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Abstract

We present an extension of the mass sum rule that applies to renormalizable rigid supersymmetric field 
theories to the case of the N = 1 supersymmetric effective action (the gauged non-linear sigma model) 
consisting of adjoint scalar superfields and vector superfields possessing a Kähler potential, a set of gauge 
coupling functions (second prepotential derivatives) and a superpotential, which respectively set their en-
ergy scales. The mass sum rule derived is valid for any vacua, including the (metastable) one of broken 
supersymmetry with the condensates of D-term and/or F -term. We manage to extend these analyses to the 
cases where superfields in (anti-)fundamental representation are present. The supertrace is shown to van-
ish in those cases where underlying geometry is special Kähler and theory under concern is anomaly free. 
Simple phenomenological application is given, providing an upper bound for gaugino masses. We discuss 
that the effects of the D and/or F condensates can be represented as a set of soft breaking terms with their 
strengths predicted by the scales.
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1. Introduction

The mass sum rule of renormalizable rigid supersymmetric (SUSY) field theories in four 
dimensions [1] played an important role in eighties in deciding upon the appropriate use of super-
symmetry in particle physics together with the notion of naturalness. Being largely independent 
of the dynamics, it gives us a general constraint on a pattern of Bose–Fermi mass splitting when 
applied to theories with vacua of spontaneously broken supersymmetry and has provided a ratio-
nale for the existence of the hidden sector that has affected the SUSY model building till today. 
After the three decades, nature appears to call for a renewed version of naturalness while su-
persymmetry has been confronted with more and more stringent bounds from the experiments 
[2,3].

The effective action is an appropriate tool to summarize quantum properties of field theoretic 
system seen as low energy dynamics: its form is dictated by the symmetries of the system and 
the coefficient functions represent quantum effects of “the high frequency part” integrated over 
it (see, for instance, [4,5]).

In this paper, we derive a mass sum rule from a prototypical N = 1 supersymmetric effective 
action (gauged non-linear sigma model). The effective action that we consider consists of adjoint 
chiral superfields and vector superfields, possessing a Kähler potential, a set of gauge coupling 
functions (second prepotential derivatives) and a superpotential, which respectively set distinct 
energy scales. Deriving the mass sum rule of this system is interesting as the system incorporates 
naturally the notion of Dirac gaugino or Majorana–Dirac gaugino scenario which is receiving 
attention recently as an extension of the spectrum in the MSSM gauge sector [6–40]. The sum 
rule, as is always the case, represents the symmetry of the action, being insensitive to the struc-
ture or the choice of vacua. The real interest in the supersymmetric sum rule lies, of course, in 
those cases where the Bose–Fermi degeneracy of the spectrum is lifted. It has been demonstrated 
that dynamical supersymmetry breaking takes place on metastable vacua in the weak-coupling 
regime: the D-term triggered Hartree–Fock treatment has enabled us to exhibit the condensates 
of the order parameters of supersymmetry on the metastable vacuum through the gap equation 
[37–39]. The fields in the observable sector pick the effects of these condensates through the tree 
level analysis of the effective action. The application of the sum rule we derive is, however, not 
going to be limited to this particular situation.

In the next section, we recall the effective action mentioned above. The scales are contained 
in the three input functions. We consider the (metastable) vacua which break supersymmetry. 
In Section 3, we introduce the boson and fermion mass matrices and compute matrix elements. 
In Section 4, we derive the mass sum rule from the matrix elements, temporarily assuming un-
broken gauge symmetry. It is shown that the supertrace of the mass matrices squared vanishes 
in those cases where the underlying geometry is special Kähler. In Section 5, we extend our 
analyses to the general case where the gauge symmetry is broken and (anti-)fundamental matter 
superfields are included. We complete the derivation of the mass sum rule to this general case. 
The right hand side of the mass sum rule vanishes by the special Kähler geometry one adopts 
and the anomaly free property of the theory under concern. In Section 6, we present a simple 
application of the mass sum rule, which leads to an allowed range of the gluino mass. The terms 
generated by D and F condensates (or stationary values) can, in practice, be recognized as a set 
of soft breaking terms, using the spurion technique [41]. We exhibit these in Section 7. Through-
out the paper, we work with the notation, so that our computation and results are insensitive to the 
vacua one explores. In Appendix A, we touch upon how expressions such as the matrix elements 
get further converted in some simplest cases.
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2. N = 1 effective action of adjoint scalar and vector superfields

Let us first consider the general N = 1 supersymmetric action consisting of chiral superfield 
�a in the adjoint representation and the vector superfield V a :

L =
∫

d4θK(�a, �̄a) + (gauging) +
∫

d2θ Im
1

2
τab(�

a)WαaWb
α

+
(∫

d2θW(�a) + c.c.

