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ABSTRACT Fitting of photon-count number histograms is a way of analysis of fluorescence intensity fluctuations, a successor
to fluorescence correlation spectroscopy. First versions of the theory for calculating photon-count number distributions have
assumed constant emission intensity by a molecule during a counting time interval. For a long time a question has remained
unanswered: to what extent is this assumption violated in experiments? Here we present a theory of photon-count number
distributions that takes account of intensity fluctuations during a counting time interval. Theoretical count-number distributions
are calculated via a numerical solution of Master equations (ME), which is a set of differential equations describing diffusion,
singlet-triplet transitions, and photon emission. Detector afterpulsing and dead-time corrections are also included. The ME-
theory is tested by fitting a series of photon-count number histograms corresponding to different lengths of the counting time
interval. Compared to the first version of fluorescence intensity multiple distribution analysis theory introduced in 2000, the fit
quality is significantly improved. It is discussed how a theory of photon-count number distributions, which assumes constant
emission intensity during a counting time interval, may also yield a good fit quality. We argue that the spatial brightness
distribution used in calculations of the fit curve is not the true spatial brightness distribution. Instead, a number of dynamic
processes, which cause fluorescence intensity fluctuations, are indirectly taken into account via the profile adjustment
parameters.

INTRODUCTION

In life science, fluorescence is a widely used reporter of the

state and dynamics of the studied sample. It is an extremely

sensitive reporter: even single fluorescent molecules can be

detected and identified. There is a family of fluorescence

methods that monitor and make use of fluorescence intensity

fluctuations emitted from a microscopic volume containing a

low number of fluorescent molecules on average. The name

of this family is fluorescence fluctuation spectroscopy (FFS).

Historically, the first FFS method is fluorescence correlation

spectroscopy (FCS) (1). In FCS, the autocorrelation function

of fluctuating fluorescence intensity is calculated and ana-

lyzed. It is most widely used to study diffusion. For applica-

tions where two or more species have to be resolved, like in

drug screening, a few other FFS methods have been devel-

oped that make use of molecular parameters other than dif-

fusion time.

Eighteen years after the first realization of FCS, photon-

count number histogram was introduced as an alternative to

correlation function for fluorescence fluctuation analysis (2),

rendering fluorescence brightness as a molecular parameter.

Nine years later, two independent research groups reported

of experiments on successful fitting of photon-count number

histograms (3,4). They have used different names for the

method, photon-counting histograms (PCH) and fluores-

cence intensity distribution analysis (FIDA), respectively.

The two approaches differ in the assumed shape of the spatial

brightness distribution (which influences the shape of the

theoretical count-number distribution) and in details of the

computation algorithm (which may affect the speed of

analysis but not the results). However, the two approaches

are similar in sharing the main physical assumption: that

fluorescence intensity emitted by a molecule is constant

during a counting time interval.

FIDA was developed to be applied in high-throughput

drug screening under a demand of short data-acquisition time

(,2 s) and online analysis. It has indeed been used suc-

cessfully for that purpose for years (5–7). In particular, it is

most appropriate in quantifying biological assays where a

single particle (such as vesicular particle) carries a great num-

ber of binding sites for a labeled ligand. In this case, the two

fluorescent species (receptor carrier and unbound ligand)

have a huge brightness contrast and are thus easily resolved.

Both PCH and FIDA are thus ideal tools for evaluating the

state of chemical equilibrium in such an assay type (6,8–10).

In cases of a modest brightness contrast, it makes sense to

use two parallel detection channels that monitor different

polarization or spectral components of fluorescence. Fitting a

joint histogram of photon-count numbers originating from

two different detectors (two-dimensional FIDA) (11) has

turned out to be an efficient analysis method (5,6,12–14).

Two other FIDA-based methods have been reported later

that distinguish molecules according to several molecular

characteristics: fluorescence intensity multiple distribution

analysis (FIMDA) according to diffusion time and brightness

(15), and fluorescence intensity and lifetime distribution

analysis (FILDA) according to brightness and lifetime (16).

