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Abstract

There is strong evidence that the endometrial glands play a key role in regulating placental development in many domestic species, but their
contribution in the human has largely been ignored once implantation is complete. Here we re-evaluate their role during the first trimester. Con-
nections between the glands and the intervillous space have been observed from day 17 post-conception through to the end of the first trimester.
In the absence of a maternal arterial supply to the early placenta it is believed that the carbohydrate- and lipid-rich secretions represent an
important source of nutrients during the first trimester, and possibly the beginning of the second trimester. The secretions also contain a variety
of growth factors that may regulate placental morphogenesis since their receptors are present on villous and extravillous trophoblast, and villous
endothelial cells. Other components of the secretions may modulate immune responses and trophoblast invasion at the materno-fetal interface.
We speculate that lactogenic hormones secreted by decidual cells and the syncytiotrophoblast may act in concert with human chorionic gonad-
otropin to stimulate the secretory activity of glandular epithelial cells during the first trimester. There is circumstantial evidence, but as yet no
conclusive proof, that deficient glandular activity is associated with pregnancy failure in the human.
� 2007 Published by IFPA and Elsevier Ltd.
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1. Introduction

The endometrium of all mammals is richly endowed with
glands that open on to the luminal surface. Secretions from
the glands play an essential role is sustaining the conceptus
prior to implantation, and in some species they continue to
contribute to materno-fetal transfer throughout pregnancy via
specialised areas of the chorion termed areolae [1]. Their
role in the human has largely been ignored once implantation
is complete, for it has generally been assumed that the concep-
tus is removed from endometrial secretions during the invasive
form of implantation. However, there is increasing evidence
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suggesting that the glands continue to function during the first
trimester and early second trimester, that they deliver their
secretions into the intervillous space, and that they may play
important roles in modulating events at the materno-fetal inter-
face. Hence, we re-evaluate the role of the glands in regulating
human post-implantation placental development during early
pregnancy, making comparisons with other species where
appropriate.

The initial attachment of the human conceptus to the uter-
ine epithelium takes place between the openings of adjacent
uterine glands [2]. By the time implantation is complete at
day 10e12 post-conception (pc) the chorionic sac is sur-
rounded by a mantle of syncytiotrophoblast, in which spaces
representing the forerunners of the intervillous space, the lacu-
nae, are already present. As the mantle enlarges it erodes into
branches of the capillary plexus that lies beneath, and parallel
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with, the uterine epithelium. As a result of this erosion,
maternal erythrocytes are visible within the lacunae, although
as Hertig and Rock commented they are surprisingly scarce
[3]. They are also very palely stained compared to counter-
parts within maternal vessels, leading Hamilton and Boyd to
suggest that circulation through the lacunae may be stagnant
or that the erythrocytes are affected by secretions from the
syncytiotrophoblast [2]. Any circulation can only be of a cap-
illary nature at this stage of development, although it may be
aided by uterine contractions and other forces [4].

The expanding syncytiotrophoblastic mantle also erodes the
epithelium of the adjacent uterine glands, and based on the
density of the latter this is likely to be an early event. Thus,
the openings of the glands on the non-pregnant uterine surface
have an areal density of 15 per mm2 [5], and the chorionic sac
of an embryo almost completely implanted into the endome-
trium, the ‘Barnes’ embryo estimated to be 11e12 day pc,
measured 0.93 � 0.77 � 0.74 mm [2]. Destruction of the walls
of the glands releases their secretions at the materno-fetal in-
terface, and while some material disperses into the decidual
extracellular matrix the bulk is delivered into the lacunae
through channels formed in the cytotrophoblastic shell
(Fig. 1). Connections between uterine glands and the develop-
ing intervillous space can be observed from approximately day
17 pc [6] throughout the first trimester [2,7].