)
. (2.1)

There are three input functions: the Kähler potential K(�a, �̄a) with its gauging, the gauge 
kinetic superfields τab(�

a) that are the second derivatives of a holomorphic function F(�a), 
and a superpotential W(�a).

In parallel to [39,40], we postulate the followings:

1) third derivatives of F(�a) at the scalar VEV’s are non-vanishing;
2) the superpotential at tree level preserves N = 1 supersymmetry;
3) the gauge group can be arbitrary except that it contains an overall U(1) in which all particles 

in the observable sector are singlets.

It has been demonstrated [39] the supersymmetry is spontaneously broken in the Hartree–Fock 
approximation in this system, replacing 3) by

3)′ the vacuum is taken to be in the unbroken phase of the gauge group, which is taken to be 
U(N) for definiteness.

This last assumption has been made for a technical reason.
There are, in principle, three scales in accordance with the three input functions. In order to 

avoid complications which are unnecessary in this paper, we consider the case in which the scale 
set by the Kähler potential and the one set by the prepotential are the same order. (This is automat-
ically satisfied in the special Kähler case or practically correct in the case where the D0 conden-
sate is dominant against the F 0 condensate.) The one of the two fundamental scales is, therefore, 
taken to be the mass parameter Mprep contained in the prepotential function F . The other is the 
mass parameter Msup contained in the superpotential W . The SUSY breaking scale, namely, the 
order parameter 〈D0〉 is found to be given by their geometric mean 〈D0〉 ∼ MprepMsup. (See 
Eq. (3.13) of [39] for the derivation.) The SUSY breaking scale can, therefore, be arbitrarily 
large, depending upon how large these two parameters are. All of the adjoint multiplets of the 
standard model group appearing in our theory receive mass of order Msup. The role played by this 
effective action in the vacuum of broken supersymmetry is somewhat analogous to that played 
by the NJL model [45,46] in broken chiral symmetry which connects the confinement scale and 
the scale of the chiral lagrangian: here, this effective action describes the dynamics in the inter-
mediate energy scale, connecting the low energy dynamics with the high energy inputs.

3. Mass matrices and computation of the matrix elements

In this section and the next section, we present the principal part of our computation. For the 
sake of our presentation, we temporarily limit ourselves to the case of unbroken gauge group, 
ignoring spin-one contribution as well as additional scalar–scalar and D-scalar contributions to 
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mass matrices due to Eq. (3.14). These can be readily put in, which we will do in Section 5
where we consider the general case that includes the broken gauge group and matter supermulti-
plets.

Let us study the quadratic fluctuations of the action around its stationary points of the scalar 
fields and the auxiliary fields. This leads us to mass formulas of the effective action on a generic 
vacuum of dynamically broken N = 1 supersymmetry. We begin by separating the stationary 
values (VEV’s) of the scalar fields, the auxiliary fields, denoted by ϕa∗ and by Da∗ and Fa∗ respec-
tively, from their fluctuations:

L(�a∗ + �a,V a∗ + V a) = L(�a∗,V a∗ ) +Lfluc(�
a,V a;�a∗,V a∗ ), (3.1)

�a∗ = ϕa∗ + θθF a∗ , V a∗ = 1

2
θθ θ̄ θ̄Da∗ . (3.2)

The terms in Lfluc which are quadratic in fluctuations can be represented as

Lquad = Lquad
B +Lquad

F , Lquad
B ≡ KB − V2B, Lquad

F ≡ KF − V2F , (3.3)

KB = gab̄∗∂μφa∂μφ̄b̄ − 1

4
(�F)abF

a
μνF

bμν, gab̄∗ ≡ gab̄(ϕ
c∗, ϕ̄c̄∗) = gb̄a∗, (3.4)

KF = − i

2
gab∗ψaσμ∂μψ̄b + i

2
gab∗(∂μψ)aσμψb

− 1

2
Fab∗λaσμ∂μλ̄b − 1

2
F̄ab∗∂μλaσμλ̄b, (3.5)

Fab∗ ≡Fab(ϕ
c∗), (3.6)