Two-dimensional FIDA and FIMDA have been established

on the basis of the PCH algorithm, too (17,18). All the

above-mentioned methods constitute a family and share the

theory discussed in this article.
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It is known from FCS theory and experience that fluo-

rescence intensity of a molecule fluctuates significantly

within a counting time interval of PCH or FIDA (which is

typically 10–40 ms). First of all, the fluctuations occur due to
diffusion into and out of the monitored volume, and due to

transitions between the singlet (visible) and triplet (dark) elec-

tronic states. These two processes are routinely taken into

account in FCS. Starting in 2000, the assumption of constant

emission intensity of a molecule during a counting time in-

terval has been critically inspected. First, the second factorial

cumulant of photon-count number distribution could be

calculated as a function of the width of the counting time

interval (15). A better accuracy than that provided by the

second cumulant has been a want for PCH/FIDA and related

methods, but the mathematics for this have been absent. To

our knowledge, Monte Carlo method that has been applied in

photon arrival-time interval distribution (PAID) (19) is the

only successful approach in this respect so far. This cal-

culation method suffers from long calculation times and a

cosmetic problem: the random errors characteristic to Monte

Carlo approach.

This work was undertaken to investigate the effect of

intensity fluctuations during the counting time interval on the

shape of the count-number distribution. As the outcome, we

have succeeded in calculating the theoretical count-number

distribution as a function of the width of the counting time

interval, concentration, count rate per molecule, three profile

parameters, diffusion time, triplet state lifetime and popula-

tion, detector afterpulsing probability, and detector dead-

time.We shall demonstrate that many factors, in addition to the

brightness profile, significantly influence the count-number

distributions under conditions typical to FFS experiment. It

will be explained why and how a good fit quality in count-

number distributions can be nevertheless achieved when using

a simple theory that apparently ignores intensity fluctuations

during a counting time interval.

THEORY

Comparison of PCH and FIDA

This section compares the theory of PCH (3) and its later modification (20)

with that of FIDA (4). For simplification, we shall use a single terminology.

A common aspect of all above-mentioned theories is that they all make use

of the assumptions that:

1. Emission intensity of a molecule is a function of its translational

coordinates only.

2. Intensity fluctuations during a counting time interval are neglected.

Thus, the distribution of fluorescence intensity of a single molecule averaged

over a counting time interval is assumed to coincide with that of instant

intensity. Under given assumptions, count-number distribution from a

molecule in a closed volume can be described by the average of Poisson

distributions,

Pð1ÞðnÞ ¼ 1

V

Z
ðVÞ

PPoissonðn; qTBðrÞÞd3r; (1)

with PPoissonðn; �nnÞ ¼ ð�nnn=n!Þexpð��nnÞ. In Eq. 1, V is the size of the volume

where the molecule is enclosed, q is count rate per molecule in the focus, T is

width of the counting time interval, and B(r) is the spatial brightness dis-

tribution (known also as the observation volume profile, or point spread

function). Here and below throughout this article we use the convention that

the spatial brightness is unity in the exact focus. (This convention is useful

for theoretical calculations and their interpretation, but unusual in applica-

tions.) Eq. 1 is a special case of Mandel’s formula (21), with ðd3r=VÞ as a
probability that the molecule is in the given volume element. Poisson dis-

tribution alone expresses the probability distribution of the count number

under a constant light intensity.

The description of the shape of the spatial brightness function (to be

referred to in this article as the ‘‘brightness profile’’) is in fact the only part

where the reviewed two theory versions significantly differ. The other steps

involved may differ much in technical details and computational algorithms.

However, applying a common brightness profile would yield identical

count-number distributions.

In connection with two-photon excitation, the square of Gaussian-

Lorentzian profile for B(r) is the logical selection (3). It exactly matches the

squared intensity profile of an ideal focused TEM00 laser beam,

Bðr; zÞ ¼ 1

11
z

z0

� �2
" #2 exp � 2r

2

w
2

0 11
z

z0

� �2
" #

0
BBBB@

1
CCCCA: (2)

Here, r is the distance from the optical axis, z is the distance from the focal

plane, w0 is the waist radius of the brightness profile (here defined as the

distance on the focal plane from the optical axis where the emission intensity

has decreased by a factor of e2), and z0 is the distance from the focal plane

where the spot radius has increased by a factor of
ffiffiffi
2

p
.

