:
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If there exists a constant c40 such that

Tð f Þpcmax sup
tAM

j f j; 1
� �

for every fAH ð8Þ

(as is usually the case in statistical applications), then the existence of x0 such that
PðSpx0Þ is positive can be verified with the aid of the following version of Borell’s
inequality (cf. [39]).

Inequality 2.3 (Inequality of Borell, supremum version). If E suptAM XðtÞoN; then

P sup
t

XðtÞXx

� �
p2 exp �ðx � E suptAM X ðtÞÞ2

2 suptAM Kðt; tÞ

( )

for every xXE suptAM X ðtÞ:

If Q is a bounded bilinear form, then the functional T defined by Tð f Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qð f ; f Þ

p
for every fAH satisfies (8) (cf. Definition 13.2 in [20, p. 89]).

For Gaussian processes the boundedness of the supremum is intimately related to
sample path continuity (cf. Section III.1 in [1, p. 62]).

2.3. Tail behaviour of supremum and quadratic tests

Consider a statistical problem, where at stage n it is natural to base statistical tests
on a ‘‘monitoring process’’ Xn; which under the null hypothesis converges in
distribution to X as n tends to infinity. As an example, one may think of the
goodness-of-fit problem, the independence problem and the change-point problem.
An appropriate monitoring process in the goodness-of-fit problem is the multivariate
empirical process, which converges under the null hypothesis to the tied-down
Brownian motion (cf. [15,17]). An appropriate monitoring process in the
independence and change-point problems is the Hoeffding, Blum, Kiefer, Rosenblatt
multivariate empirical process, which converges under the null hypothesis to
Brownian pillow type processes [6,9,10,22].
In such statistical problems, obvious tests are supremum and quadratic tests

derived from the monitoring process Xn: Supremum tests reject when the supremum
test statistic suptAM jXnðtÞj becomes large. Under the null hypothesis, this statistic
converges in distribution to TðX Þ; where the corresponding functional Tð f Þ ¼
suptAM j f ðtÞj is of form (1) with V ¼ M and Qvð f ; gÞ ¼ f ðvÞgðvÞ: The Kolmogorov
test is an example of a supremum test.
Let Q be a symmetric bounded bilinear form. The quadratic test corresponding to

Q rejects when the ‘‘quadratic’’ test statistic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðXn;XnÞ

p
becomes large. Under the

null hypothesis, the quadratic test statistic converges in distribution to TðX Þ; where
T is of form (1) with V equal to a singleton fv0g and Qv0 equal to Q: The Cramér–
von Mises and Anderson–Darling tests are examples of quadratic tests.
Our study of random variables TðXÞ where T is of the form (1) starts by

observing that for every vAV there exists a unique bounded linear operator Av
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defined on H such that

Qvð f ; gÞ ¼ / f ;AvgSH

for every f ; gAH (cf. Theorem 13.5b in [20, p. 92]). Observe that Av depends both
on the choice of Qv and [via the norm /�; �SH] on the covariance function K of X :
Assume that Qv satisfies the following condition.

Condition 1. For each vAV the operator Av associated to Qv has a complete
orthonormal system of eigenfunctions ff1;v;f2;v;yg: Moreover, there exists wAV

such that supvAV l1;v ¼ l1;w; where l1;v denotes the largest eigenvalue of Av:

Let us recall that in general a self-conjugate positively definite operator in a
Hilbert space may have no eigenvalues at all [30, p. 273], so Condition 1 is indeed
quite restrictive. Nevertheless, in most statistical applications this condition does
hold.
The second part of Condition 1 is fulfilled when, for instance, l1;v is a continuous

function of v; and V is compact.

Lemma 2. If Condition 1 holds, then

(i) jjT jjH is equal to Tðf1;wÞ ¼
ffiffiffiffiffiffiffiffi
l1;w

p
;

(ii) TðXÞ is larger than or equal to jjT jjH � jZj with probability 1, where Z ¼
/X ;f1;wSH is a standard normal random variable.

Denote the random variable jjT jjH � jZj by R: It follows from Inequality 2.2 that

(4) holds with

a ¼ jjT jj�2H : ð9Þ

As Inequality 2.1 implies

lim sup
y-þN

ðyÞ�2 log PðTðXÞ4yÞp� a=2

with a given by (9), it immediately follows from Lemma 2 that the random variables
TðX Þ and R have similar tail behaviour, in the sense that

lim
y-þN

ðyÞ�2 log PðTðXÞ4yÞ ¼ lim
y-þN

ðyÞ�2 log PðR4yÞ: ð10Þ

In particular, we obtain that (2) holds with a given by (9).
As noted in the introduction, (2) is directly relevant for the computation of

the approximate Bahadur efficiency of the test based on TðXnÞ: Moreover,
in combination with a KMT-type approximation for Xn; (2) implies a deviation
result

lim
n-þN

ðynÞ�2 log PðTðXnÞ4ynÞ ¼ �a=2 ð11Þ
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for sequences yn that tend to infinity at a sufficiently slow rate as n-N: A KMT-
type approximation is a strong approximation governed by an exponential
inequality, as the ones given in [33] for the partial sum process and the empirical
process.

The quality of the KMT-type approximation determines the maximal rate of yn

allowed in (11) (cf. [23,24,34,35]). Special deviation results are:

* Chernoff-type deviation results, which allow sequences yn up to Oðn1=2Þ; and are
relevant for the computation of exact Bahadur efficiency [5];

* Cramér-type deviation results, which allow sequences yn up to oðn1=6Þ; and are
relevant for the computation of intermediate efficiency [26];

* moderate deviation results, which only allow sequences yn up to Oððlog nÞ1=2Þ; and
are relevant for the computation of Bayes risk efficiency [38] and weak
intermediate efficiency [26].

For some of the more popular functionals (for instance, the functionals TCvM and
TAD introduced at the end of this section), we have TðX Þ is equal in distribution toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N

j¼1 lj;wZ2
j

q
; where Z1;Z2;y is a sequence of independent standard normal

random variables. For such functionals , Lemma 2 seems to be related to Lemma 2.4
in [19], which states that

lim
x-þN

ðxÞ�1 log P
XN
j¼1

lj;wðZ2
j � 1Þ4x

 !
¼ �ð2lj;wÞ�1

if
P

N

j¼1 l2j;w is finite.
Remark that (10) suggests that for small significance levels the critical value of the

test statistic TðXÞ may be approximated by the corresponding quantile of the
random variable R: However, such an approach is not recommended, since it would
lead to a anti-conservative approximate test.