V2B = 1

2
(φ̄, φ,D, F̄ ,F )M2

B

⎛
⎜⎜⎜⎜⎜⎝

φ

φ̄

D

F

F̄

⎞
⎟⎟⎟⎟⎟⎠ , (3.7)

V2F = 1

2
(λ,ψ)MF

(
λ

ψ

)
+ 1

2
(λ̄, ψ̄)MF

(
λ̄

ψ̄

)
. (3.8)

Here in Eq. (3.7) and Eq. (3.8), we have adopted matrix notation which is self-explanatory: the 
adjoint indices a, b, · · · have been suppressed. The matrices M2

B , MF and MF consist of blocks 
of matrices of smaller size and are displayed as

M2
B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M2
φ̄φ

M2
φ̄φ̄

M2
φ̄D

M2
φ̄F

M2
φ̄F̄

M2
φφ M2

φφ̄
M2

φD M2
φF M2

φF̄

M2
Dφ M2

Dφ̄
M2

DD 0 0

M2
F̄ φ

M2
F̄ φ̄

0 M2
F̄F

0

M2
Fφ M2

F φ̄
0 0 M2

FF̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.9)

MF =
( Mλλ Mλψ

Mψλ Mψψ

)
, MF =

( M̄λ̄λ̄ M̄λ̄ψ̄

Mψ̄λ̄ Mψ̄ψ̄

)
. (3.10)
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We have computed the entries of these three matrices and they are respectively given as

−M2
B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(F · ∂̄∂g · F̄ )∗ (F · ∂̄ ∂̄g · F̄ )∗ − ((∂̄F̄ ·)D)∗
2i

((∂̄g·)F̄ )∗ ((∂̄g·)F )∗
+((F̄ ·)∂̄ ∂̄(∂W))∗ +(∂̄ ∂̄W̄ )∗

− (D·∂̄ ∂̄F̄ ·D)∗
4i

(F · ∂∂g · F̄ )∗ (F · ∂∂̄g · F̄ )∗
((∂F ·)D)∗

2i
((∂g·)F̄ )∗ ((∂g·)F )∗

+((F ·)∂∂(∂W))∗ +(∂∂W)∗
+ (D·∂∂F ·D)∗

4i

((∂F ·)D)∗
2i

− ((∂̄F̄ ·)D)∗
2i

(ImF)∗ 0 0

((∂g·)F )T∗ ((∂̄g·)F )T∗ 0 g∗ 0

+(∂̄ ∂̄W̄ )∗
((∂g·)F̄ )T∗ ((∂̄g·)F̄ )T∗ 0 0 g∗
+(∂∂W)∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.11)

MF =
⎛
⎝ − i

2 (∂F ·)F −
√

2
4 (∂F ·)D

−
√

2

4 (∂F ·)D ∂∂W + (∂g·)F̄

⎞
⎠

∗
, (3.12)

MF =
⎛
⎝ i

2 (∂̄F̄ ·)F̄ −
√

2
4 (∂̄F̄ ·)D

−
√

2
4 (∂̄F̄ ·)D ∂̄∂̄W̄ + (∂̄g·)F

⎞
⎠

∗
. (3.13)

Here again, we have introduced a shorthand notation: for instance, (F · ∂̄∂g · F̄ )∗ āb =
Fc∗ ∂̄ā∂bgcc̄∗F̄ c̄∗ as well as ((∂F ·)D)∗ ab = Fabc∗Dc∗. The notation is generic, so that our com-
putation in what follows and the mass sum rule in the next section are insensitive to the 
structure/pattern of vacua explored. For an example of the expressions at a specific vacuum, 
see Appendix A.

Note that we did not include here the contributions from the killing potential

Da = −1

2
(Fbf

b
acφ̄

c + F̄bf
b
acφ

c). (3.14)

(See, for instance, [42,43].) For the boson mass term, the term in the action attendant with 
Eq. (3.14) is a generalization of the scalar potential due to gauge interactions in the renormaliz-
able SUSY gauge theories:

1

2
(Da∗ + Da)Da(ϕ∗ + φ, ϕ̄∗ + φ̄). (3.15)

For the fermion mass term, the term attendant with Eq. (3.14) is

1√
2
gab∗(λcψak̄b

c∗ + λ̄cψ̄bka
c∗), (3.16)

kb
a = −igbc∂̄cDa. (3.17)