A remarkable property of Eq. 2 is that under the assumptions 1 and 2,

above, neither of the parameters w0 and z0 is suited to serve as a profile

adjustment parameter that would affect the shape of the count-number

distribution. A single-molecule count-number distribution has been analyt-

ically expressed for the brightness profile given by Eq. 2 (see Eq. 15 of (3)).

Profile parameters contained in that formula simply represent a scaling

factor. However, the shape of the count-number distribution of a single

molecule only depends on molecular brightness. This conclusion can be also

drawn by studying the unitless characteristics of the profile (such as

gk [ ðmk�1
2 =mkm

k�2
1 Þ, where m-values denote profile moments). They are

independent of the parameters w0 and z0.

It is likely that this ideal brightness profile is closer to the real one in the

case of two-photon excitation compared to the one-photon excitation. In-

deed, in the case of one-photon excitation, a detection pinhole is a necessary

element of the optical setup. In the context of photon-count number histo-

grams, it serves as an additional source of spatial brightness distortions.

Contrary to the study establishing PCH (3), one-photon excitation has been

used in the study establishing FIDA (4). For calculations of the distribution

of the number of photon-counts from a molecule, the three-dimensional

spatial brightness distribution can be represented by its reduced form, a one-

dimensional function expressing the relationship between volume and

brightness. In reference (4), an empirical relationship between volume and

the logarithm of inverse brightness x[ lnð1=BÞ has been expressed as

dV

dx
¼ A0xð11 a1x1 a2x

2Þ: (3)

Here, a1 and a2 are shape adjustment parameters that are determined by

fitting a photon-count number histogram in a calibration experiment. A0 is a

scale factor related to the size of the observation volume.

When developing the mathematical model, fit quality of count-number

distributions was considered even more important than physical essence. A

physically reasonable model of the brightness profile would rather look like

ðdV=dxÞ ¼ A0

ffiffiffi
x

p ð11a1x1a2x
2Þ. Here, the first term would exactly
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describe a Gaussian profile and the terms with the adjustment parameters a1
and a2 would be considered corrections. However, Eq. 3 was selected

because it yields a better fit to count-number histograms. Later we shall

return to the question whether and why this was a good choice.

An attempt to apply PCH algorithm with an ideal (three-dimensional

Gaussian) brightness profile turned out to yield unsatisfactory fit quality

(20). In that work, most of the attention is concentrated on finding what the

true brightness profile looks like. Electromagnetic diffraction theory was

used that is a rather time-expensive means to calculate the three-dimensional

profile of the equipment. Still, using the calculated brightness profile, count-

number histograms could not be fitted well. However, when studying

moments of the calculated profile mj, it was realized that products j3/2mj are

approximately constant for j. 1. Theoretically, such products are constants

(independent of j) for the pure three-dimensional Gaussian profile. Thus, it

was concluded that the shape of the calculated profile might be represented

by a single parameter describing how much the first moment deviates from

the ideal value extrapolated from higher moments. This parameter was used

as a floating parameter when fitting count-number distributions. Fit quality

was found to be good. Fit quality was further improved when the second

moment of the profile was also adjusted by another floating parameter. Thus,

the modern version of PCH has introduced profile adjustment parameters,

like the original FIDA, only on a different mathematical basis. To what

extent the adjustment parameters describe the true brightness profile and to

what extent they express dynamic processes during the counting time

interval is a question to be answered below.

Theories distinguishing between static and
dynamic brightness

A step beyond the borders defined by assumptions 1 and 2, above, was taken

when introducing a method called fluorescence intensity multiple distribu-

tion analysis (FIMDA) (15). In FIMDA, a series of theoretical distributions

are fitted to a corresponding series of photon-count number histograms

collected simultaneously at different widths of the counting time interval. In

this way, FIMDA resolves fluorescent species based on both molecular

brightness and diffusion time. A key equation in this theory relates the

second factorial cumulant of photon-count number distribution with the

autocorrelation function of fluorescence intensity G(t) ¼ ÆI(0)I(t)æ � ÆIæ2,

K2ðTÞ ¼
Z T

0

dt1

Z T

0

Gðt2 � t1Þdt2: (4)

T denotes the width of the counting time interval, I is the detected

fluorescence intensity at time t, and Æ. . .æ denote ensemble average. This

equation can be applied to each species separately and is interpreted in terms

of the dependence of the apparent particle number cðTÞ ¼ K2
1ðTÞ=K2ðTÞ and

the apparent count rate per molecule q(T) ¼ K2(T)/TK1(T) on sampling time

T, where Kj(T) denotes the jth factorial cumulant of the count-number

distribution. An expression for G(t) was taken from the FCS theory, where it

has been derived for a three-dimensional Gaussian brightness profile (22,23).

