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Abstract

In this paper we investigate the tail behaviour of a random variable S which may be viewed
as a functional 7 of a zero mean Gaussian process X, taking special interest in the situation
where X obeys the structure which is typical for limiting processes occurring in nonparametric
testing of (multivariate) independency and (multivariate) constancy over time. The tail
behaviour of S is described by means of a constant ¢ and a random variable R which is defined
on the same probability space as S. The constant « acts as an upper bound, and is relevant for
the computation of the efficiency of test statistics converging in distribution to S. The random
variable R acts as a lower bound, and is instrumental in deriving approximation for the upper
percentage points of S by simulation.
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1. Introduction

Let d be an integer greater than or equal to 2, let M be a subset of R?, and let E be
a space of real-valued functions defined on M. The object of interest in this paper is
the tail behaviour of a separable zero mean Gaussian process X = {X(#)},.,, taking
values in the space E, or rather the tail behaviour of a random variable S = T'(X)
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where 7 : E— R is of the type
T(/)=sup VO (f.S) (1)

for every fe E. Here V' is some index set, and Q, is a symmetric bounded bilinear
form on E for every ve V. Typically, the random variable S has a quite intricate
distribution.

As one may show that any 7 of the form (1) is sublinear and positive
homogeneous, it follows from Theorem 5.2 in [7] that there exists a constant a such
that

lim y2log P(S>y) = —a/2. (2)
yo®

Our first aim is to establish methods for the actual computation of the constant a.
Our second aim is to construct a random variable R (with a less intricate distribution
than S), such that the random variable R

(1) is defined on the same probability space as S, and satisfies
P(R<S) = 1; (3)

(i1) has the same tail behaviour as S, in the sense that
lim y?log P(R>y) = —a/2, (4)
y= o0

where the constant a is as in (2).

The motivation for the present study comes from the theory of statistical tests,
where random variables S emerge as the limit in distribution under the null
hypothesis of a sequence of test statistics. Examples will be given shortly.

As the constant a provides a convenient rough description of the limiting
distribution of the test statistic at hand, the verification of (2) is a key step in the
comparison of statistical tests. In fact, (2) appears as a condition in results for
determining approximate Bahadur efficiency (cf. [5]), in results guaranteeing the
coincidence of limiting approximate Bahadur efficiency and limiting Pitman
efficiency (cf. [27,44]), and in deviation results (cf. [24,35,36]). Deviation results are
in turn needed for the computation of Bayes risk efficiency (cf. [38]), intermediate
efficiency (cf. [26]) and exact Bahadur efficiency (cf. [5]). Refer to Chapter 1 in [36]
and Chapter 10 in [40] for additional information on efficiency concepts.

For a given testing problem each of the efficiency concepts mentioned above may
be used to select an “optimal’ statistical test. However, when applying the selected
test the rough description a is no longer sufficient, and additional precision is needed
to determine the critical value (that is, a selected upper percentage point of the test
statistic) and/or the attained significance level of the test. In such a situation we
resort to the random variable R in order to obtain a more detailed description of tail
behaviour of S.
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We take a special interest in the situation where the time space and the covariance
function both have product structure; that is, we have M = M| x M, and

K((Sl,S2),(Zl,I2)) :Kl(Sl,tl)Kz(SQ,tz) (5)

for every s;,t;e M; (i =1,2). An important example is the situation where M is
equal to [0, 1]?, and X coincides with the process I' = {I'(, 1) }o<i, <1, @ MEAN ZETO
Gaussian process with covariance function

(«?F(Sl,SZ)F(ll,lz) = {min(sl, tl) — sltl}{min(sz, [2) — Szl‘g} (6)

for 0<sy,8,,1,,<1. In literature, the Gaussian process I' is called the Wiener
pillow ([37, p. 137]; inspired by the fact that I'(¢;, ;) = 0 almost surely for all (¢, #,)
on the boundary of the unit square), the completely tucked Brownian sheet [42, p.
368] or the tied-down Kiefer process [11, p. 320]. We shall refer to I" as the Brownian
pillow. One may view the Brownian pillow as a two-parameter generalization of the
Brownian bridge (that is, a one-parameter zero mean Gaussian process B(¢) defined
on the unit interval [0,1] with covariance function &B(s)B(f) = min(s, ) — st for
0<s,t<1).

Limiting random variables of the type 7'(I') occur in certain nonparametric
statistical applications, such as in nonparametric testing of bivariate independence
(cf. [6,12—14,18,22]), and nonparametric testing of univariate constancy over time (cf.
[11,21]).

Other mean zero Gaussian processes which obey (5) emerge as limiting processes
in nonparametric testing of multivariate independence (for instance, the p-variate
Hoeffding, Blum, Kiefer and Rosenblatt process with M = [0, 1}’ and covariance
function [[7_, {min(s;,#;) — s;#;}) and in nonparametric testing of multivariate
constancy over time (for instance, the p-variate Gaussian processes with M = [0, 1]7
and covariance function

{F(min(sl,tl), ...,min(sp,l, lpfl)) — F(Sl, ...,Spfl)F(ll, ...,l‘pfl)}

x {min(s,, 1,) — st}

of Theorem 2.6.1 in [11, p. 153]).

The structure of the paper is as follows. In Section 2 we first consider the situation
in which no structure is imposed on the “‘time space” M the results are exemplified
using the Brownian bridge. In Section 3 we explore the situation where the time
space and the covariance function obey (5); the results are exemplified using the
Brownian pillow. In Section 4 we discuss the use of the random variable R in
simulating upper percentage points of S. In Section 5 we consider the extension of
Proposition 3.2.1, the main result of Section 3, to more general classes of functionals.
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2. General Gaussian processes

2.1. Reproducing kernel Hilbert space

Let M be the closure of an open bounded domain in R?, and let X be a separable
zero mean Gaussian process defined on M. Define the covariance function K : M x
M-Rby K(s,t) = EX(s5)X(¢) for s,te M. As a covariance function is nonnegative
definite, there exists a unique Hilbert space # such that the reproducing property

Cf K(t)Y 0 =f(t) for every te M,

holds for every fe# (cf. [1, Eq. (3.9), p. 67]). The Hilbert space H is called the
reproducing kernel Hilbert space belonging to X. Refer to [4] for the general theory
of reproducing kernels.

If the set M is equipped with a ¢-additive measure u so that the covariance
function K belongs to the space L,(M x M,u x u), then one may describe the
reproducing kernel Hilbert space belonging to X by means of the ordered
eigenvalues {t;>1,>--- >0} and the corresponding normalized eigenfunctions of
the operator ', defined by

Hof(t) = /M K(s,0)f (s)du for every feL,(M,u).