2.4. Application to the Brownian bridge

Recall that a Brownian bridge is a zero mean Gaussian process defined on the unit
interval, with covariance function KBðs; tÞ ¼ minðs; tÞ � st: For a differentiable
function f : ½0; 1
-R; let f 0 denote the derivative of f :
By differentiating both sides of (7) twice (here and below the integrals are

computed with respect to the usual Lebesque measure), it follows that the
eigenvalues and eigenfunctions belonging to the Brownian bridge are solutions to
the differential equation

th00ðtÞ ¼ �hðtÞ ð12Þ
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under the boundary condition hð0Þ ¼ hð1Þ ¼ 0: Hence, these eigenvalues and
eigenfunctions are given by

tj ¼ ð jpÞ�2; hjðtÞ ¼
ffiffiffi
2

p
sinð jptÞ

(cf. Proposition 5.3.1 in [41, p. 213]). Thus, we may invoke Lemma 1 to describe the
reproducing kernel Hilbert space HB belonging to the Brownian bridge B:
However, for functions f ; g in HB which do not have a simple and clear relation

with the Brownian bridge eigenfunctions hj the computation of the scalar product

may well be intricate. Lemma 3 provides an alternative representation of the scalar
product in HB; which often is more convenient.

Lemma 3. The Hilbert space HB corresponding to the kernel of the Brownian bridge B

is given by

HB ¼ f f : ½0; 1
-R; f 0AL2½0; 1
; f ð0Þ ¼ f ð1Þ ¼ 0g;

and has scalar product

/ f ; gSHB
¼
Z 1

0

f 0ðtÞg0ðtÞ dt:

If f and g belong toHB; and g is twice differentiable, then it follows by integration
by parts that we may write

/ f ; gSHB
¼ �

Z 1

0

f ðtÞg00ðtÞ dt:

Example 1 (The Kolmogorov functional). Consider the functional TKol defined by

TKolð f Þ ¼ sup
tA½0;1


j f ðtÞj:

Observe that TKol satisfies (1) with V ¼ ½0; 1
 and Qv ¼ f ðvÞgðvÞ: The corresponding
operator is Av f ðtÞ ¼ f ðvÞ � f1;vðtÞ; where

f1;vðtÞ ¼
t
ffiffiffiffiffiffi
1�v

v

q
if tpv;

ð1� tÞ
ffiffiffiffiffiffi

v
1�v

p
if tXv:

8<
:

It is seen easily that f1;v is an eigenfunction of the operatorAv corresponding to the

largest eigenvalue l1;v ¼ vð1� vÞ; all other eigenvalues lj;v; jX2 are zeros. Thus

Condition 1 holds, and the maximal eigenvalue l1;w ¼ 1
4
is attained for w ¼ 1

2
: It now

follows by Lemma 2(i) that in HB the norm of TKol is equal to 2
�1: Moreover, for

w ¼ 1=2 we have

/B;f1;wSHB
¼
Z
½0;1


f0
1;wðtÞ dBðtÞ ¼

Z
½0;1=2


dBðtÞ �
Z
½1=2;1


dBðtÞ ¼ 2Bð1=2Þ;
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and hence it follows by Lemma 2(ii) that TKolðBÞ is larger than or equal to
jjTKoljjHB

� jZj ¼ jZ=2j; where Z ¼ 2Bð1=2Þ is a standard normal random variable.

The exact distribution of TKolðBÞ is given in [31].

Example 2 (The Cramér–von Mises functional). Consider the functional TCvM
defined by

TCvMð f Þ ¼
Z 1

0

ð f ðsÞÞ2 ds

� �1=2
:

Observe that TCvM satisfies (1) with V ¼ fv0g and Qv0 ¼
R 1
0 f ðsÞgðsÞ ds: DefineA by

Af ðsÞ ¼
R 1
0 Kðs; tÞf ðtÞ dt; where Kðs; tÞ ¼ minðs; tÞ � st is our reproducing kernel. It

is easy to see that this operator takes the space HB to the space H0
B ¼

f fAHB j f 00AHBg: As A�1F ¼ �F 00 for every FAH0
B; the eigenfunctions of A

satisfy �f 00 ¼ l�1f (cf. with (12)), and hence the eigenvalues and the normalized
eigenfunctions are given by

lj ¼ ð jpÞ�2; fjðtÞ ¼ ð jpÞ�1
ffiffiffi
2

p
sinð jptÞ:

In particular, we have l1 ¼ p�2 and fjðtÞ ¼ p�1
ffiffiffi
2

p
sinðptÞ: Since the operator A is

compact and self-conjugate, therefore, using again the Hilbert-Schmidt theorem, we
conclude that A is diagonalized i.e., ffjg is indeed an orthonormal basis in HB:

Thus, Condition 1 holds. It follows by Lemma 2(i) that in HB the norm of TCvM is

equal to p�1: Hence, by Lemma 2(ii) TCvMðBÞ is larger than or equal to jjTCvMjjHB
�

jZj ¼ jp�1Zj; where

Z ¼ /B;f1SHB
¼ �

Z
M

BðsÞf00
1ðsÞ ds ¼ p

ffiffiffi
2

p Z
M

BðsÞsinðpsÞ ds

is a standard normal random variable. The random variable p�1Z coincides with the
limit in distribution of the ‘‘first component’’ of the Cramér–von Mises test statistic
(cf. [16]).

The exact distribution of TCvMðBÞ (or rather fTCvMðBÞg2) is described in [2].

Example 3 (The Andersen–Darling functional). Consider the functional TAD
defined by

TADð f Þ ¼
Z 1

0

ð f ðsÞÞ2

sð1� sÞ ds

( )1=2
:

For this functional we have V ¼ fv0g and Qv0ð f ; gÞ ¼
R 1
0 ð f ðsÞgðsÞ=sð1� sÞÞ ds:

Recall that KBðs; tÞ ¼ minðs; tÞ � st: Since the operator A defined by Af ðtÞ ¼R 1
0
ðKBðs; tÞ=sð1� sÞÞf ðsÞ ds satisfies A�1FðtÞ ¼ �tð1� tÞF 00ðtÞ; it follow that the

eigenfunctions and the eigenvalues are found from the equation l�1FðtÞ ¼
�tð1� tÞF 00ðtÞ: The solutions of this equation are FjðtÞ ¼ tð1� tÞLj�1ð2t � 1Þ;
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lj ¼ 1
jð jþ1Þ; j ¼ 1; 2;y; where Lj is the Legendre polynomial of degree j (cf. [43, p.