The killing potential Da contains the structure constant as a multiplicative factor and these terms 
do not contribute to the mass matrices in the unbroken phase of the gauge group. We will put 
these back in Section 5.
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The quadratic form Eq. (3.7) can be simplified by “completing the square” for the auxiliary 
fields:

V2B = 1

2
(φ̄, φ,D′, F̄ ′,F ′)M2

B,red

⎛
⎜⎜⎜⎜⎜⎝

φ

φ̄

D′

F ′

F̄ ′

⎞
⎟⎟⎟⎟⎟⎠ , (3.18)

M2
B,red =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M2
red φ̄φ

M2
red φ̄φ̄

0 0 0

M2
red φφ M2

red φφ̄
0 0 0

0 0 M2
DD 0 0

0 0 0 M2
F̄F

0

0 0 0 0 M2
FF̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.19)

Here

M2
red AB =M2

AB −
∑

α,β=D,F,F̄

M2
Aα(M2)−1

αβM
2
βB, (3.20)

D′ = D + (M2
DD)−1M2

Dφφ + (M2
DD)−1M2

Dφ̄
φ̄, (3.21)

F ′ = F + (M2
FF̄

)−1M2
F̄ φ

φ + (M2
FF̄

)−1M2
F̄ φ̄

φ̄, (3.22)

F̄ ′ = F̄ + (M2
F̄F

)−1M2
Fφφ + (M2

F̄F
)−1M2

F φ̄
φ̄. (3.23)

4. Mass sum rule

Our consideration in the last section is enough to lead us to the mass sum rule for the class 
of supersymmetric effective field theories that we consider in this paper. It is a generalization of 
the well-known sum rule [1] which applies for the models of supersymmetric field theories with 
canonical kinetic terms in the sense that Eq. (2.1) contains the Kähler potential and the gauge 
coupling function (the prepotential derivatives) as well.

In the vacua where the gauge group is unbroken, the gauge bosons are massless and the scalar 
masses are obtained by diagonalizing√

g−1∗

(M2
red φ̄φ

M2
red φ̄φ̄

M2
red φφ M2

red φφ̄

)√
g−1∗ . (4.1)

The sum of the boson masses squared is, therefore, given by

TrM2
bosons ≡ trg−1∗ M2

red φ̄φ
+ trg−1∗ M2

red φφ̄
. (4.2)

Using Eq. (3.11) and Eq. (3.20), we obtain

TrM2
bosons = tr

[
−2(g−1F · ∂̄∂g · F̄ )∗ + 1

2
g−1∗ ((∂̄F̄ ·)D)∗(ImF)−1∗ ((∂F ·)D)∗

+ 2(g−1∂̄g · F̄ )∗g−1∗ (∂g · F)T∗ + 2((g−1∂g · F̄ )∗
+ (g−1∂∂W)∗)(g−1∗ (∂̄g · F)T∗ + g−1(∂̄ ∂̄W̄ )∗)

]
(4.3)

Here tr denotes the sum over the adjoint indices.
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As for fermion masses, they are obtained by diagonalizing√
G

−1/2
F∗ MF

√
G

−1/2
F∗ or

√
G

−1/2
F∗ MF

√
G

−1/2
F∗ , (4.4)

where

GF∗ =
(

(ImF)∗ 0
0 g∗

)
. (4.5)

The sum of the fermion masses squared including the factor 2 due to the number of polarizations 
per particle is given by

2TrM2
fermions ≡ tr

[
MF G−1

F∗MF G−1
F∗

]
+ tr

[
MF G−1

F∗MF G−1
F∗

]
(4.6)

= tr

[
1

2
((∂F ·)F )∗(ImF)−1∗ ((∂̄F̄ ·)F̄ )∗(ImF)−1∗

+ 1

2
(ImF)−1∗ ((∂F ·)D)∗g−1∗ ((∂̄F̄ ·)D)∗

+ 2(∂∂W + ∂g · F̄ )∗g−1∗ (∂̄ ∂̄W̄ + ∂̄g · F)∗g−1∗
]
. (4.7)

Hence we obtain

TrM2
bosons − 2TrM2

fermions = tr
[
−2(g−1F · ∂̄∂g · F̄ )∗ + 2(g−1(∂̄g·)F̄ )∗g−1∗ ((∂g·)F )T∗

−1

2
(ImF)−1∗ ((∂F ·)F )∗(ImF)−1∗ ((∂̄F̄ ·)F̄ )∗

]
, (4.8)

observing partial cancellations.
This expression vanishes in those cases where the underlying geometry is special Kähler, 

whose condition is given by g = ImF , and ∂∂̄g = 0.