The development of the endometrium that occurs during
the secretory phase of the cycle appears to be maintained
into early pregnancy. Measurements based on archival
placenta-in-situ hysterectomy specimens indicate that the en-
dometrium beneath the conceptus is 5e6 mm thick at 6 weeks
gestational age (4 weeks pc), but reduces to 1e2 mm by the
end of the first trimester [8]. Histologically, the glandular ep-
ithelial cells appear highly active during early pregnancy, and
resemble those of the early secretory phase of the cycle [7e9].
They have a tall columnar phenotype, with accumulations of
glycogen in the apical cytoplasm and of lipid droplets towards
their base. By the end of the first trimester these cells are more
cuboidal in shape, and appear morphologically to be more
quiescent. These changes correlate with concentrations of gly-
codelin A, one of the principal components of the glandular
secretions, which peak in the maternal serum and amniotic
fluid towards the end of the first trimester and then fall rapidly
[10,11]. Thus, it seems that in the human the contribution from
the decidual glands is phased out in concert with the onset of
the maternal intraplacental circulation [12]. Whether these two
processes are co-ordinated, and if so how, is not known at
present.

2. The endometrial-decidual glands as
a source of nutrients

The composition of the secretions from the endometrial
glands during the various phases of the menstrual cycle has
been studied extensively [10,13], but the full range of secre-
tory products during early pregnancy is not known. The secre-
tions will be derived from two principal sources; a serum
transudate arising from the rich capillary plexus surrounding
the glands, and specific proteins, carbohydrates and other
metabolites synthesised within the glandular cells. Quantita-
tively, the major glandular product detected in maternal serum
is a dimeric glycoprotein that is now referred to as glycodelin
A, but has been termed PP14 and a2-PEG in the past. Histo-
chemistry confirms that secretions within the lumens of the
glands are carbohydrate rich, for they react strongly with
periodic acid Schiff reagent. They also contain numerous lipid
droplets that stain bright red with Neutral Red dye [8]. Evi-
dence that the glands may act as a source of nutrition for
the conceptus is provided by the observation that the syncytio-
trophoblast covering the surfaces of villi facing the endome-
trium contain large accumulations of glycogen that appear as
crimson arcs on PAS-staining [7,14]. These accumulations
are greatest close to the materno-fetal interface, suggesting
a concentration-dependent uptake by the trophoblast.

In addition, during the first trimester the syncytiotropho-
blast has been shown to phagocytose maternal glycoproteins,
including glycodelin A [7]. Since the mRNA encoding glyco-
delin A is not expressed in placental tissues [15], the presence
of vesicles immunoreactive for the glycoprotein within the
syncytiotrophoblast confirms uptake. The staining is punctate,
and in the mid-zone of the syncytioplasm it co-localises with
cathepsin-D indicating that they are entering the lysosomal di-
gestive pathway [8]. We speculate that maternal proteins may
be phagocytosed non-selectively by the trophoblast, broken
down and their constituent amino acids recycled in anabolic
pathways in a fashion analogous to the yolk sac of the mouse.
This pathway is reported to account for approximately 90% of
amino acid uptake by the murine conceptus during the period
of organogenesis [16], but as yet there is no conclusive evi-
dence that this is the case in the human trophoblast.

The glands may also act as an important pathway for the
transfer of micronutrients during early pregnancy, for we
have observed expression of the a-tocopherol transfer protein
in the glandular epithelial cells by immunohistochemistry
during the first trimester [17]. This protein facilitates passage
of tocopherols through epithelia, and had previously only been
observed in the liver. Its presence in the glandular cells, on the
surface of the syncytiotrophoblast and the outer surface of the
secondary yolk sac suggests that the decidua may be an impor-
tant source of antioxidants during the critical phase of
organogenesis.

3. The endometrial-decidual glands as
a source of growth factors

Besides providing a source of nutrients the decidual glands
may play a more active role in regulating placental morpho-
genesis though the production of growth factors. A variety
of growth factors have been identified within the glandular
epithelium and the luminal secretions by immunohistochemis-
try, including epidermal growth factor (EGF), vascular endo-
thelial growth factor (VEGF) and leukaemia inhibitory
factor (LIF) [8]. Receptors for all these are present on the pla-
cental tissues during the first trimester.
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Fig. 1. Diagrammatic representation of the relationship of the conceptus to the uterine glands during the first trimester. A) The blastocyst attaches and implants

between openings of the uterine glands. The prevailing oxygen concentration will be low as the superficial decidua is oedematous and supplied by a capillary