324]). Since the operator A is self-conjugate, it follows that these solutions form an
orthogonal system in HB: The system of Legendre polynomials is complete in
L2½�1; 1
; consequently the system fFjg is complete inHB: Thus, after normalization

we obtain the complete orthonormal system of eigenfunctions

fjðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
2j þ 1

jð j þ 1Þ

s
tð1� tÞLj�1ð2t � 1Þ

and corresponding eigenvalues lj ¼ 1
jð jþ1Þ; jX1 (see also [16, p. 303]). Hence

Condition 1 is fulfilled. In particular, we have f1ðtÞ ¼
ffiffiffi
3

p
tð1� tÞ and l1 ¼ 1=2: It

follows by Lemma 2(i) that in HB the norm of TAD is equal to 2
�1=2: It follows by

Lemma 2(ii) that TADðBÞ is larger than or equal to jjTADjjHB
� jZj ¼ j2�1=2Zj; where

Z ¼ /B;f1SHB
¼ �

Z 1

0

BðsÞf00
1ðsÞ ds ¼ 2

ffiffiffi
3

p Z 1

0

BðsÞ ds

by Lemma 1. The random variable 2�1=2Z coincides with the limit in distribution of
the ‘‘first component’’ of the Anderson-Darling test statistic (cf. [16]).

The exact distribution of TADðBÞ (or rather fTADðBÞg2) is described in [3].

3. Covariance functions with product structure

3.1. Reproducing kernel Hilbert space

In this section we consider the situation where the covariance function of X obeys
the product structure as given by (5). As an example, one may think of the limit in
distribution of the Hoeffding, Blum, Kiefer, Rosenblatt p-variate empirical process,

which is a mean zero Gaussian process with covariance function
Qp

i¼1fminðsi; tiÞ �
sitig (see Section 3 in [6]). Observe that for p ¼ 2; this process coincides with the
Brownian pillow.
Although we concentrate on the product structure (5), our results have direct

implications for the situation where

Kððs1; s2;y; spÞ; ðt1; t2;y; tpÞÞ ¼
Yp

i¼1
Kiðsi; tiÞ

for every si; tiAMi ði ¼ 1; 2;y; pÞ:

Lemma 4. The reproducing kernel Hilbert space H of X is equal to the tensor product

H13H2; where Hi denotes the reproducing kernel Hilbert space corresponding to

Kiðxi; yiÞ ði ¼ 1; 2Þ:
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The tensor productH13H2 is the Hilbert space with basis fh1j3h2kg; where fhijg is
an orthonormal basis of Hi: For any f1 ¼

P
j a1jh1jAH1 and f2 ¼

P
k a2kh2kAH2

we have

f13f2 ¼
X

j

X
k

a1ja2k � h1j3h2k:

The scalar product in H13H2 is defined as

X
j1

X
k1

aj1k1 � h1j13h2k1 ;
X

j2

X
k2

bj22k2 � h1j23h2k2

* +
H13H2

¼
X
j;k

ajkbjk:

It is clear that for any f1; g1AH1 and f2; g2AH2 we have

/ f13f2; g13g2SH13H2
¼ / f1; g1SH1

/ f2; g2SH2
;

and in particular

/h1j13h2k1 ; h1j23h2k2SH13H2
¼ dj1; j2dk1;k2 :

It is seen easily that the tensor product of Hilbert spaces does not depend on the
choice of the orthonormal bases in them.

3.2. Tail behaviour of supremum and quadratic tests

For i ¼ 1; 2; let Hi be a Hilbert space. Let Qi be a symmetric and bounded (not
necessarily positively semidefinite) bilinear form onHi; that is, there exists a positive
constant c such that

jQið fi; giÞj ¼ jQiðgi; fiÞjpcjj fijjHi
� jjgijjHi

for every fi; giAHi: Then one can define a bilinear form Q13Q2 on the tensor product
H13H2 as follows: for the elements of basis we set Q13Q2ðh1j13h2j2 ; h1k13h2k2Þ ¼
Q1ðh1j1 ; h1k1ÞQ2ð2hj2 ; h2k2Þ; then extend this form onto H13H2 by bilinearity. The

tensor product of bilinear forms does not depend on the choice of bases and
possesses the property Q13Q2ð f13f2; g13g2Þ ¼ Q1ð f1; g1ÞQ2ð f2; g2Þ for all fi; giAHi:

Proposition 3.2.1. Let Hi be a Hilbert space, Qi be a symmetric and bounded bilinear

form on Hi; i ¼ 1; 2: Then

sup
fAH13H2

jQ13Q2ð f Þj ¼ sup
f1AH1

jQ1ð f1Þj sup
f2AH2

jQ2ð f2Þj: ð13Þ

If the suprema on the RHS of (13) are respectively attained for f1 ¼ f �
1 and f2 ¼ f �

2 ;
then the supremum on the LHS of (13) is attained for f ¼ f �

1 3f
�
2 :

Corollary 3.1. Let the functional Ti be defined by Tið fiÞ ¼ fsupviAVi
jQi;vi

ð fiÞjg1=2 for

fiAHi; where Vi is some index set and Qi;vi
is a symmetric bounded bilinear form
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satisfying Condition 1. Then the functional T ¼ T13T2 defined by

Tð f Þ ¼ sup
v1AV1

sup
v2AV2

jQ1;v13Q2;v2ð f Þj
� �1=2

for fAH13H2 satisfies jjT jjH13H2
¼ jjT1jjH1

� jjT2jjH2
:

Lemma 5. Let T be as in Corollary 3.1, let fi1;wi
denote the eigenfunction

corresponding to the largest eigenvalue of Qi;wi
; and define the process X2 by

X2ðt2Þ ¼ /X ð�; t2Þ;f11;w1SH1

for t2AM2: Then X2 is a zero mean Gaussian process X2 with covariance func-

tion K2ðs2; t2Þ: Moreover, TðXÞ is larger than or equal to jjT1jjH1
� T2ðX2Þ with

probability 1.