It is well known that the operator ¢, is self-conjugate and compact (cf. [32]). Hence,
by the Hilbert-Schmidt theorem (cf. [30, p. 78]) it has a complete orthonormal system
of eigenfunctions {/,h, ...} and corresponding eigenvalues {t,75,...} that
converges to zero. That is, #; and 1; solve the integral equation

/M K(s, )y(s) du = t/hy (1) (7)

and ; and Ay satisfy

1 forj=k,
hi(s)h du =
/M i(5)hi(s) dy {0 for j#k.

As ", is nonnegative definite due to the fact that K(s, ) is a covariance function, we
see that 1y =1,>--->0. If the sum Z/ 7; is finite (which is the case when the
covariance function K (s, ) is continuous and the measure u is absolutely continuous
with respect to Lebesgue measure), then 4", is a trace-class operator, and the kernel
A" 1s represented in the form

0

A (s5,0) =Y 1ihy(s)hy(0),

J=0

where the convergence is uniform on M x M (see, for instance, [28] for the general
theory of trace-class operators).
Lemma 1 follows by Theorem 3.16 in [1, p. 75].
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Lemma 1. The reproducing kernel Hilbert space # belonging to X is given by

U I " (b
=S fif= D by, > <y,

J2T5#0 jzto20 U

and has scalar product

Save= X [ rme e [{ [ o) au)

=110

Let us remark that the Hilbert space # is uniquely defined by the kernel K and
does not depend on the choice of the absolutely continuous measure p, although the
eigenfunctions {/;} and the eigenvalues {t;} may be different for different measures.

2.2. Tail behaviour of a Gaussian process

For the reproducing kernel Hilbert space # belonging to X consider a positive
homogeneous sublinear functional 7:# —->R (that is T(f)=0,T(Af )=
[ANT(f), T(f+9)<T(f)+T(g) for all f,ge#, 2€R) and define its #’-norm by

T, = sup T(f),
fely
where (0, denotes the unit ball in . The relevance of this norm for describing the
right-hand tail of the distribution of S = T(X) is shown by the next inequality
appearing in the proof of Theorem 5.2 in [7].

Inequality 2.1 (Inequality of Borell). Let T be a positive homogeneous sublinear
Sfunctional on . Suppose there exists xo such that P(S<xy) is positive, and
let & satisfy P(Z<E)<P(S<xy), where Z is a standard normal random variable.
Then

P(Szx)<P(Z>&+||T|[ (x — x0))

for every x> Xxy.

The Inequality of Borell implicitly provides an exponential bound for P(S>x), as
readily follows from the next inequality (cf. [41, p. 850]).

Inequality 2.2 (Mill’s ratio). Let Z be a standard normal random variable. Then, for
all y>0,

_ 3 1 BT B
-y 3)—/2—53 YRESP(Z>y)<y l—%e v
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If there exists a constant ¢>0 such that

T(f)gcmax{sup |f|,1} for every fe # (8)

teM

(as is usually the case in statistical applications), then the existence of x( such that
P(S<xp) is positive can be verified with the aid of the following version of Borell’s
inequality (cf. [39]).

Inequality 2.3 (Inequality of Borell, supremum version). If & sup,., X (¢) < 00, then
(x = & sup,c XW}

Plsup X(1)=x | <2ex
(s x103) s2emp{ L5 D K

Jor every x=8& sup,c; X(1).

If Q is a bounded bilinear form, then the functional 7 defined by T(f) =

\O(f.f) for every f'e # satisfies (8) (cf. Definition 13.2 in [20, p. 89]).
For Gaussian processes the boundedness of the supremum is intimately related to
sample path continuity (cf. Section III.1 in [1, p. 62]).

2.3. Tail behaviour of supremum and quadratic tests

Consider a statistical problem, where at stage # it is natural to base statistical tests
on a “monitoring process” X,, which under the null hypothesis converges in
distribution to X as n tends to infinity. As an example, one may think of the
goodness-of-fit problem, the independence problem and the change-point problem.
An appropriate monitoring process in the goodness-of-fit problem is the multivariate
empirical process, which converges under the null hypothesis to the tied-down
Brownian motion (cf. [15,17]). An appropriate monitoring process in the
independence and change-point problems is the Hoeffding, Blum, Kiefer, Rosenblatt
multivariate empirical process, which converges under the null hypothesis to
Brownian pillow type processes [6,9,10,22].

In such statistical problems, obvious tests are supremum and quadratic tests
derived from the monitoring process X,,. Supremum tests reject when the supremum
test statistic sup,.,, | X, (?)| becomes large. Under the null hypothesis, this statistic
converges in distribution to 7(X), where the corresponding functional 7'(f) =
sup,eu | f(2)] is of form (1) with V' = M and Q,(f,g) = f(v)g(v). The Kolmogorov
test is an example of a supremum test.

Let Q be a symmetric bounded bilinear form. The quadratic test corresponding to
Q rejects when the “quadratic” test statistic \/Q(X,, X,) becomes large. Under the
null hypothesis, the quadratic test statistic converges in distribution to 7(X), where
T is of form (1) with ¥ equal to a singleton {vo} and Q,, equal to Q. The Cramér—
von Mises and Anderson—Darling tests are examples of quadratic tests.

Our study of random variables 7T(X) where T is of the form (1) starts by
observing that for every ve V' there exists a unique bounded linear operator .7,
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defined on J# such that
Qv(f>g) = <fa%b‘g>%‘”

for every f,ge # (cf. Theorem 13.5b in [20, p. 92]). Observe that .o/, depends both
on the choice of Q, and [via the norm {-,-) ,] on the covariance function K of X.
Assume that Q, satisfies the following condition.

Condition 1. For each velV the operator .o/, associated to O, has a complete
orthonormal system of eigenfunctions {¢; ,, ¢, ,, ... }. Moreover, there exists we V'
such that sup,.y 41, = 41w, Where 4y, denotes the largest eigenvalue of .«7,.

Let us recall that in general a self-conjugate positively definite operator in a
Hilbert space may have no eigenvalues at all [30, p. 273], so Condition 1 is indeed
quite restrictive. Nevertheless, in most statistical applications this condition does
hold.

The second part of Condition 1 is fulfilled when, for instance, 4, , is a continuous
function of v, and V is compact.

Lemma 2. If Condition 1 holds, then

(1) HT”% is equal fo T(¢l,w) = ;Ll,w;
(i) T(X) is larger than or equal to ||T||,, -|Z| with probability 1, where Z =
(X, 1, » is a standard normal random variable.