5. The general case of broken gauge group and inclusion of matter multiplets in the 
(anti-)fundamental representation

So far, we have dealt with those cases where only the matter chiral multiplets in the adjoint 
representation are present. In order to confront our analysis with more realistic particle spectrum 
and patterns, we need to work with cases with broken gauge symmetry and where the matter 
chiral multiplets in the (anti-)fundamental representation are present. In this section, as one of 
the prototypical examples, we add to the original Lagrangian the one consisting of a pair of chiral 
superfields (H i, Hcic ) belonging to the fundamental and the anti-fundamental representations 
respectively:

Lf =
∫

d4θ
(
H̄ eV H + H̄ce

−V Hc

)
. (5.1)

The superfields are expanded as

H = h(y) + √
2θψh(y) + θθFh(y), (5.2)

Hc = hc(y) + √
2θψhc(y) + θθFhc(y) (5.3)

with yμ ≡ xμ + iθσμθ̄ and their stationary values are denoted by

H∗ = h∗ + θθFh∗, Hc∗ = hc∗ + θθFhc∗. (5.4)
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The superpotential term is appropriately extended to include these matter chiral multiplets as 
well:

Lextended
sup = Fa

φ ∂aW + F i
h∂iW + Fhcic∂

icW

− 1

2

∑
A=a,i,ic

∑
B=b,j,jc

(
ψA=a

φ ,ψA=i
h ,ψhcA=ic

)
∂A∂BW

⎛
⎜⎝

ψB=b
φ

ψ
B=j
h

ψhcB=jc

⎞
⎟⎠ + c.c.

(5.5)

≡ FA∂AW − 1

2
ψA(∂A∂BW)ψB + c.c. (5.6)

Here we have denoted by A = (a, i, ic) and by B = (b, j, jc) a collection of adjoint, fundamental, 
and anti-fundamental indices. The theory extended this way is given by the Lagrangian

L =
∫

d4θK(�a, �̄a) + (gauging) +
∫

d2θ Im
1

2
τab(�

a)WαaWb
α +Lextended

sup +Lf .

(5.7)

Let us now turn to the computation of the matrix elements of the boson mass matrix and that 
of the fermion mass matrix in the extended theory. Some of the changes we have to make as com-
pared with the computation done in Section 3 are just the extension of the adjoint index a, b · · · to 
A = (a, i, ic), B = (b, j, jc) · · · as we have simply added species of chiral matter multiplets. The 
forms of the matrices M2

B, MF ,MF in Eq. (3.11), Eq. (3.12) and Eq. (3.13) are still relevant 
in this section as well and we use the same symbols with the index extension understood. We 
just need to add a collection of rows and a collection of columns to M2

B to include the spin one 
contribution.

There are, however, new contributions due to the fact that we work here in the vacua of broken 
gauge symmetry. By Higgs mechanism, there are massive spin one particles which gain their 
masses by (a generalization) of seagull interactions in the first and the last terms of Eq. (5.7) and, 
therefore, by the derivatives of an appropriate generalization of the killing potential Da. The 
nonvanishing block is denoted by (�M2

B)V V . There are also new contributions to the matrix 
elements of the four blocks of the scalar–scalar part and to those of another four blocks of the 
D-scalar part as well by Eq. (3.15) and by 1

2Dah̄T ah − 1
2Dah̄cT

ahc , which is obtained from 
Eq. (5.1). As for the fermion mass matrix, the new contributions are read off from Eqs. (3.16), 
(3.17).