Remark that Corollary 3.1 implies that the random variables TðX Þ and jjT1jjH1
�

T2ðX2Þ have similar tail behaviour, in the sense that

lim
y-þN

ðyÞ�2 log PðTðXÞ4yÞ ¼ lim
y-þN

ðyÞ�2 log PðjjT1jjH1
� T2ðX2Þ4yÞ: ð14Þ

Applying Lemma 2(ii) to X2 yields that there exists a standard normal random
variable Z such that

TðXÞXjjT1jjH1
� T2ðX2ÞXjjT1jjH1

� jjT2jjH2
� jZj

with probability 1. This indicates that Lemma 5 may well yield better results than
Lemma 2(ii) when applied to a zero mean Gaussian process with product structure in
the covariance function.
By a symmetry argument, it follows that under the conditions of Lemma 5 we also

have that TðX Þ is larger than or equal to jjT2jjH2
� T1ðX1Þ with probability 1, where

the process X1 is defined by

X1ðt1Þ ¼ /X ðt1; �Þ;f21;w2SH2
:

3.3. Application to the Brownian pillow

As KG satisfies (5) with Ki ¼ KB; we have HG ¼ HB3HB: Lemma 6 presents an
alternative representation of the reproducing kernel Hilbert space belonging to G:
For a function f : ½0; 1
2-R which is differentiable in both components, let f12
denote the partial derivative of f obtained by differentiating with respect to both
components.

Lemma 6. The Hilbert space HG corresponding to the kernel of the Brownian pillow G
is given by

HG ¼ f f : ½0; 1
2-R; f12AL2½0; 1
; f ðt1; t2Þ ¼ 0 on the boundary of ½0; 1
2g;
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and has scalar product

/ f ; gSHG
¼
Z 1

0

Z 1

0

f12ðt1; t2Þg12ðt1; t2Þ dt1 dt2:

Example 4 (An extension of the Kolomogorov functional). Let TKol be as in the
previous section, recall that jjTKoljjHB

¼ 1=2:

* For the functional T ¼ TKol3TKol defined by

TKol3TKolð f Þ ¼ sup
t1;t2A½0;1


j f ðt1; t2Þj for every fAHG:

Corollary 3.1 yields jjT jjHG
¼ jjTKoljj2HB

¼ 1=4: By Lemma 2(ii) there exists a

standard normal random variable Z such that TðGÞXjZj=4: By Lemma 5 we have
TðGÞXjjTKoljjHB

TKolðBKolÞ ¼ TKolðBKolÞ=2 with probability 1, where the Brow-
nian bridge BKol is defined by

BKolðt2Þ ¼ 2Gð1=2; t2Þ for every t2A½0; 1
:

To the author’s knowledge, the distribution of TðGÞ is not known. The only result
found in literature with respect to this distribution is the upper bound in [29] (cf.
[6]): there exist unspecified positive constants c1; c2 such that

PðTðGÞ4yÞpc1 expf�c2y
2g:

Observe that this upper bound follows from the Inequality of Borell. In fact, we

may take c2 equal to 1=2jjT jj2HG
¼ 8:

Example 5 (Extensions of the Cramér–von Mises functional). Let TCvM be as in the

previous section, recall that jjTCvMjjHB
¼ p�1:

* For the functional T ¼ TCvM3TCvM defined by

TCvM3TCvMð f Þ ¼
Z 1

0

Z 1

0

f 2ðt1; t2Þ dt1 dt2

� �1=2
for every fAHG;

Corollary 3.1 yields jjT jjHG
¼ jjTCvMjj2HB

¼ p�2: By Lemma 2(ii) there exists a
standard normal random variable Z such that TðGÞXjZj=p2: By Lemma 5 we
have TðGÞXjjTCvMjjHB

� TCvMðBCvMÞ ¼ TCvMðBCvMÞ=p with probability 1, where
BCvM is the Brownian bridge defined by

BCvMðt2Þ ¼ p
ffiffiffi
2

p Z 1

0

Gðt1; t2Þsinðpt1Þ dt1 for every t2A½0; 1
:

The distribution of TðGÞ is tabulated in [6].
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* For the functional T ¼ TKol3TCvM defined by

TKol3TCvMð f Þ ¼ sup
t1A½0;1


Z 1

0

f 2ðt1; t2Þ dt2

� �1=2
for every fAHG;

Corollary 3.1 yields jjT jjHG
¼ jjTKoljjHB

� jjTCvMjjHB
¼ 1=2p: By Lemma 2(ii)

there exists a standard normal random variable Z such that TðGÞXjZj=2p:
By Lemma 5 we have TðGÞXjjTKoljjHB

TCvMðBKolÞ ¼ TCvMðBKolÞ=2 and

TðGÞXjjTCvMjjHB
: TKolðB0

CvMÞ ¼ TKolðB0
CvMÞ=p with probability 1; here B0

CvM is

the Brownian bridge defined by

B0
CvMðt1Þ ¼ p

ffiffiffi
2

p Z 1

0

Gðt1; t2Þsinðpt2Þ dt2 for every t1A½0; 1
:

Example 6 (Extensions of the Anderson–Darling functional). Let TAD be as in the

previous section, recall that jjTADjjHB
¼ 2�1=2:

* For the functional T ¼ TAD3TAD defined by

TAD3TADð f Þ ¼
Z 1

0

Z 1

0

f 2ðt1; t2Þ
t1ð1� t1Þt2ð1� t2Þ

dt1 dt2

� �1=2
for every fAHG;

Corollary 3.1 yields jjT jjHG
¼ jjTADjj2HB

¼ 1=2: By Lemma 2(ii) there exists a

standard normal random variable Z such that TðGÞXjZj=2: By Lemma 5 we have
TðGÞXjjTADjjHB

� TADðBADÞ ¼ TADðBADÞ=
ffiffiffi
p

p
with probability 1, where BAD is

the Brownian bridge defined by

BADðt2Þ ¼
ffiffiffi
3

p Z 1

0

Gðt1; t2Þ dt1 for every t2A½0; 1
:

* For the functional T ¼ TKol3TAD defined by

TKol3TADð f Þ ¼ sup
t1A½0;1


Z 1

0

f 2ðt1; t2Þ
t2ð1� t2Þ

dt2

� �1=2
for every fAHG;

Corollary 3.1 yields jjT jjHG
¼ jjTKoljjHB

� jjTADjjHB
¼ 2�3=2: By Lemma 2(ii)

there exists a standard normal random variable Z such that TðGÞXjZj=2
ffiffiffi
2

p
:

By Lemma 5 we have TðGÞXjjTKoljjHB
TADðBKolÞ ¼ TADðBKolÞ=2 and

TðGÞXjjTADjjHB
� TKolðB0

ADÞ ¼ TKolðB0
ADÞ=

ffiffiffi
2

p
with probability 1; here B0

AD is

the Brownian bridge defined by

BADðt1Þ ¼
ffiffiffi
3

p Z 1

0

Gðt1; t2Þ dt2 for every t1A½0; 1
:

* For the functional T ¼ TCvM3TAD defined by

TCvM3TADð f Þ ¼
Z 1

0

Z 1

0

f 2ðt1; t2Þ
t2ð1� t2Þ

dt1 dt2

� �1=2
for every fAHG;
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Corollary 3.1 yields jjT jjHG
¼ jjTCvMjjHB

� jjTADjjHB
¼ ðp

ffiffiffi
2

p
Þ�1: By Lemma 2(ii)

there exists a standard normal random variable Z such that TðGÞXjZj=p
ffiffiffi
2

p
:

By Lemma 5 yields that TðGÞXjjTCvMjjHB
TADðBKolÞ ¼ TADðBKolÞ=p and

TðGÞXjjTADjjHB
� TCvMðB0

ADÞ ¼ TCvMðB0
ADÞ=

ffiffiffi
2

p
with probability 1.