Denote the random variable ||T||, - |Z| by R. It follows from Inequality 2.2 that
(4) holds with

a= |7l ©)
As Inequality 2.1 implies
lim sup(y) % log P(T(X)>y)< —a/2

Yo+
with a given by (9), it immediately follows from Lemma 2 that the random variables
T(X) and R have similar tail behaviour, in the sense that
lim (y) 2log P(T(X)>y)= lim (y)*log P(R>y). (10)
y—o+w Yo+
In particular, we obtain that (2) holds with a given by (9).

As noted in the introduction, (2) is directly relevant for the computation of
the approximate Bahadur efficiency of the test based on T7(X,). Moreover,
in combination with a KMT-type approximation for X,, (2) implies a deviation
result

lim (y,)* log P(T(X,)>y,) = —a/2 (11)

n—+o
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for sequences y, that tend to infinity at a sufficiently slow rate as n— co. A KMT-
type approximation is a strong approximation governed by an exponential
inequality, as the ones given in [33] for the partial sum process and the empirical
process.

The quality of the KMT-type approximation determines the maximal rate of y,
allowed in (11) (cf. [23,24,34,35]). Special deviation results are:

® Chernoff-type deviation results, which allow sequences y, up to O(n'/?), and are
relevant for the computation of exact Bahadur efficiency [5];

® Cramér-type deviation results, which allow sequences y, up to o(n'/%), and are
relevant for the computation of intermediate efficiency [26];

® moderate deviation results, which only allow sequences y, up to O((log n)l/ 2 ), and
are relevant for the computation of Bayes risk efficiency [38] and weak
intermediate efficiency [26].

For some of the more popular functionals (for instance, the functionals 7T,y and
Tap introduced at the end of this section), we have T'(X) is equal in distribution to

Z;ﬁl /IMZJ?, where Z;,Z,,... is a sequence of independent standard normal

random variables. For such functionals , Lemma 2 seems to be related to Lemma 2.4
in [19], which states that

. —1 _ -l
im (x) logP(Z ljw(ZE—1) >x> = —(24)

if 37, is finite.

j w
Remark that (10) suggests that for small significance levels the critical value of the

test statistic 7(X) may be approximated by the corresponding quantile of the
random variable R. However, such an approach is not recommended, since it would
lead to a anti-conservative approximate test.

2.4. Application to the Brownian bridge

Recall that a Brownian bridge is a zero mean Gaussian process defined on the unit
interval, with covariance function Kg(s,?) = min(s,?) —st. For a differentiable
function f : [0, 1] >R, let /" denote the derivative of f.

By differentiating both sides of (7) twice (here and below the integrals are
computed with respect to the usual Lebesque measure), it follows that the
eigenvalues and eigenfunctions belonging to the Brownian bridge are solutions to
the differential equation

" (1) = —h(1) (12)
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under the boundary condition /(0) = /(1) =0. Hence, these eigenvalues and
eigenfunctions are given by

1= (jn),  h(t) = V2sin(jnt)

(cf. Proposition 5.3.1 in [41, p. 213]). Thus, we may invoke Lemma 1 to describe the
reproducing kernel Hilbert space # 5 belonging to the Brownian bridge B.

However, for functions f, g in 2 g which do not have a simple and clear relation
with the Brownian bridge eigenfunctions /; the computation of the scalar product
may well be intricate. Lemma 3 provides an alternative representation of the scalar
product in g, which often is more convenient.

Lemma 3. The Hilbert space S g corresponding to the kernel of the Brownian bridge B
is given by
Hp= {f [07 1]_>Ra fleLZ[Oa ”a f(O) :f(l) = O}a

and has scalar product

1
CFrG> s = /0 710 (0) dr

If f and g belong to # g, and ¢ is twice differentiable, then it follows by integration
by parts that we may write

1
CFrgdwy = — /0 109" (0) dt.

Example 1 (The Kolmogorov functional). Consider the functional Tk, defined by

Txol(f) = sup [f(1)].
te0,1]

Observe that Tk, satisfies (1) with V' = [0, 1] and Q, = f(v)g(v). The corresponding
operator is o7, f(t) = f(v) - ¢, ,(¢), where

/1=t if <o
¢1,v(l) = ! ’

(1—-1)\/t% if t=v.

It is seen easily that ¢, , is an eigenfunction of the operator .o/, corresponding to the
largest eigenvalue 4;, = v(1 —v), all other eigenvalues 4;,, j>2 are zeros. Thus
Condition 1 holds, and the maximal eigenvalue 4;,, = % is attained for w = % It now
follows by Lemma 2(i) that in # 5 the norm of Tk, is equal to 2~'. Moreover, for
w = 1/2 we have

(B> = /[0 | a0 80 = /[0 PRCCE /[ B0 =2801/2),
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and hence it follows by Lemma 2(ii) that Tk (B) is larger than or equal to
[ Tkolll -, - |Z] = |Z/2|, where Z = 2B(1/2) is a standard normal random variable.
The exact distribution of Tk (B) is given in [31].

Example 2 (The Cramér—-von Mises functional). Consider the functional Tcym
defined by

reat!)={ [ f 7 as)

Observe that TCVM satisfies (1) with V' = {vo} and Q,, = fo s) ds. Define .o/ by

fo t) dt, where K (s, t) = min(s, f) — st is our reproducmg kernel. It
is easy to see that this operator takes the space #'p to the space A=
{feAp|f"eAp}. As o/ 'F = —F" for every Fe#', the eigenfunctions of .o/

satisfy —f” = 2~'f (cf. with (12)), and hence the eigenvalues and the normalized
eigenfunctions are given by

hy=(m) 7, ¢,(t) = (jm) ' V2sin(jnt).

In particular, we have 4; = 72 and ¢,(r) = n~'v/2sin(nz). Since the operator ./ is
compact and self-conjugate, therefore, using again the Hilbert-Schmidt theorem, we
conclude that ./ is diagonalized i.e., {¢;} is indeed an orthonormal basis in #p.
Thus, Condition 1 holds. It follows by Lemma 2(i) that in /# g the norm of T¢yy 18
equal to 7~ '. Hence, by Lemma 2(ii) Tcym(B) is larger than or equal to || Teyml| ., -
|Z| = |=~'Z|, where

Z=LB,¢1)y, = —/M B(s)¢7(s) ds = n\/_/ s)sin(ms) ds

1/2

is a standard normal random variable. The random variable 7~!' Z coincides with the
limit in distribution of the “first component” of the Cramér—von Mises test statistic
(cf. [16]).