plexus arising from the spiral arteries, favouring trophoblast proliferation. B) As the conceptus enlarges the syncytiotrophoblast will invade into the superficial

capillaries and the uterine glands, releasing the contents of both into the lacunae. EGF from the glands will stimulate trophoblast proliferation in the earliest stages,

aiding development of the cytotrophoblastic shell. hCG and hPL from the syncytiotrophoblast, and prolactin from the decidual cells may in turn stimulate the

glandular cells. C) As the conceptus enlarges the syncytiotrophoblast will encroach on the tips of the spiral arteries. It is essential that the cytotrophoblastic shell

is well-formed by this stage, in order that sufficient endovascular extravillous trophoblast cells (EVT) are available to plug the spiral arteries beneath the conceptus.

Incomplete plugging of the arteries in the periphery of the normal placenta is associated with early onset of the maternal circulation and villous regression to form

the chorion laeve.
The distribution of EGF-R varies with gestational age, being
expressed only by cytotrophoblast cells at 4e5 weeks, and then
by the syncytiotrophoblast alone at 6e10 weeks. There then
follows a rapid decline in immunoreactivity, which remains
low to term [18]. Addition of exogenous EGF to villous explants
shows an equivalent biphasic action with gestational age. Thus
at 4e5 weeks EGF stimulates cytotrophoblast cell prolifera-
tion, whereas at 6e12 weeks it stimulates secretion of human
chorionic gonadotropin (hCG) and human placental lactogen
(hPL) into the supernatant [19]. A similar action of EGF on tro-
phoblast proliferation has been reported in the horse, where in
situ hybridisation has demonstrated that the concentration of
mRNA encoding EGF increases in the glandular epithelial cells
during early pregnancy, except in areas of intense lymphocytic
infiltration into the decidua. Proliferation is observed in the tro-
phoblast overlying the mouths of the glands expressing EGF,
but not in those negative for the mRNA [20]. A high rate of pro-
liferation of cytotrophoblast cells is observed during human
early pregnancy, and is necessary not only to generate the syn-
cytiotrophoblastic covering of the expanding villous tree, but
also to feed the cytotrophoblastic cell columns (Fig. 1). These
merge at their distal ends to form the cytotrophoblastic shell
that surrounds the conceptus and represents the materno-fetal
interface during early pregnancy [2]. It is well-developed by
day 17 pc [6], but begins to thin from day 36 pc onwards [2].
It is essential that the shell be fully developed before the ex-
panding conceptus reaches the tips of the spiral arteries in the
mid-zone of the functionalism, in order to protect the concep-
tus from the full force of arterial inflow at too early a stage of
pregnancy [21]. The endovascular extravillous trophoblast
cells are derived from the outer surface of the shell, and these
cells migrate down the lumens of the spiral arteries, initiating
their physiological conversion in the process. In the earliest
stages the volume of endovascular trophoblast cells migrating
into the arteries is such that their lumens are effectively
blocked or plugged [21e24]. Failure of the shell to develop
fully is associated with early onset of the maternal circulation
to the placenta and failure of the pregnancy [25,26], probably
as a result of incomplete plugging of the arteries [12]. This
will lead to haemodynamic disturbances at the materno-fetal
interface, and to excessive oxidative stress of the placental
tissues. Each spiral artery supplies an area of uterine luminal
surface of 4e9 mm2 [27], and so the chorionic sac must
enlarge considerably before many will be encountered.

Receptors for VEGF and LIF have been identified on
the villous and extravillous trophoblast populations, and
also on villous endothelial cells [28e30]. These factors
may play important roles in regulating placental angiogene-
sis, for mice lacking the LIF-R gene display altered vascular
development.
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4. Immunomodulatory and other actions
of endometrial-decidual proteins

The decidual glands are known to produce a number of
glycosylated glyoproteins, which may exert a diverse variety
of effects as they diffuse into the extracellular matrix at the
materno-fetal interface following erosion of the glandular
epithelium. Glycodelin A has been attributed with an immuno-
modulatory role for it is able to suppress cytotoxicity of uter-
ine Natural Killer (NK) cells in a dose-dependent fashion in
vitro [31]. It has also been reported to reduce the secretion
of interleukin-1 by activated lymphocytes in a similar dose-
dependent fashion [32], and is a direct inhibitor of T-cell
proliferation [33]. Hence, glycodelin A may play a role in reg-
ulating interactions between the NK cells and the invading
extravillous trophoblast cells within the placental bed, in addi-
tion to the possible nutritional role described earlier.