4. Refining the results by simulation

Consider a random variable of interest S and a reference variable R satisfying (2)–
(4). As noted before, the direct use of the distribution of R as an approximation to
the distribution of S should be avoided since it leads to an anti-conservative test.
However, if the distribution of R is known, then we may employ simulation methods
(using R as a ‘‘control variate’’ for S) to approximate the tail distribution of S: The
preceding results may act as guidelines for the statistical analysis of the simulation
results. In this section, we illustrate this approach by applying it to statistics of the
form S ¼ T13T2ðGÞ; where T1 and T2 are either TKol; TCvM or TAD; and G is a
Brownian pillow. We remark that the distributions of TKolðBÞ; TCvMðBÞ and TADðBÞ
have been tabulated ([31], [2,3], selected upper percentage points are given in
Table 1).
In our simulation study we performed 10.000 simulations. In each simulation

generated the Brownian pillow on a 1:000� 1:000 grid, and computed S ¼ T13T2ðGÞ
and R ¼ jT1jB3T2ðB1Þ: Thus, we obtained 10.000 independent copies ðSj;RjÞ of
ðS;RÞ: Let Sð1ÞpSð2Þp?pSð10 000Þ and Rð1ÞpRð2Þp?pRð10 000Þ denote the
ordered versions of the random samples S1;S2;y;S10000 and R1;R2;y;R10000;

respectively. We shall refer to SðiÞ and RðiÞ as the ith order statistics of S

and R; respectively. Observe that SXR with probability 1 implies SðiÞ
XRðiÞ with

probability 1.
As we were interested in the tail behaviour of S; we investigated the relation

between SðiÞ and RðiÞ for i ¼ 9001;y; 10 000 (that is, the upper ten percent of the
order statistics) by exploratory statistical methods. For all statistics S under

consideration, we found that plots of lnðSðiÞ � RðiÞÞ versus lnRðiÞ showed roughly
linear relations (see Figs. 1–9). For each of the plots, we estimated a simple
regression model by ordinary least squares. Although the assumptions of the
regression model are clearly not met, the plots show that the regression lines do seem

to give an adequate summary of the relation between lnðSðiÞ � RðiÞÞ versus lnRðiÞ:
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Table 1

Exact upper percentage points for various random variables S ¼ TðBÞ; where B is the Brownian bridge

T a ¼ 0:10 a ¼ 0:05 a ¼ 0:01

TKol 1.225 1.359 1.632

TCvM 0.5893 0.6792 0.8622

TAD 1.3903 1.5786 1.9621
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From this relation we may deduce that there exist constants c and p such that

SðiÞERðiÞ þ cðRðiÞÞ�p;

and infer for 0oap10% that a similar approximation holds between the a upper
percentage points of S and T2ðB1Þ: Table 2 summarizes the approximations found in
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Fig. 1. Plot of lnðSðiÞ � RðiÞÞ versus lnRðiÞ for i ¼ 9001;y; 10 000; where SðiÞ is the ith order statistic of

S ¼ TKol3TKolðGÞ and RðiÞ is the ith order statistic of R ¼ jjTKoljjHB
� TKolðBKolÞ; based on a random

sample of length 10 000 taken from the distribution of G: The least squares line indicates that the critical
value of the size a test based on T may be approximated by 0:5000ðtaKolÞ þ 0:17864ðtaKolÞ

�0:4932:
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Fig. 2. Plot of lnðSðiÞ � RðiÞÞ versus ln RðiÞ for i ¼ 9001;y; 10 000; where SðiÞ is the ith order statistic of

S ¼ TKol3TCvMðGÞ and RðiÞ is the ith order statistic of R ¼ jjTCvMjjHB
� TKolðBCvMÞ; based on a random

sample of length 10 000 taken from the joint distribution of G: The least squares line indicates that the
critical value of the size a test based on T may be approximated by 0:3183ðtaKolÞ þ 0:02331ðtaKolÞ

�0:7660:
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Figs. 1–9, and evaluates the approximations for a ¼ 0:10; a ¼ 0:05 and a ¼ 0:01:
Observe that the approximated 0.10, 0.05 and 0.01 upper percentage points given for
TKol3TCvMðGÞ are quite close to those given for TCvM3TKolðGÞ: The same holds for
TKol3TADðGÞ and TAD3TKolðGÞ; and for TCvM3TADðGÞ and TAD3TCvMðGÞ:
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Fig. 3. Plot of lnðSðiÞ � RðiÞÞ versus lnRðiÞ for i ¼ 9001;y; 10 000; where SðiÞ is the ith order statistic of

S ¼ TKol3TADðGÞ and RðiÞ is the ith order statistic of R ¼ jjTADjjHB
� TKolðBADÞ; based on a random

sample of length 10 000 taken from the joint distribution of G: The least squares line indicates that the
critical value of the size a test based on T may be approximated by 0:7071ðtaKolÞ þ 0:07845ðtaKolÞ

�0:6116:

-0.45-0.55-0.65-0.75-0.85-0.95-1.05-1.15-1.25

-2.2

-2.3

-2.4

-2.5

-2.6

-2.7

-2.8

lnReference

ln
D

iff
er

en
ce

TCvmKol

Fig. 4. Plot of lnðSðiÞ � RðiÞÞ versus lnRðiÞ for i ¼ 9001;y; 10 000; where SðiÞ is the ith order statistic of