Putting all these together, we write the increment of the boson mass matrix denoted by �M2
B

as

�M2
B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(�M2
B)φ̄φ (�M2

B)φ̄φ̄ 0 (�M2
B)φ̄D 0 0

(�M2
B)φφ (�M2

B)φφ̄ 0 (�M2
B)φD 0 0

0 0 (�M2
B)V V 0 0 0

(�M2
B)Dφ (�M2

B)Dφ̄ 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.8)
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Here, we have added the third row and third column as the part in which spin one massive 
particles are involved. The entries are computed to be

(�M2
B)φ̄φ = (�M2

B)φφ̄ = −1

2
D∗ · (∂∂̄D̂)∗, (5.9)

(�M2
B)φφ = −1

2
D∗ · (∂∂D̂)∗, (�M2

B)φ̄φ̄ = −1

2
D∗ · (∂̄ ∂̄D̂)∗, (5.10)

(�M2
B)φD = −1

2
(∂D̂)∗, (�M2

B)Dφ = −1

2
(∂D̂)T∗ , (5.11)

(�M2
B)φ̄D = −1

2
(∂̄D̂)∗, (�M2

B)Dφ̄ = −1

2
(∂̄D̂)T∗ , (5.12)

(�M2
B)V V = 1

4

[
(∂D̂)T∗ g−1∗ (∂̄D̂)∗ + (∂̄D̂)T∗ g−1∗ (∂D̂)∗

]
. (5.13)

Here we have denoted by D̂ the killing potential appropriately extended to include the contribu-
tions from, h, h̄, hc and h̄c,

D̂a =Da + (h̄T ah − h̄cT
a
c hc). (5.14)

We have also made an index extension of the Kähler metric

gab̄ ⇒ gAB̄ =
⎛
⎜⎝

gab̄ 0 0

0 δi
ī 0

0 0 δic
īc

⎞
⎟⎠ . (5.15)

From these data, the increment of M2
B,red from Eq. (3.19) to the current case is

(�M2
B,red)AB ≡

(
M2

B,red(M2
B + �M2

B)
)

AB
−

(
M2

B,red(M2
B)

)
AB

= (�M2
B)AB −

∑
α,β=D,F,F̄

{
(�M2

B)Aα(M2
B)−1

αβ (M2
B)βB

+ (M2
B)Aα(M2

B)−1
αβ (�M2

B)βB + (�M2
B)Aα(M2

B)−1
αβ (�M2

B)βB

}
.

(5.16)

As for the increment of the fermion mass matrix denoted by �MF , and �MF , we obtain

�MF =
(

0 (�MF )λψ

(�MF )ψλ 0

)
, �MF =

( 0 (�MF )λ̄ψ̄

(�MF )ψ̄λ̄ 0

)
, (5.17)

(�MF )ψλ = −
√

2

2
i(∂D̂)∗, (�MF )λψ = −

√
2

2
i(∂D̂)T∗ ,

(�MF )ψ̄λ̄ =
√

2

2
i(∂̄D̂)∗, (�MF )λ̄ψ̄ =

√
2

2
i(∂̄D̂)T∗ . (5.18)

Let us now turn to the question of the mass sum rule. The increment of the bosonic part of the 
supertrace mass squared is

�(TrM2
bosons) ≡ trg−1∗ (�M2

B,red)φ̄φ + trg−1∗ (�M2
B,red)φφ̄ + 3tr(ImF)−1∗ (�M2

B)V V

= − i
trg−1∗

{
(∂F · D)∗(ImF)−1∗ (∂̄D̂)T∗ + (∂̄D̂)∗(ImF)−1∗ (∂F · D)∗

}

4
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+ i

4
trg−1∗

{
(∂D̂)∗(ImF)−1∗ (∂̄F̄ · D)∗ + (∂̄F̄ · D)∗(ImF)−1∗ (∂D̂)T∗

}
+ trg−1∗

{
(∂D̂)∗(ImF)−1∗ (∂̄D̂)T∗ + (∂̄D̂)∗(ImF)−1∗ (∂D̂)T∗

}
. (5.19)

As for the trace of the fermion mass squared, the increment is

�(2TrM2
fermions)

= 2tr(�MF )(G−1
F MF G−1

F ) + 2trMF (G−1
F �MF G−1

F )

+ 2tr(�MF )(G−1
F �MF G−1

F )

= + i

2
tr
{
(∂D̂)T∗ g−1∗ (∂̄F̄ · D)∗(ImF)−1∗ + (∂D̂)∗(ImF)−1∗ (∂̄F̄ · D)∗g−1∗

}
− i

2
tr
{
(∂F · D)∗g−1∗ (∂̄D̂)∗(ImF)−1∗ + (∂F · D)∗(ImF)−1∗ (∂̄D̂)T∗ g−1∗

}
+ tr

{
(∂D̂)T∗ g−1∗ (∂̄D̂)∗(ImF)−1∗ + (∂D̂)∗(ImF)−1∗ (∂̄D̂)T∗ g−1∗

}
. (5.20)