The exact distribution of Tcywm(B) (or rather {Tegw(B)}) is described in [2].

Example 3 (The Andersen—Darling functional). Consider the functional Tap
defined by

NGO AL
TAD(f){/O S(I—S)ds} .
For this functional we have V' = {vy} and Q,,(f,g) fo (s)/s(l —s)) ds.
Recall that Kp(s, ) = min(s, #) — st. Since the operator &{ deﬁned by /f(t) =
fOI(KB(s, 1)/s(1 — $))f(s) ds satisfies .o/ 'F(t) = —t(1 — t)F"(t), it follow that the

eigenfunctions and the eigenvalues are found from the equation A 'F(f) =
—t(1 —t)F"(t). The solutions of this equation are F;(f) =t(1 —1)L;—;(2t — 1),
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A= T +1) =1,2,..., where L; is the Legendre polynomial of degree j (cf. [43, p.
324]). Since the operator .o/ is self-conjugate, it follows that these solutions form an
orthogonal system in #p. The system of Legendre polynomials is complete in
L>[—1, 1], consequently the system {F;} is complete in 2# . Thus, after normalization

we obtain the complete orthonormal system of eigenfunctions

2 +1
JG+1)

¢;(1) = t(1—0Li (2t —1)

and corresponding eigenvalues 4; = T +1) j=1 (see also [16, p. 303]). Hence

Condition 1 is fulfilled. In pdl’thuldl‘, we have ¢,(1) = v3t(1 —t) and 2} = 1/2. Tt
follows by Lemma 2(i) that in 2# 5 the norm of Tap is equal to 2-'/2. It follows by
Lemma 2(ii) that Tap(B) is larger than or equal to ||Tap||,, - |Z] = [27'/?Z|, where

1 1
Z=(B.§>y, = - /0 B(s)¢(s) ds = 2v/3 /0

by Lemma 1. The random variable 2~'/2Z coincides with the limit in distribution of
the “first component™ of the Anderson-Darling test statistic (cf. [16]).

The exact distribution of Tap(B) (or rather {Tap(B)}?) is described in [3].

3. Covariance functions with product structure
3.1. Reproducing kernel Hilbert space

In this section we consider the situation where the covariance function of X obeys
the product structure as given by (5). As an example, one may think of the limit in
distribution of the Hoeffding, Blum, Kiefer, Rosenblatt p-variate empirical process,
which is a mean zero Gaussian process with covariance function [[7_ {min(s;, ;) —
sit;} (see Section 3 in [6]). Observe that for p = 2, this process coincides with the
Brownian pillow.

Although we concentrate on the product structure (5), our results have direct
implications for the situation where

p
K((SlaSZa”'vsp)a(tlat27'~-7 HKI N 1
i=1
for every s;, t,eM; (i=1,2,...,p).
Lemma 4. The reproducing kernel Hilbert space # of X is equal to the tensor product

H 1oy, where H; denotes the reproducing kernel Hilbert space corresponding to
Kl‘(X,',yl') (l = 1,2)
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The tensor product s 0, is the Hilbert space with basis {/yjo/ }, where {h;;} is
an orthonormal basis of /#;. For any f] = Zj ayhje A and fo = >, ayhuce A

we have

Jiofa = Z Z ayjay - hyjohyy.
%

j
The scalar product in # ;0 , is defined as
<Z Z ajik, - My oho, Z Z bjok, - huj, Oh2kz> = Z ajicbjy.
ik PR Hroty  TE
It is clear that for any f1,¢9) € #| and f>, g, € .#, we have
<f10f2vgl"92>yflo,yf2 = { /1,0 >,,y/'1 <f2,g2>y/2,
and in particular
Chyjiohok,, gy ohoge, D o, = Ojs, 2Ok o -

It is seen easily that the tensor product of Hilbert spaces does not depend on the
choice of the orthonormal bases in them.

3.2. Tail behaviour of supremum and quadratic tests

For i = 1,2, let #; be a Hilbert space. Let Q; be a symmetric and bounded (not
necessarily positively semidefinite) bilinear form on #;; that is, there exists a positive
constant ¢ such that

10i(fi,90)| = |Qi(gi L)<l fill e, - 1gill s,

for every f;, g€ # ;. Then one can define a bilinear form Q;-Q, on the tensor product
H o> as follows: for the elements of basis we set QioQs(hij, ohyj,, ik, ohor,) =
O1(hj,, ik, ) 02(2h),, ho, ), then extend this form onto o, by bilinearity. The
tensor product of bilinear forms does not depend on the choice of bases and
possesses the property 01205 (fiof, g102) = O1(fi,91)Qa( 5, 2) for all f;, gie ;.

Proposition 3.2.1. Let S#; be a Hilbert space, Q; be a symmetric and bounded bilinear
formon #;, i =1,2. Then

csup  [Q1o0x(f)[ = sup [Q1(f1)] sup [Qa2(f2)]- (13)
# Sie e

fet oA

If the suprema on the RHS of (13) are respectively attained for fi = f{ and f> = f5,
then the supremum on the LHS of (13) is attained for | = fi*of;.

Corollary 3.1. Let the functional T; be defined by T;( f;) = {sup,,, |Q,-ﬁ,j,.(f,~)|}l/2 for
JieH i, where Vi is some index set and Q;,, is a symmetric bounded bilinear form
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satisfying Condition 1. Then the functional T = T\°T, defined by

1/2
() = { sup  sup |Q1,vlon,@<f>|}

L‘]EV[ UgEVz

for e Ao H satisfies HTH:,/P:,/2 = |\T1||jf1 . ||T2||{W2.

Lemma 5. Let T be as in Corollary 3.1, let ¢;,, denote the eigenfunction
corresponding to the largest eigenvalue of Q;,,, and define the process X, by

Xo(tz) = <X 12), P11, ) ey
for tyeM,. Then X, is a zero mean Gaussian process X, with covariance func-

tion Ky(s2,t2). Moreover, T(X) is larger than or equal to ||T\||,, - T2(X2) with
probability 1.

Remark that Corollary 3.1 implies that the random variables 7'(X) and || 71|, -
T>(X>) have similar tail behaviour, in the sense that

Jlim (0)log P(T(X)>y) = lim (3) 7 log P(|[Till, - T2(X2)>y).  (14)

Applying Lemma 2(ii) to X, yields that there exists a standard normal random
variable Z such that

TX) 2T, - T2(X2) Z [T, - T2, - |2

with probability 1. This indicates that Lemma 5 may well yield better results than
Lemma 2(ii) when applied to a zero mean Gaussian process with product structure in
the covariance function.