S ¼ TCvM3TKolðGÞ and RðiÞ is the ith order statistic of R ¼ jjTKoljjHB
� TCvMðBKolÞ; based on a random

sample of length 10 000 taken from the joint distribution of G: The least squares line indicates that the
critical value of the size a test based on T may be approximated by 0:5000ðtaCvMÞ þ 0:09469ðtaCvMÞ�0:2917:
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Table 2 seems to suggest that the rate at which y�2 log PðS4yÞ converges to a
constant �a=2 (recall (2)) is relatively slow for functionals T involving TKol:
The random variable TCvM3TCvMðGÞ is the only one occurring in Table 2 which

has been tabulated [6] see also [9]. For this random variable the exact 0.10,0.05 and
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Fig. 5. Plot of lnðSðiÞ � RðiÞÞ versus lnRðiÞ for i ¼ 9001;y; 10 000; where SðiÞ is the ith order statistic of

S ¼ TCvM3TCvMðGÞ and RðiÞ is the ith order statistic of R ¼ jjTCvMjjHB
� TCvMðBCvMÞ; based on a random

sample of length 10 000 taken from the distribution of G: The least squares line indicates that the critical
value of the size a test based on T may be approximated by 0:3183ðtaCvMÞ þ 0:01820ðtaCvMÞ�0:8440:

0.0-0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9

-2.5

-3.0

-3.5

lnReference

ln
D

iff
er

en
ce

TCvmAnd

Fig. 6. Plot of lnðSðiÞ � RðiÞÞ versus lnRðiÞ for i ¼ 9001;y; 10 000; where SðiÞ is the ith order statistic of

S ¼ TCvM3TADðGÞ and RðiÞ is the ith order statistic of R ¼ jjTADjjHB
� TCvMðBADÞ; based on a random

sample of length 10 000 taken from the distribution of G: The least squares line indicates that the critical
value of the size a test based on T may be approximated by 0:7071ðtaCvMÞ þ 0:06303ðtaCvMÞ�0:7935:
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0.01 upper percentage points, respectively, are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:04694

p
¼ 0:2167;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05840

p
¼

0:2417 and 0:08685 ¼ 0:2947; so the approximation given in Table 2 seems to be
quite accurate.

ARTICLE IN PRESS

0.30.20.10.0-0.1-0.2-0.3-0.4

-1.2

-1.3

-1.4

-1.5

-1.6

-1.7

-1.8

-1.9

-2.0

-2.1

-2.2

lnReference

ln
D

iff
er

en
ce

TAndKol

Fig. 7. Plot of lnðSðiÞ � RðiÞÞ versus lnRðiÞ for i ¼ 9001;y; 10 000; where SðiÞ is the ith order statistic of

S ¼ TAD3TKolðGÞ and RðiÞ is the ith order statistic of R ¼ jjTKoljjHB
� TADðBKolÞ; based on a random

sample of length 10 000 taken from the distribution of G: The least squares line indicates that the critical
value of the size a test based on T may be approximated by 0:5000ðtaADÞ þ 0:25823ðtaADÞ

�0:2887:
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Fig. 8. Plot of lnðSðiÞ � RðiÞÞ versus ln RðiÞ for i ¼ 9001;y; 10 000; where SðiÞ is the ith order statistic of

S ¼ TAD3TCvMðGÞ and RðiÞ is the ith order statistic of R ¼ jjTCvMjjHB
� TADðBCvMÞ; based on a random

sample of length 10 000 taken from the distribution of G: The least squares line indicates that the critical
value of the size a test based on T may be approximated by 0:3183ðtaADÞ þ 0:09464ðtaADÞ

�0:8447:
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In [9] the use of Cornish-Fisher expansions to approximate upper percentage
points of TCvM3TCvMðGÞ is advocated. However, Cornish–Fisher expansions
typically yield inaccurate results for a tending to zero. Recall that the situation
where a tends to zero is of considerable theoretical interest.
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Fig. 9. Plot of lnðSðiÞ � RðiÞÞ versus lnRðiÞ for i ¼ 9001;y; 10; 000; where SðiÞ is the ith order statistic of

S ¼ TAD3TADðGÞ and RðiÞ is the ith order statistic of R ¼ jjTADjjHB: TADðBADÞ; based on a random
sample of length 10000 taken from the distribution of G: The least squares line indicates that the critical
value of the size a test based on T may be approximated by 0:7071ðtaADÞ þ 0:31340ðtaADÞ

�0:7945:

Table 2

Approximation of upper percentage points for various random variables S ¼ TðGÞ; where G is the

Brownian pillow

T 0oap0:10 a ¼ 0:10 a ¼ 0:05 a ¼ 0:01

TKol3TKol 0:5000ðtaKolÞ þ 0:17864ðtaKolÞ
�0:4932 0.7741 0.8331 0.9563

TKol3TCvM 0:3183ðtaKolÞ þ 0:02331ðtaKolÞ
�0:7660 0.4099 0.4510 0.5355

TKol3TAD 0:7071ðtaKolÞ þ 0:07845ðtaKolÞ
�0:6616 0.9355 1.0260 1.2121

TCvM3TKol 0:5000ðtaCvMÞ þ 0:09469ðtaCvMÞ
�0:2917 0.4051 0.4456 0.5300

TCvM3TCvM 0:3183ðtaCvMÞ þ 0:01820ðtaCvMÞ
�0:8440 0.2160 0.2414 0.2951

TCvM3TAD 0:7071ðtaCvMÞ þ 0:06303ðtaCvMÞ
�0:7935 0.5126 0.5660 0.6806

TAD3TKol 0:5000ðtaADÞ þ 0:25823ðtaADÞ
�0:2887 0.9300 1.0157 1.1936

TAD3TCvM 0:3183ðtaADÞ þ 0:09464ðtaADÞ
�0:8447 0.5142 0.5668 0.6781

TAD3TAD 0:7071ðtaADÞ þ 0:31340ðtaADÞ
�0:7945 1.2243 1.3343 1.5709
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5. Possible generalizations

In this section we address the question whether it is possible to generalize the key
result Proposition 3.2.1 for a wider class of functionals.
Let T1; T2 be positive homogeneous bounded functionals defined on Hilbert

spaces H1;H2; respectively. Let T be a functional defined on the tensor product
H13H2 which satisfies Tð f13f2Þ ¼ T1ð f1ÞT2ð f2Þ for all f1AH1 and f2AH2: Then T

is said to possess the product property if jjT jj ¼ jjT1jj � jjT2jj:
First note that the product property entirely depends on the way we extend the

functional T13T2 from basic elements f1j3f2k; where it is equal to T1ðf1jÞT2ðf2kÞ;
onto the whole tensor product H13H2: As we saw in Proposition 3.2.1 the product
property holds if the functionals are extended bilinearly.