An immunomodulatory role has also been suggested for
uteroglobin, an unusually small globular protein that is pro-
duced in maximal quantities during the secretory phase and
is a potent inhibitor of neutrophil and monocyte chemotaxis
in vitro [34,35]. Uteroglobin also has other potentially signif-
icant actions, however, as it is able to reduce the invasiveness
of trophoblast cell lines through Matrigel by binding to a novel
receptor site [36]. Hence, it may have a more direct effect on
regulating extravillous trophoblast invasion into the decidua.

Other proteins produced by the glands may play a role in
the innate immune defences against infection. Thus, two fam-
ilies of natural antimicrobials, the defensins and the whey
acidic protein (WAP) motif proteins, are found in the uterine
and glandular epithelia [37]. Although each defensin has
a unique temporal expression during the cycle, that of the
WAP protein SLPI occurs during the mid-late secretory phase.
Lactoferrin, which is weakly expressed in the glandular epi-
thelial cells at 6 weeks gestational age [8], has been shown
to act in synergy with SLPI as an antimicrobial in the lung
[38]. Together, these components of the secretions may there-
fore play an important role in preventing infection during
implantation and early pregnancy.

5. Regulation of glandular activity during
early pregnancy

In the normal non-pregnant cycle the glycogen accumula-
tions within the glandular epithelial cells begin to disperse
around days 23e24, suggesting a decline in secretory activity
[39]. The persistence of these accumulations through to at
least 6 weeks indicates that the secretory stimulus is main-
tained into early pregnancy. Indeed, evidence from domestic
species, including the sheep, rabbit and pig, indicates that
the conceptus is able to signal to the glands and enhance their
development and activity [40]. Thus, in the sheep the glands
undergo considerable hyperplasia between days 15 and
50 pc, followed by hypertrophy to increase their surface area
[41]. Whether there is a similar pattern of glandular develop-
ment in early pregnancy in the human is uncertain, although
Demir and colleagues did detect immunoreactivity for
proliferating cell nuclear antigen (PCNA) in the glandular
epithelium in their early pregnancy samples [9].

In the sheep, sequential exposure to oestrogen, progester-
one, interferon tau, placental lactogen and placental growth
hormone stimulate expression of uterine milk proteins in the
glandular epithelial cells [42]. Interferon tau activates the
JAK-STAT pathway within the cells, while binding of placen-
tal lactogen promotes formation of STAT5 homodimers. Both
pathways promote expression of the uterine milk proteins, but
downregulation of the progesterone receptor is also required as
this exerts an inhibitory influence [40]. It is notable that the
concentration of mRNA encoding the prolactin receptor in-
creases during early pregnancy in the glandular epithelial cells
alone, most likely in a paracrine response to placental lactogen
coming from the trophoblast binucleate cells [43]. Prolactin
also stimulates progesterone-induced uteroglobin expression
in the rabbit uterus [44].

It is possible to envisage an equivalent pathway operating
in the human (Fig. 2). Thus, progesterone receptors cannot
be detected on the glandular epithelial cells by immunohisto-
chemistry during early pregnancy, consistent with their down-
regulation by exposure to progesterone during the late
secretory phase of the cycle [45]. Progesterone receptor
A (PRA) continues to be expressed by the decidual cells, how-
ever. Equally, the glandular epithelial cells contain the highest
concentration of luteinising hormone/hCG receptors of all
cells in the human uterus [46]. hCG plays an equivalent role
to interferon tau in the sheep during early pregnancy, and treat-
ment of isolated glandular cells with highly purified hCG re-
sults in a time- and dose-dependent increase in levels of
cyclooxygenase-2 mRNA, protein and secretion [46]. The pro-
lactin receptor is strongly expressed by glandular epithelial
cells and decidualised endometrial stromal cells during the
mid to late secretory phase, and during early pregnancy [47].