By a symmetry argument, it follows that under the conditions of Lemma 5 we also
have that T(X) is larger than or equal to || Tz|| ,, - T1(X1) with probability 1, where
the process X is defined by

Xl(tl) = <X(t17 ')a¢21,wz>,7fz'

3.3. Application to the Brownian pillow

As K satisfies (5) with K; = Kg, we have #' = # go# . Lemma 6 presents an
alternative representation of the reproducing kernel Hilbert space belonging to I'.

For a function f: 0, 1]2—>[R{ which is differentiable in both components, let fi,
denote the partial derivative of f obtained by differentiating with respect to both
components.

Lemma 6. The Hilbert space #  corresponding to the kernel of the Brownian pillow I’
is given by

Hr={f:]0, 1]2—>[R§,f12 e L,[0,1],f(t1,22) = 0 on the boundary of [0, 1]2},
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and has scalar product

1ol
<fag>xr:/0 /0 Si2(t1, 2)g2(ty, 1) dty dty.

Example 4 (An extension of the Kolomogorov functional). Let Tg, be as in the
previous section, recall that || Txoil|,, = 1/2.

® For the functional 7" = Tge°Tko defined by
TkoroTkol(f ) = sup | |f(t1,t2)] for every fe#r.

11‘126[0,1

Corollary 3.1 yields |[T|],, = HTK01||_%/f—B = 1/4. By Lemma 2(ii) there exists a
standard normal random variable Z such that T(I') > |Z|/4. By Lemma 5 we have
)= ||TK01||.#’B Txoi(Bxol) = Tkol(Bkol)/2 with probability 1, where the Brow-
nian bridge By, is defined by

Bxoi(t2) =2I'(1/2,1,) for every 1,€]0, 1].

To the author’s knowledge, the distribution of 7'(I") is not known. The only result
found in literature with respect to this distribution is the upper bound in [29] (cf.
[6]): there exist unspecified positive constants ¢, ¢, such that

P(T(I')>y)<ciexp{—cp*}.

Observe that this upper bound follows from the Inequality of Borell. In fact, we
may take ¢; equal to 1/2||T||2%r =8.

Example 5 (Extensions of the Cramér—von Mises functional). Let T¢ym be as in the
previous section, recall that ||Tcyml|,, = 7"

® For the functional 7= TcymeTcym defined by

1l 1/2
TeowmeTew (f) = {/ / 12, ) dty dtz} for every fe #7r,
o Jo

Corollary 3.1 yields |[T]|,,, = ||TCVM\|§,/B =n2. By Lemma 2(ii) there exists a
standard normal random variable Z such that T(I')>|Z|/=*. By Lemma 5 we

have T(F) = | ‘ TCVM”,;//’B - Teym (BCVM) = Tevm (Bcvm)/n with probability 1, where
Bcywm 1s the Brownian bridge defined by
1
Bewwm(t) = /2 / I'(t1,t)sin(nty) dt;  for every 1, €0, 1].
0

The distribution of T'(I') is tabulated in [6].
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® For the functional T = Txo°Tcym defined by

1/2
TkoreTevm(f ) = sup {/ f t, 1) dtz} for every fe #r,
t1€01

Corollary 3.1 yields ||T[|,,, = [|Tkolll 4, - | Tcwmll 5, = 1/2n. By Lemma 2(ii)
there exists a standard normal random variable Z such that 7'(I')>|Z|/2x.
By Lemma 5 we have T(I')>||Tkoll 4, Tcwm(Bko) = Tovm(Bko)/2  and
T(r= ||TCVMHMB' Txol(Brynm) = Txol(Beyy)/m With probability 1; here Bi,p is
the Brownian bridge defined by

1
Broy(t1) = V2 / I'(t,)sin(nty) dt, for every 1, €0, 1].
0

Example 6 (Extensions of the Anderson—Darling functional). Let Tap be as in the
previous section, recall that || Tapl|,,, = 27"/

® For the functional 7" = TapoTap defined by
2 (t1,1 1/2
TapeTap(f {/ / S~ (0, 12) dt dzz} for every fe #r,

l—tl 12 1—!2)

Corollary 3.1 yields ||T||,, = ||TADH-#B =1/2. By Lemma 2(ii) there exists a
standard normal random variable Z such that T(I') > |Z|/2. By Lemma 5 we have
T(F)ZHTADHJ%B . TAD(BAD) = TAD(BAD)/\/E with probability 1, where Bap is
the Brownian bridge defined by

1
Bap(ta) = V3 / I'(t1,t,)dty  for every 1[0, 1].
0

® For the functional T = Txo°Tap defined by
1 £ 1/2
1,t
TkoroTap(f) = sup { Mdtz} for every fe #r,
nefo] Lo (1 —0)

Corollary 3.1 yields ||T]|,,, = [|Tkolll, ' ||TaDll 4, = 27%/>. By Lemma 2(ii)
there exists a standard normal random variable Z such that T(I')>|Z|/2v2.
By Lemma 5 we have T(I')>||Tkolll,,Tap(Bkol) = Tap(Bko)/2 and

T(I)=||Taplly, - Tko(Byp) = Txol(Brp)/ V2 with probability 1; here B, is
the Brownian bridge defined by

1
Bap(t)) = V3 / I'(t,t;)dt, for every t;€[0,1].
0

® For the functional 7= TcymeTap defined by

1/2
l l‘
TevwmeTap(f {/ / ol 117’ 22 dt dtz} for every fe A,
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Corollary 3.1 yields ||T|| ,, = [|Tcwmll, - 1 Tapllp, = (nv/2)"". By Lemma 2(ii)

there exists a standard normal random variable Z such that T(I')>|Z|/nv/2.
By Lemma 5 yields that T(I')=||Tcwmlly,Tap(Bkol) = Tap(Bkol)/n and

T(I)=||Tablly, - Tevwm(Byp) = TCVM(BAD)/\/E with probability 1.

4. Refining the results by simulation

Consider a random variable of interest S and a reference variable R satisfying (2)—
(4). As noted before, the direct use of the distribution of R as an approximation to
the distribution of S should be avoided since it leads to an anti-conservative test.
However, if the distribution of R is known, then we may employ simulation methods
(using R as a “‘control variate” for S) to approximate the tail distribution of S. The
preceding results may act as guidelines for the statistical analysis of the simulation
results. In this section, we illustrate this approach by applying it to statistics of the
form S = T1-T>(I'), where T; and T, are either Txo, Tcym or Tap, and I' is a
Brownian pillow. We remark that the distributions of Tk (B), Tcym(B) and Tap(B)
have been tabulated ([31], [2,3], selected upper percentage points are given in
Table 1).