If both Ti are of the form Tið f Þ ¼ jGð f ;y; f Þj1=k for some symmetric k-linear
forms T1; T2; then the tensor product T13T2 are naturally defined by k-linearity. For
k ¼ 1; 2; the k-linear extension respects the product property (for k ¼ 2 this follows
from Proposition 3.2.1, for k ¼ 1 this also does, because the modulus of a linear
functional is the square root of its square, which is a bilinear form). However, for
kX3 this no longer holds, as the next example shows.

Example 7 (Trilinear forms). Consider the trilinear form Gð f1; f2; f3Þ defined on the
space R2 as follows: Gðe1; e1; e2Þ ¼ Gðe1; e2; e1Þ ¼ Gðe2; e1; e1Þ ¼ 1;Gðe2; e2; e2Þ ¼
�6=5; and Gðei1 ; ei2 ; ei3Þ ¼ 0 for all other combination of indices (here e1; e2
are basic vectors). Thus for a vector f ¼ ðx; yÞ we have Gð f ; f ; f Þ ¼ 3x2y � 6

5
y3:

Put T1ð f Þ ¼ T2ð f Þ ¼ jGð f ; f ; f Þj1=3: It follows that jjT1jj ¼ jjT2jj ¼ T1ð0;�1Þ ¼
ð6=5Þ

1
3: However, since jjT13T2jj ¼ T13T2ð

ffiffiffiffi
14

pffiffiffiffi
39

p ; 0; 0; 5ffiffiffiffi
39

p Þ ¼ ð 10ffiffiffiffi
39

p Þ
1
3; it also follows that

jjT13T2jj ¼ ð10=
ffiffiffiffiffi
39

p
Þ
1
34ð36=25Þ

1
3 ¼ jjT1jj � jjT2jj:

Some other extensions may violate the product property even in the simplest cases.

Example 8 (Other extensions). Let dX2; and consider two functions T1; T2 defined

on Rd by T1ð f Þ ¼ T2ð f Þ ¼ jj f jj for fARd : Let us show that there exists a positively

homogeneous sublinear functional T defined on Rd2 such that Tð f13f2Þ ¼
Tð f1ÞT2ð f2Þ for every f1; f2ARd ; but jjT jj4jjT1jj � jjT2jj: Let Sd�1 denote the unit

sphere in Rd ; and consider

Sd�13Sd�1 ¼ f f 3g ¼ fgT : f ; gASd�1g:

Obviously, Sd�13Sd�1 is a compact subset of Sd2�1; which does not coincide with
Sd2�1 (any fASd�13Sd�1; considered as d � d-matrix, has rank 1). Take any
gASd2�1\Sd�13Sd�1: From compactness it follows that inf fASd�13Sd�1 jjg � f jj ¼
a40: Therefore g is not an element of convðSd�13Sd�1Þ; and hence the convexity
and compactness of convðSd�13Sd�1Þ implies TðgÞ41; where T is the Minkowski
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functional defined by

TðgÞ ¼ ðsupflARþ: lgAconvðSd�13Sd�1ÞgÞ�1:

It is clear that T is sublinear and positive homogeneous. We have Tð f13f2Þ ¼ 1 for all

f1; f2ASd�1; hence by sublinearity Tð f13f2Þ ¼ jj f1jj � jj f2jj for all f1; f2ARd : Taking
T1 ¼ T2 ¼ jj � jjRd ; we see that jjT jjXjTðgÞj41 ¼ jjT1jj � jjT2jj:
On the other hand, we have the following positive result: for any pair of sublinear

positively homogeneous functionals T1; T2 defined on Hilbert spaces H1; H2 there
does exist an extension (of its tensor product) that respects the product property.
Indeed, using sublinearity we get Tið f Þ ¼ supf �

i
AB�

i
jLf �

i
ð f Þj; where Lf �

i
denotes the

linear form / f ; f �
i S; and B�

i is a polar to the set Bi ¼ f fi: jTið fiÞjp1g; the polar B�
i

of a subset BiCHi is defined as B�
i ¼ f f �

i AHi; supfABi
/ f ; f �

i Sp1g (cf. [8]). We can
now define the extension T13T2 by

T13T2 ¼ sup
f �
1
AB�

1

sup
f �
2
AB�

2

jLf �
1
3Lf �

2
j; ð15Þ

where Lf �
1
3Lf �

2
is the uniquely defined linear form satisfying

Lf �
1
3Lf �

2
ð f13f2Þ ¼ Lf �

1
ð f1Þ � Lf �

2
ð f2Þ

for all f1AH1 and f2AH2: Now, it is easy to verify that jjT13T2jjH13H2
¼

jjT1jjH1
jjT2jjH2

; which actually follows from Corollary 3.1 by setting Vi ¼ B�
i ; vi ¼

f �
i ; and Qvi

ð f ; gÞ ¼ Lf �
i
ð f Þ � Lf �

i
ðgÞ: Thus, for any pair of functionals T1; T2

extension (15) respects the product property. However, this extension is not always
natural and suitable. For instance, it does not coincide with the bilinear extension
when both T1; T2 are square roots of positively semidefinite bilinear forms.

6. Proofs

Proof of Lemma 2. Statement (i) is well known, we include the proof for convenience
of the reader. Consider vAV and fAH: Since the normalized eigenfunctions of Av

form a complete orthonormal basis in H; we may write

f ¼
XN
j¼1

bjfj;v; Avf ¼
XN
j¼1

bjlj;vfj;v;

and hence

/ f ;Avf SH ¼
XN
j¼1

ðbjÞ2lj;vpl1;v
XN
j¼1

ðbjÞ2: ð16Þ

Thus,

sup
fAOH

Qvð f ; f Þ ¼ l1;v ¼ Qvðf1;v;f1;vÞ;
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where OH is the unit ball in H: This yields

jjT jj2H ¼ sup
fAOH

sup
vAV

Qvð f ; f Þ ¼ sup
vAV

l1;v ¼ l1;w:

This completes the proof of Lemma 2(i).