The increment of the supertrace is, therefore,

�(TrM2
bosons − 2TrM2

fermions)

= −tr(g−1∗ D∗ · (∂∂̄D̂)∗)

+ i

4
trg−1∗

{
(∂F · D)∗(ImF)−1∗ (∂̄D̂)T∗ + (∂̄D̂)∗(ImF)−1∗ (∂F · D)∗

}
− i

4
trg−1∗

{
(∂D̂)∗(ImF)−1∗ (∂̄F̄ · D)∗ + (∂̄F̄ · D)∗(ImF)−1∗ (∂D̂)T∗

}
. (5.21)

The quadratic piece in the D condensate being absent, the right hand side is a generalization of 
the well-known expression −tr

∑
a

Da∗T a in the renormalizable supersymmetric gauge theories. 

The right hand side vanishes when the anomaly free property of the theory under concern is 
imposed. (See, for instance, [47].)

This completes the calculation which we have begun in Section 3. To summarize, the answer 
is given by the two equations for the supertrace, Eqs. (4.8) and (5.21). The right hand side of the 
mass sum rule vanishes by the special Kähler geometry one adopts and the anomaly free property 
of the theory under concern.

6. Simple application of the mass sum rule

In this section, we give a simple application of the mass sum rule derived above. For simplic-
ity, we consider the situation of Section 3, the mass sum rule for the sector consisting only of the 
fields in the adjoint representation in the unbroken gauge group and the case in which the right 
hand side of Eq. (4.8) vanishes. The mass sum rule for the vector multiplet and the adjoint chiral 
multiplet is given by

(m+
φ )2 + (m−

φ )2 = 2((�(+))2 + (�(−))2) (6.1)

where m±
φ , mψ and mλ are adjoint scalar masses and �± are mass eigenvalues of mixed 

Majorana–Dirac fermions (the mass eigenstates of the adjoint fermion mixed with the ordinary 
Majorana gaugino) obtained in [39]

�(±) = (trM)λ(±), (6.2)
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where

Ma =
( − i

2gaaF0aaF
0, −

√
2

4

√
gaa(ImF)aaF0aaD

0

−
√

2
4

√
gaa(ImF)aaF0aaD

0, gaa∂a∂aW + gaag0a,aF̄
0

)

=
(

ma
λλ ma

λψ

ma
ψλ ma

ψψ

)
, (6.3)

λ(±) = 1

2

⎛
⎝1 ±

√
(1 + if )2 +

(
1 + i

2
f

)2

�2

⎞
⎠ , � ≡ −2mλψ

mψψ

, f ≡ 2imλλ

trM . (6.4)

From (�(+))2 > 0, we obtain an upper bound for the gaugino mass �(−)

(�(−))2 <
1

2
[(m+

φ )2 + (m−
φ )2] = (M2

red)φφ̄. (6.5)

In phenomenological applications, it would be interesting to apply this relation to the gluino 
mass since the lower bound for the gluino mass is severely constrained by the recent LHC data. 
Taking into account this lower bound, we can predict an allowed range for the gluino mass as

mg̃lower bound < mg̃ < (Mred)φφ̄ . (6.6)

The scale (Mred)φφ̄ is naively given by a superpotential mass scale Msup ∼ (∂φ∂φW)∗, which 
must be much smaller than the cutoff (or the prepotential) scale from the argument that lifetime 
of our metastable supersymmetry breaking vacuum should be longer than the age of the universe. 
This prediction equation (6.6) would be useful in phenomenological study in LHC Run II.

7. Soft SUSY breaking terms generated by the condensates

In this section, we represent the mass and interaction terms generated by the condensates in 
Eq. (5.7) as the supersymmetry breaking terms, using the spurion technique.