In our simulation study we performed 10.000 simulations. In each simulation
generated the Brownian pillow on a 1.000 x 1.000 grid, and computed S = T-T»(I')
and R = |Ty|zoT>(B1). Thus, we obtained 10.000 independent copies (S;, R;) of
(S,R). Let SH<SP<...<SU10000) apnd RO R ... <RI denote the
ordered versions of the random samples Si,S5, ..., S10000 and Ry, Ry, ..., Rigoo,
respectively. We shall refer to S0 and R®¥ as the ith order statistics of S
and R, respectively. Observe that S> R with probability 1 implies S >R with
probability 1.

As we were interested in the tail behaviour of S, we investigated the relation
between S and R for i = 9001, ...,10000 (that is, the upper ten percent of the
order statistics) by exploratory statistical methods. For all statistics S under
consideration, we found that plots of In(S®¥) — R?) versus In RY) showed roughly
linear relations (see Figs. 1-9). For each of the plots, we estimated a simple
regression model by ordinary least squares. Although the assumptions of the
regression model are clearly not met, the plots show that the regression lines do seem
to give an adequate summary of the relation between In(S®¥) — R?) versus In R®.

Table 1

Exact upper percentage points for various random variables S = T(B), where B is the Brownian bridge
T o=0.10 o=0.05 o=0.01

Txol 1.225 1.359 1.632

Tcwm 0.5893 0.6792 0.8622

Tap 1.3903 1.5786 1.9621
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Fig. 1. Plot of In(S® — R®) versus In R®) for i = 9001, ..., 10 000, where S® is the ith order statistic of
S = TkoioTkoi(I') and R is the ith order statistic of R = HTKOIHJKB - Tkol(Bkol), based on a random
sample of length 10000 taken from the distribution of I'. The least squares line indicates that the critical
value of the size « test based on 7 may be approximated by 0.5000(r%,;) + 0.17864([,”&01)_0'4932.
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Fig. 2. Plot of In(S® — R®) versus In R? for i = 9001, ..., 10 000, where S is the ith order statistic of
S = TxoieTevm (') and RY is the ith order statistic of R = HchMH%,B - Txol(Bcym ), based on a random
sample of length 10000 taken from the joint distribution of I'. The least squares line indicates that the
critical value of the size o test based on 7' may be approximated by 0.3183(#%,;) + 0.0233l(t{{'<01)’0'7660.

From this relation we may deduce that there exist constants ¢ and p such that

S0~ RO 4 ¢(RD)?,

and infer for 0<a<10% that a similar approximation holds between the o upper
percentage points of S and 7>(B;). Table 2 summarizes the approximations found in
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Fig. 3. Plot of In(S® — R®) versus In R®) for i = 9001, ..., 10 000, where S is the ith order statistic of
S = Tkoi°Tap(I') and R is the ith order statistic of R = ||TAD||J,/E - Txol(Bap), based on a random
sample of length 10000 taken from the joint distribution of I'. The least squares line indicates that the
critical value of the size o test based on 7' may be approximated by 0.7071(#%,,) + 0.07845(t,“<01)_0'6“6.
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Fig. 4. Plot of In(S®¥ — R() versus In R® for i = 9001, ..., 10000, where SV is the ith order statistic of
S = TewmeTkol(I) and RY is the ith order statistic of R = HTKOIH,}%B - Tcwm(Bkol), based on a random
sample of length 10000 taken from the joint distribution of I'. The least squares line indicates that the
critical value of the size o test based on 7" may be approximated by 0.5000(¢¢y,) + 0.09469(%\,M)’0'2917.

Figs. 1-9, and evaluates the approximations for a = 0.10, & = 0.05 and o = 0.01.
Observe that the approximated 0.10, 0.05 and 0.01 upper percentage points given for
TxoioTeym(IN) are quite close to those given for TeymoTkol(I). The same holds for
TKoloTAD(F) and TADOTKol(F), and for TCVMOTAD(F) and TADOTCVM(F).
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Fig. 5. Plot of In(S®¥ — R®) versus In R® for i = 9001, ..., 10000, where SV is the ith order statistic of
S = TewmeTewn () and RY) is the ith order statistic of R = ITcwml] - Tesm(Bow), based on a random
sample of length 10000 taken from the distribution of I'. The least squares line indicates that the critical
value of the size o test based on 7' may be approximated by 0.3183(z%,,) + 0.01820(%, ;) 54
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Fig. 6. Plot of In(S® — R®) versus In R® for i = 9001, ..., 10000, where S¥ is the ith order statistic of
S = TeymeTap(I') and R is the ith order statistic of R = ”TAD”%’B - Tcwm(Bap), based on a random
sample of length 10000 taken from the distribution of I'. The least squares line indicates that the critical
value of the size o test based on 7' may be approximated by 0.7071(z%,) + 0.06303 (1% ) 7.

Table 2 seems to suggest that the rate at which y~2log P(S>y) converges to a
constant —a/2 (recall (2)) is relatively slow for functionals T involving Tko.

The random variable TcoveTeym (D) is the only one occurring in Table 2 which
has been tabulated [6] see also [9]. For this random variable the exact 0.10,0.05 and
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Fig. 7. Plot of In(S® — R®) versus In R®) for i = 9001, ..., 10 000, where S® is the ith order statistic of
S = Tap-Tkol(I') and R is the ith order statistic of R = ||TKolHy/'B - Tap(Bkol), based on a random
sample of length 10000 taken from the distribution of I'. The least squares line indicates that the critical
value of the size o test based on T may be approximated by 0.5000(2% ) + 0.25823(¢% ) ***.
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Fig. 8. Plot of In(S® — R versus In R®) for i = 9001, ..., 10 000, where S is the ith order statistic of
S = TapoTeym () and RY is the ith order statistic of R = [ITevmll -, - Tap(Bevm), based on a random
sample of length 10000 taken from the distribution of I'. The least squares line indicates that the critical
value of the size « test based on 7' may be approximated by 0.3183(¢%,) + 0.09464(13‘\1))’0'8447.