Next, we turn to statement (ii). According to Theorem 3.7 in [1], we have the
‘‘principal components decomposition’’

X ¼
XN
j¼1

Zjfj;w

with probability 1, where Z1;Z2;y is a sequence of independent standard normal
random variables (principal components decomposition was first applied to
Gaussian processes in [25]). Remark that the random variables Z1;Z2;y may be
retrieved from X by

Zj ¼ /X ;fj;wSH;

and observe that Z coincides with Z1: It follows from (16) that

/X ;AvXSH ¼
XN
j¼1

Z2
j lj;wXZ2l1;w

with probability 1, and hence Lemma 2(i) yields

TðXÞX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QwðXÞ

p
XjZj

ffiffiffiffiffiffiffiffi
l1;w

p
¼ jZj � Tðf1;wÞ

with probability 1. This concludes the proof of Lemma 2(ii). &

Proof of Lemma 3. First, we verify that the linear space with the introduced scalar
product is indeed a Hilbert space. Then by a direct calculation we show that

/ f ;KBð�; tÞS ¼ f ðtÞ for all fAHB:

Thus, the reproducing property with kernel KBðs; tÞ ¼ minðs; tÞ � st holds in this
space. This concludes the proof. &

Proof of Lemma 4. For i ¼ 1; 2; choose an arbitrary orthonormal base fhikg in Hi:

Consider the Hilbert space H that consists of all functions f ðs; tÞ ¼
P

N

j;k¼1 ajk:

h1jðsÞh2kðtÞ with
P

N

j;k¼1 a2jkoN and equipped with the scalar product

X
j1;k1

aj1;k1 � h1jh2k;
X
j2;k2

bj2k2 � h1jh2k

* +
¼
X
j;k

ajkbjk:

This space is nothing else but the tensor productH13H2; where any element f13f2 is
identified with the corresponding (usual) product f ðs; tÞ ¼ f1ðsÞf2ðtÞAH: Now it
remains to note that all elements of the space H satisfy reproducing property with
the kernel Kðs1; t1; s2; t2Þ ¼ K1ðs1; t1Þ � K2ðs2; t2Þ: This completes the proof of
Lemma 4. &
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Proof of Proposition 3.2.1. Note that since jj fijjHi
¼ 1 implies jj f13f2jjH13H2

¼ 1; the

inequality

sup
fAH13H2

jQ13Q2ð f ÞjX sup
f1AH1

jQ1ð f1Þj sup
f2AH2

jQ2ð f2Þj

is straightforward.
Therefore, it remains to prove the opposite inequality. To show this, assume the

contrary: for some gAH13H2 we have

jQ13Q2ðgÞj4 sup
f1AH1

jQ1ð f1Þj sup
f2AH2

jQ2ð f2Þj:

Decompose g in the basis fh1i3h2jg; so g ¼
P

N

i; j¼1 bijh1i3h2j; and consider the

sequence gN ¼
PN

i; j¼1 bijh1i3h2j; NX1: Since gN-g in the space H13H2; we see

that

jQ13Q2ðgNÞj4 sup
f1AH1

jQ1ð f1Þj sup
f2AH2

jQ2ð f2ÞjX sup
f1AH1N

jQ1ð f1Þj sup
f2AH2N

jQ2ð f2Þj

for sufficiently large N; here HiN denotes the N-dimensional subspace of Hi

spanned by hi1;y; hiN ; i ¼ 1; 2: Since gNAH1N3H2N ; it follows that

sup
fAH1N 3H2N

jQ13Q2ð f Þj4 sup
f1AH1N

jQ1ð f1Þj sup
f2AH2N

jQ2ð f2Þj:

So, if the equality supfAH13H2
jQ13Q2ð f Þj ¼ supf1AH1

jQ1ð f1Þjsupf2AH2
jQ2ð f2Þj fails

for infinite-dimensional spaces, then it does for suitable finite-dimensional spaces.
Thus, we assume that bothH1 andH2 are of dimension N: In this case the space

H13H2 is the space of matrices R
N2

with the scalar product /F ;GSHi
¼ trðF T GÞ;

that is the sum of diagonal elements of the matrix FT G: The embedding

f f13f2gCH13H2 is realized by the formula f13f2 ¼ f1f
T
2 : The form Qi is given on

Hi by the formula Qið f ; gÞ ¼ / f ;AigSHi
; whereAi is a self-conjugate operator on

Hi; for which there exists a complete orthonormal system of eigenvectors ffijg
N
j¼1

such that

Ai

XN

j¼1
ajfij

 !
¼
XN

j¼1
ljajfij ;

where li1;y; liN are the eigenvalues ofAi: It follows that jjQijj is equal to jjAijj ¼
maxj¼1;y;N jlijj: Let A be the operator in H13H2 given by

Aðf1j3f2kÞ ¼ A1f1j3A2f2k

(in the matrix representation, we have AðFÞ ¼ A1FAT
2 for every FARN2

). As

Aðf1j3f2kÞ ¼ A1f1j3A2f2k ¼ l1f1j3l2f2k; it follows that each f1j3fjk is an

eigenvector of A with the corresponding eigenvalue l1jl2k: The system

ff1j3f2kg
N
j;k¼1 is obviously orthonormal, and consists of N2 vectors, and hence is a

complete orthonormal system of eigenvectors of A in RN2

:
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This implies that for the form Q13Q2 defined by

Q13Q2ðx; yÞ ¼ /x;AySH13H2
;

we have

jjQ13Q2jj ¼ jjAjj ¼ max
j;k¼1;y;N

jl1jl2kj ¼ max
j¼1;y;N

jl1jj � max
k¼1;y;N

jl2kj

¼ jjA1jj � jjA2jj ¼ jjQ1jj � jjQ2jj:

Thus, in the finite-dimensional case the statement holds, which concludes the proof
of Proposition 3.2.1. &

Remark 1. Passing to the finite-dimensional case was essential in the proof of
Proposition 3.2.1, because the infinite-dimensional operator Ai defining the form
Qið f ; gÞ ¼ / f ;AgSHi

on Hi may not have a complete system of eigenvectors.

Proof of Lemma 5. According to Theorem 3.7 in [1], we have

X ¼
XN
j¼1

XN
k¼1

Zjkf1j;wf2k;w

with probability 1, where the Zjk’s are independent standard normal random

variables. It follows that

/X ð�; t2Þ;f11;wSH1
¼
XN
j¼1

XN
k¼1

Zjkf2k;wðt2Þ �/f1j;w;f11;wSH1
¼
XN
k¼1

Z1kf2k;wðt2Þ

for every t2AM2; with probability 1. Observe that the RHS of the latter equation is
an expansion of a mean zero Gaussian process with covariance function K2ðs2; t2Þ:
This concludes the proof of Lemma 5. &

Proof of Lemma 6. The proof is realized in the same way as one of Lemma 3. &
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