Brightness of a molecule if averaged over a counting time interval is a

qualitatively different variable than the static spatial brightness. The form of

the distribution of the dynamic brightness was approximated by a modifi-

cation of Eq. 3, i.e., by a flexible empirical formula that was originally

designed for FIDA to approximate a non-Gaussian spatial distribution of

unknown shape. A single brightness distribution was applied to histograms

of different widths of the counting time interval.

Another highly sophisticated theory is covered by photon arrival-time

interval distribution (PAID) (19). PAID theory is based on simulation of a

high number of diffusion pathways of a single molecule and the conversion

of these random pathways into fluctuating intensities as functions of time.

Since the number of random paths is finite, the calculated distributions of

photon intervals or count numbers have a random noise. Nevertheless, the

algorithm can even be used for fitting experimental data, as long as the same

trajectories are used each time. This grants reproducibility of theoretical

curves. Scaling of time is a means to recalculate photon statistics at a dif-

ferent diffusion coefficient. This theory can easily be modified to take

account of other effects such as triplet-state induced fluctuations.

Master equations

From this section on, we will describe a new approach that is free of the

cosmetic problem of randomness. We will study a molecule in a given

closed volume, undergoing diffusion, singlet-triplet transitions, and emitting

photons that can be detected by an optical setup. PS(n,T,r) denotes the

probability that the studied molecule is in the singlet state, is located in point

r at the end of the counting interval, and has emitted n photons. PT(n,T,r)
expresses a similar probability, but with the studied molecule being in the

triplet state at the end of the counting time interval. In our model, we do not

distinguish between the ground and the excited state; in the singlet state, the

molecule is visible, whereas in the triplet state the molecule is dark. The

probability density of the triplet-to-singlet transition is constant (inverse

lifetime of the triplet state), whereas the probability density of singlet-to-

triplet transitions is proportional to laser intensity. Our starting point is the

Master equations, which is a system of differential equations describing the

evolution of the molecule:

@PSðn; T; rÞ
@T

¼ DDPSðn; T; rÞ1 1

tT
PTðn; T; rÞ

� kEðrÞPSðn; T; rÞ1 qEðrÞFðrÞ
3½PSðn� 1; T; rÞ � PSðn; T; rÞ�

@PTðn; T; rÞ
@T

¼ DDPTðn; T; rÞ � 1

tT
PTðn;T; rÞ

1 kEðrÞPSðn; T; rÞ: (5)

The first term on the right side describes diffusion, where D is diffusion

coefficient and D is the Laplace operator. The second term describes triplet-

to-singlet transitions, where tT is the lifetime of the triplet state. The third

one stands for singlet-to-triplet transitions, where k is the probability density

of singlet-to-triplet transitions exactly in the focus. The fourth term in the

first equation describes photon detection. In Eq. 5, we have distinguished the

excitation E(r) and the transmission F(r) profiles.
We call the theory outlined here and below as the Master equation (ME)

theory, as it is based on Master equations.

Statistics of occupation times for a
two-state model

In the first approach, the molecule under study is assumed immobile. Thus, it

is located in a point in space where intensity of the exciting light is constant.

We assume that the molecule emits light of a constant intensity when it is in

the singlet electronic state, and is invisible when in the triplet state. Thus, the

brightness integrated over a counting time interval is proportional to the time

that the molecule spends in the singlet state. Our problem is reduced to

calculation of the distribution of time spent in the singlet state.

In this section, we study a model system with two discrete states (1 and 2)

and random transitions between them with given rate constants k12 and k21.