0.01 upper percentage points, respectively, are /0.04694 = 0.2167, /0.05840 =
0.2417 and 0.08685 = 0.2947, so the approximation given in Table 2 seems to be
quite accurate.
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Fig. 9. Plot of In(S®¥ — RW) versus InR? for i = 9001, ..., 10,000, where S® is the ith order statistic of
S = TapeTap(I') and R? is the ith order statistic of R = ||Tap||,,5- Tan(Bap), based on a random
sample of length 10000 taken from the distribution of I'. The least squares line indicates that the critical

value of the size « test based on 7' may be approximated by 0.7071(¢% ) + 0.31340(#4 )

Table 2

—0.7945

Approximation of upper percentage points for various random variables S = T(I'), where I' is the
Brownian pillow

T 0<2<0.10 «=0.10 a=10.05 «=0.01
Txol°Tkol 0.5000(2% ) + 0.17864(t% ) "4+ 0.7741 0.8331 0.9563
Txor°Tewm 0.3183(t% ) + 0.02331(2%,) 0% 0.4099 0.4510 0.5355
Tkol°TaD 0.7071(£%,;) + 0.07845(z% )~ %' 0.9355 1.0260 1.2121
TeweTkol 0.5000(#%p,) + 0.09469(2% ) 2" 0.4051 0.4456 0.5300
TeweTovm 0.3183(2,p) + 0.01820(%, ) ¥ 0.2160 0.2414 0.2951
TewoTap 0.7071(tkpy) + 0.06303(2%,0) 7% 0.5126 0.5660 0.6806
TapeTkol 0.5000(2% ) + 0.25823(¢% ) 2% 0.9300 1.0157 1.1936
Tap-Tcwm 0.3183(£% ) + 0.09464 (1% ) 547 0.5142 0.5668 0.6781
Tap°Tap 0.7071(£%p) + 0.31340(&1))*0'7945 1.2243 1.3343 1.5709

In [9] the use of Cornish-Fisher expansions to approximate upper percentage
points of TcymeTceym (') is advocated. However, Cornish—Fisher expansions
typically yield inaccurate results for o tending to zero. Recall that the situation
where o tends to zero is of considerable theoretical interest.
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5. Possible generalizations

In this section we address the question whether it is possible to generalize the key
result Proposition 3.2.1 for a wider class of functionals.

Let T}, T, be positive homogeneous bounded functionals defined on Hilbert
spaces #', # 5, respectively. Let 7' be a functional defined on the tensor product
H 1o, which satisfies T'(fiof2) = T1(f1)T2(f2) for all fie # and f€ #,. Then T
is said to possess the product property if ||T|| = ||T\|| - || T2]|-

First note that the product property entirely depends on the way we extend the
functional 71T, from basic elements ¢y;o¢,,, where it is equal to T'(¢;) T2 (),
onto the whole tensor product - ,. As we saw in Proposition 3.2.1 the product
property holds if the functionals are extended bilinearly.

If both T; are of the form T;(f) = |G(f, ...,f)|l/k for some symmetric k-linear
forms T, T, then the tensor product 7715 are naturally defined by k-linearity. For
k = 1,2, the k-linear extension respects the product property (for k£ = 2 this follows
from Proposition 3.2.1, for k =1 this also does, because the modulus of a linear
functional is the square root of its square, which is a bilinear form). However, for
k=3 this no longer holds, as the next example shows.

Example 7 (Trilinear forms). Consider the trilinear form G( fi,f3,f3) defined on the
space R*> as follows: G(ej,e1,er) = Gley, e, e1) = G(ey,e1,e1) = 1,G(ea, e2,€2) =
—6/5, and G(e;,e;,e;,) =0 for all other combination of indices (here ej,e;
are basic vectors). Thus for a vector f = (x,y) we have G(f,f,f ) =3x%y — %)’

Put T\(f) = Tu(f) = |G(f././ ). Tt follows that ||T}|| = ||T3|| = T1(0,—1) =

1 1
(6/5)3. However, since ||T1oT5|| = TloTz(\/%,0,0,\%—g) = (\}—%)5, it also follows that

1 1
IT1=Tal| = (10/v39)3>(36/25)3 = || T - || T>|.
Some other extensions may violate the product property even in the simplest cases.

Example 8 (Other extensions). Let d =2, and consider two functions 7, T defined
on R by Ty(f ) = To(f) = ||f || for f € R?. Let us show that there exists a positively
homogeneous sublinear functional 7 defined on R?” such that T(fiof2) =
T(f1)T>(f>) for every fi, freR?, but ||T||>||Ti|| - ||T>||. Let %4, denote the unit
sphere in R?, and consider

FaroS g ={fg=1fg": f.geFLa1}.

Obviously, ;1% 41 is a compact subset of & ;2_;, which does not coincide with
Fp_1 (any feSy_10F4_1, considered as d x d-matrix, has rank 1). Take any
g€S p \SL4-1°%4-1. From compactness it follows that infrco, .o, |lg—f| =
o> 0. Therefore g is not an element of conv(¥y_1°%4_1), and hence the convexity
and compactness of conv(S ;0% 4_1) implies T(g) > 1, where T is the Minkowski
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functional defined by

T(g) = (sup{AeR,: igeconv(Ly_ 1S q-1)}) "

It is clear that 7" is sublinear and positive homogeneous. We have T'( fiof2) = 1 for all
fi, fr€S4_1, hence by sublinearity T'(fiof>) = ||fi|| - ||/2|| for all £i, f>eR?. Taking
Ty = Ty = || - g, we sce that || T[> T(g)|> 1 = || T1[| - |21

On the other hand, we have the following positive result: for any pair of sublinear
positively homogeneous functionals 7', T, defined on Hilbert spaces |, #;, there
does exist an extension (of its tensor product) that respects the product property.
Indeed, using sublinearity we get 7i(f") = supy-cp [Ly; ()], where Ly+ denotes the
linear form { f,f;* >, and B; is a polar to the set B; = { f;: |T;(f;)|<1}; the polar B}
of a subset B;= #'; is defined as By = { f; e #';,sup,.p, { f,f; ) <1} (cf. [8]). We can
now define the extension T-7, by

TioT> = Sup Sup |L/'I*OL/'2*, (15)

fieB; fieh;

where Ly-oLy; is the uniquely defined linear form satisfying
LyoLy: (fiof2) = Ly (/1) - Ly (f2)

for all fie# and freA>. Now, it is easy to verify that [[T1oTa|, .., =
[T1[|,4,1IT2l| ,» which actually follows from Corollary 3.1 by setting V; = By, v; =
St and Oy (f,9) = Lg=(f) - Ly+(g). Thus, for any pair of functionals 7, T>
extension (15) respects the product property. However, this extension is not always
natural and suitable. For instance, it does not coincide with the bilinear extension
when both Ty, T, are square roots of positively semidefinite bilinear forms.