First, we notice that the background (spurion) fields in the present case are

V 0∗ = 1

2
θ2θ̄2D0∗ or W0

α∗ = θαD0∗, (7.1)

�0∗ = ϕ0∗ + θ2F 0∗ (7.2)

and its conjugate. Exploiting these, the Lagrangian for these soft supersymmetry breaking terms 
is given by

Lsoft =
∫

d4θ

⎡
⎣−

∑
X=Q,U∗,D∗,L,E∗

X̄egV 0∗ X

−
{

1

M2
prep

�̄0∗�0∗ + 1

M4
prep

(
�0∗W0∗W0∗ + �̄0∗W0∗W0∗

)
+ 1

M6
prep

W0∗W0∗W0∗W0∗

}

×
∑

X=Q,U∗,D∗,L,E∗
X̄X

⎤
⎦

−
[∫

d2θ

{
1

Mprep
tr(W0∗�aWa) +

(
1

Mprep
�0∗ + 1

M3
W0∗W0∗

)
yuQU∗Hu
prep
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+
(

1

Mprep
�0∗ + 1

M3
prep

W0∗W0∗

)
ydQD∗Hd

+
(

1

Mprep
�0∗ + 1

M3
prep

W0∗W0∗

)
yeLE∗Hd

+
(

�0∗ + 1

M2
prep

W0∗W0∗

)
HuHd

−
(

1

Mprep
�0∗ + 1

M3
prep

W0∗W0∗

)
tr(WaWa)

}
+ h.c.

]
(7.3)

where X = Q, U∗, D∗, L, and E∗ denote the SM chiral multiplets, Wa the SM gauge field 
strength, �a adjoint chiral multiplets with the SM charges. We have simply omitted O(1) coef-
ficients of the operators.

The terms in the first and the second lines in Eq. (7.3) generate the scalar masses after su-
persymmetry breaking. The first term of the third line in Eq. (7.3) is a term to generate Dirac 
gaugino mass. The remaining terms in the third and the fourth lines are A-terms, and the first 
terms in the last line of Eq. (7.3) represent Bμ term of soft supersymmetry breaking terms. The 
last terms in the last line of Eq. (7.3) generates Majorana gaugino masses. The μ-term, which is 
supersymmetric, can be obtained as well by the VEV of �0∗ from the first term in the last line of 
Eq. (7.3).

This Lagrangian (7.3) written in terms of spurion superfields of soft SUSY breaking terms is 
expanded in components,

Lsoft = −
∑

X=Q,U∗,D∗,L,E∗
m2

X̃

¯̃
XX̃

+
[
−mDλaψa − AuQ̃Ũ∗Hu − AdQ̃D̃∗Hd

−AeL̃Ẽ∗Hd + BμHuHd − mMλaλa + c.c.
]

(7.4)

where the fields with tilde represent the scalar component of the corresponding chiral superfield, 
and the parameters for each operators are provided in terms of D0∗ and F 0∗ as

m2
X̃

= g

2
D0∗ + 1

M2
prep

F̄ 0∗ F 0∗ + 1

M4
prep

(
F 0∗ (D0∗)2 + F̄ 0∗ (D0∗)2

)
+ 1

M6
prep

(D0∗)4

∼ g

2
MsupMprep + 1

M2
prep

F̄ 0∗ F 0∗ + M2
sup

M2
prep

(
F 0∗ + F̄ 0∗

)
+ M4

sup

M2
prep

, (7.5)

mD = 1

Mprep
D0∗ ∼ Msup, (7.6)

Au,d,e = yu,d,e

Mprep
F 0∗ + yu,d,e

M3
prep

(D0∗)2 ∼ yu,d,e

Mprep
F 0∗ + yu,d,e

Mprep
M2

sup, (7.7)

Bμ = F 0∗ + 1

M2
prep

(D0∗)2 ∼ F 0∗ + M2
sup, (7.8)

mM = 1

M
F 0∗ + 1

M3
(D0∗)2 ∼ 1

M
F 0∗ + M2

sup

M
(7.9)
prep prep prep prep
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where D0∗ ∼ MsupMprep is put in the final expressions.
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Appendix A

In the text, we have introduced the notation in Eqs. (3.11)–(3.13) such that our computation as 
well as the mass sum rule is insensitive to the structure of vacua explored. In a specific vacuum 
one works with, these expressions get further simplified but become noncovariant. For instance, 
in the unbroken vacuum of the U(N) gauge group, the nonvanishing entries of Fabc∗, Da∗ , Fa∗
are

F0aa∗ =F000∗, Da∗ = δa
0D0∗, F a∗ = δa

0F 0∗ , gab̄ = δb̄āgaā = δbāg00. (A.1)

Consequently,(
F · ∂̄∂g · F̄ )

∗āb
= F̄ 0∗ g00āb∗F 0∗ , ((∂F ·)D)∗ab = δabF000∗D0∗, etc. (A.2)

For more complex cases such as U(N) is broken to product groups, see, for instance, [44].
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