Thus in early human pregnancy hCG secreted by the syncy-
tiotrophoblast acts through LH receptors to maintain the
corpus luteum of pregnancy, ensuring that progesterone con-
centrations remain high. The continued exposure to progester-
one will keep progesterone receptors on the glandular cells
downregulated, thereby removing their inhibitory influence
on the expression of milk proteins. The progesterone will
also stimulate the decidual cells via the PRA to secrete prolac-
tin [48]. Within the placenta the syncytiotrophoblast also
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Fig. 2. Summary of the potential servomechanism by which the human

conceptus may stimulate activity in the glandular epithelial cells to meet its

requirements.



S68 G.J. Burton et al. / Placenta 28, Supplement A, Trophoblast Research, Vol. 21 (2007) S64eS69
secretes human placental lactogen (hPL), which shares 67%
sequence homology with prolactin and is able to signal
through the prolactin receptor. These two lactogenic hor-
mones, prolactin and hPL, may stimulate the glandular epithe-
lial cells in concert with hCG also coming from the placenta.
In this way the conceptus would be able to regulate the supply
of nutrients and other factors it receives from the mother,
which is an attractive hypothesis teleologically. Some evi-
dence that this may be the case is provided by the fact that
in baboons exogenous or blastocyst-secreted chorionic gonad-
otropin is able to stimulate the secretion of glycodelin [49,50].

In addition to these endocrine loops it is possible that local
paracrine signals within the decidua influence glandular activ-
ity. Thus, it is known that uterine NK cells accumulate in the
vicinity of the glands during early pregnancy, and some come
to lie in close apposition with the epithelial basement mem-
brane [8]. NK cells secrete a variety of cytokines when acti-
vated [51], and we have demonstrated that they are also
immunoreactive for EGF. This raises the possibility that extra-
villous trophoblast/NK cell interactions may also signal the
presence of a conceptus to the endometrial glands.

6. The impact of deficient glandular activity in early
pregnancy

There has been much speculation in the past that deficient
glandular activity, usually described as luteal phase defect, re-
sults in early pregnancy failure. Although there is considerable
circumstantial evidence that this may be the case, there is as
yet no conclusive evidence to support this claim in the human.
Ultrasonographic studies have indicated that an endometrial
thickness of at least 8 mm is necessary for successful implan-
tation [52], although not all studies have supported this asser-
tion [53]. Biochemical assessments of glandular activity have
shown that concentrations of glycodelin A in uterine flushings
on days LH þ 10 and LH þ 12 are lower in women who go on
to miscarry than those with successful pregnancies [54]. Sim-
ilarly, the concentrations of MUC-1, a progesterone-dependent
glycoprotein secreted by the glands, are lower at day LH þ 10
in women suffering recurrent spontaneous miscarriage than in
fertile controls [55]. These findings are consistent with the
observed failure of downregulation of progesterone receptors
in glandular epithelial cells in women with luteal phase defect
[56]. Such failure may mean that the normal inhibition of
expression of uterine milk proteins exerted by the progester-
one receptor is not removed, compromising the secretory
activity of the glands in early pregnancy. Whether miscarriage
in these cases is the result of an incomplete cytotrophoblastic
shell secondary to inadequate EGF-induced proliferation, or
due to abnormal immunological interactions within the de-
cidua through a lack of modulation by glycodelin A, is not
known at present.

More direct evidence of the importance of the endometrial
glands for survival and normal development of the conceptus
is provided by experimental models in the sheep where the
glands can be ablated by administering 19-norprogestin for
a period of 8 weeks immediately after birth. Uteri display
a spectrum of responses to this treatment, with some having
no glands and others appearing relatively normal. Conceptus
survival and elongation was directly related to the degree of
glandular development [57]. In the worst cases no conceptus
was present on day 14, whereas in intermediate uteri a single
non-expanded conceptus was present. Although it is poten-
tially dangerous to extrapolate between species, we speculate
that cases of biochemical pregnancies that fail to progress to
clinical pregnancies and cases of empty gestational sacs repre-
sent equivalent outcomes of glandular dysfunction in the
human. Further research is required to confirm this hypothesis,
but the concept opens potential avenues for therapeutic
interventions.
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