6. Proofs

Proof of Lemma 2. Statement (i) is well known, we include the proof for convenience
of the reader. Consider ve V' and f'e€ #. Since the normalized eigenfunctions of .7,
form a complete orthonormal basis in 2, we may write

f=2 bidje S = bikiadie
j=1 =

and hence

v = (b)) hu<ine Y, (b)) (16)
j=1 j=1
Thus,

sup Qb(faf) = ;Ll,v = QU((f’l,m(bl,u)a

Sely
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where @, is the unit ball in . This yields
||T||j = sup Ssup Qb(ff) = Sug j~1,v = ;vl,w~
ve

fely velV

This completes the proof of Lemma 2(i).

Next, we turn to statement (ii). According to Theorem 3.7 in [1], we have the
“principal components decomposition”

X = Z qubj#w
)

with probability 1, where Z, Z,, ... is a sequence of independent standard normal
random variables (principal components decomposition was first applied to
Gaussian processes in [25]). Remark that the random variables Z;, Z,, ... may be
retrieved from X by

Z - <X ¢Jlt>1{’a
and observe that Z coincides with Z;. It follows from (16) that

<X7 ’Q/UX>JY = Z Z]‘zij,w222)~1.w
j=1

with probability 1, and hence Lemma 2(i) yields

( )>\/QH >|Z‘\//L1‘t |Z| ¢lu)

with probability 1. This concludes the proof of Lemma 2(ii). O

Proof of Lemma 3. First, we verify that the linear space with the introduced scalar
product is indeed a Hilbert space. Then by a direct calculation we show that

S Kp(0)> =f(1) for all feAp.

Thus, the reproducing property with kernel Kg(s, ) = min(s, ) — st holds in this
space. This concludes the proof. [

Proof of Lemma 4. For i = 1,2, choose an arbitrary orthonormal base {/;} in #;.
Consider the Hilbert space # that consists of all functions f(s,?) = E/‘Cﬁ(:l aj.

hij(s)ho(¢) with Zﬁ(:] a}k< oo and equipped with the scalar product

< Z D ke 'hljh2k>z bjzkz 'hljh2k> = Z ajkbjk~
Jik

Jiski Jaska

This space is nothing else but the tensor product #o#,, where any element f)of; is
identified with the corresponding (usual) product f(s,?) = fi(s)f2(z)e #. Now it
remains to note that all elements of the space # satisfy reproducing property with
the kernel K(si,t1,82,1) = Ki(s1,41) - Kx(s2,12). This completes the proof of
Lemma 4. O
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Proof of Proposition 3.2.1. Note that since || fil| ,, = 1 implies || fiof2|[ ..., = 1, the
inequality

sup  |Q1°Qx(f )= sup |Q1(fi)\fsu; |02(/2)]

feHroHr Sie

is straightforward.
Therefore, it remains to prove the opposite inequality. To show this, assume the
contrary: for some ge . #1-# >, we have

|01°02(9)[> sup [Q1(f1)] sup |Q2(f2)].
JireA e

Decompose g in the basis {/;0h}, so g = chj:] Biilichy, and consider the
sequence gy = EQ’FI Bjhiichy, N=1. Since gy —g in the space # oA, we see
that

|Q10Q2(9N)|>f5u£ |01(A1)] sup |Q2(f2)|= sup [Qi(f1)| sup [Q2(f2)l

€M fie Ay ety

for sufficiently large N; here #;y denotes the N-dimensional subspace of #;
spanned by &1, ..., hiy, i = 1,2. Since gy € # | yoH# 2w, it follows that

sup  |Q1°Qa(f)[> sup |Qi(f1)] sup  [Q2(f2)]-

SeH oA N SieAy frefan

So, if the equality supsc .., |Q1°Q2(f )| = supy c v, |Q1(/1)IsuPp e, [Q2(/2)] fails
for infinite-dimensional spaces, then it does for suitable finite-dimensional spaces.
Thus, we assume that both 2| and ', are of dimension N. In this case the space

H 1o is the space of matrices RY * with the scalar product {F,G) ,, = tr(F TG,
that is the sum of diagonal elements of the matrix F7G. The embedding
{fichh} = # 1o is realized by the formula fiof> = fif5L. The form Q; is given on
A ; by the formula Q;(f,9) = { f,ig) »,, where ./, is a self-conjugate operator on

A;, for which there exists a complete orthonormal system of eigenvectors {qﬁii}j[il
such that

N N
&/[( Z aj%) = Z Aiajdy,
=1

=1

where 2,1, ..., Ay are the eigenvalues of .o7;. It follows that || Q|| is equal to ||.«Z;|| =
max;_,__ ny|4;|. Let &/ be the operator in J# o, given by

PN

ﬂ(¢1j°¢2k) = ¢1_/O<9/2¢2k

(in the matrix representation, we have .o (F) = .o/ 1F%2T for every Fe IRNZ). As
A (P1joba) = A 1§10 22 = A1 ¢yolady, it follows that each ¢yo¢y is an
eigenvector of o/ with the corresponding eigenvalue A4;;42. The system
{¢ 1_/"(152/(}/]2(:1 is obviously orthonormal, and consists of N? vectors, and hence is a

complete orthonormal system of eigenvectors of .oZ in RY .
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This implies that for the form Q,-Q, defined by
Q10Q2(x7y) = <xa ’Q{y>£//)1°,}//25

we have

=||o/||= ma Milk] = ma 21| - ma A
Q10| = ||-|| j‘k:IfN| 122k jmax |44/ k:I,..).(,N| 2%

=1l - [[a]| = Q] - [ Qal-

Thus, in the finite-dimensional case the statement holds, which concludes the proof
of Proposition 3.2.1. O

Remark 1. Passing to the finite-dimensional case was essential in the proof of
Proposition 3.2.1, because the infinite-dimensional operator .o/; defining the form
0i(f,9) =< f, gy, on #; may not have a complete system of eigenvectors.

Proof of Lemma 5. According to Theorem 3.7 in [1], we have

0 o0
X = Z Z ij(l)lj,w(p%,w
1

=1 k=

with probability 1, where the Zj’s are independent standard normal random
variables. It follows that

<X(-, lz), ¢11,W>J/| =

o0

Z ZikPo s (t2) - P1jon. P11 e, = Z Zyk b (12)
=

j=1 k=1

for every t, € M, with probability 1. Observe that the RHS of the latter equation is
an expansion of a mean zero Gaussian process with covariance function Kj(s, ).
This concludes the proof of Lemma 5. [

Proof of Lemma 6. The proof is realized in the same way as one of Lemma 3. [
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