We first assume that the system is initially in State 1; we are interested

in statistics of overall occupation times t1 and t2 that the system has spent

in States 1 and 2 out of the full time T ¼ t1 1 t2. It is the easiest to express

the probability of no transitions during time T:

PzeroðTÞ ¼ expð�k12TÞ: (6)

In cases when transitions occur, the distribution of time t1 is described by

probability density functions. Let us first derive an expression for the

probability density function for occupation time t1 corresponding to a given
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number (n) of transitions during time interval T, W(t1;n,T). For example,

with two transitions, there are three time intervals: from time zero until the

first transition t1a, from the first until the second transition t2, and from

the second until the end, t1b. There are two independent variables out of the

three; therefore we deal with the probability density of two independent

variables (e.g., t1a and t1b) which can be expressed as a product of the

following factors: the probability that no transition occurs during t1a; the

probability density of the first transition; the probability that no backward

transition occurs during t2; the probability density of the second transition;

and the probability that no forward transition occurs during t1b:

Wðt1a; t1b;2;TÞ ¼ expð�k12t1aÞk12expð�k21t2Þk21expð�k12t1bÞ:
(7)

It remains to integrate this expression over t1a (or t1b) that yields a probability

density of a single variable,

Wðt1;2;TÞ ¼ k12k21t1expð�k12t1� k21t2Þ: (8)

In the same way, one can derive expressions for any number of transitions.

In fact, we distinguish two cases, with odd and even number of transitions,

since they yield two different final states of the system. For an arbitrary odd

number of transitions (n ¼ 2s 1 1), the probability density function is

Wðt1;2s11;TÞ ¼ k12
ðk12k21t1t2Þs

ðs!Þ2 expð�k12t1� k21t2Þ: (9)

For an arbitrary positive even number of transitions, the corresponding

expression is

Wðt1;2s12;TÞ ¼ k12k21t1
ðk12k21t1t2Þs
s!ðs11Þ! expð�k12t1� k21t2Þ:

(10)

Now it remains to sum up contributions from all odd and from all even

numbers of transitions separately. One should recognize a power-series of

Bessel functions, yielding

Woddðt1;TÞ ¼ k12 expð�k12t1� k21t2ÞI0ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12k21t1t2

p Þ; (11)

Wevenðt1;TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12k21

t1
t2

r
expð�k12t1� k21t2ÞI1ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12k21t1t2

p Þ:
(12)

Note that I0 and I1 denote Bessel functions.

Naturally, one may interchange indexes 1 and 2 in the expressions of

this section, getting the solution for the case when the system is initially in

state 2.

Distribution of the time that a molecule spends
in the singlet electronic state

Now we may use Eqs. 6, 11, and 12 to express the distribution of the time

that an immobile molecule spends in the singlet state. As initial conditions,

we apply the steady-state occupation probabilities, pS ¼ kTS/(kTS 1 kST) and
pT ¼ kST/(kTS 1 kST). The analytic solution is

Fig. 1 illustrates the distribution of the fraction of time spent in the singlet

state for kST ¼ 0.125 3 106 s�1, kTS ¼ 0.5 3 106 s�1, and T ¼ 10 ms. This

set of parameters models a tethramethylrhodamine molecule with fixed

coordinates monitored by a fluorescence microscope. As a closer to an

experiment case, on Fig. 2, a distribution of the dynamic brightness is

graphed that involves not only a single but all possible coordinates of the

(immobile) molecule. One may conclude from visual inspection of the

graphs that singlet-triplet transitions are sufficient to cause significant

distortions in the shape of the count-number distribution, compared to the

corresponding pure profile-defined distribution.

By Eq. 13, we have described a detailed solution of the ME in a

special case of no-diffusion that may seem impractical. However, Eqs.

6, 11, and 12 will be used later when solving the ME in a more general

case.

Another special case: pure diffusion

Another special case of Eq. 5 is when the terms describing singlet-triplet

transitions are neglected. In this case, our search for analytical solutions has

been less successful, compared to the content of the previous section. We

have succeeded in numerical calculation of a limited number of moments of

the desired function. Details of the calculations will not be presented here

because the results are not used in the rest of our studies. However, as an

indirect outcome of pure diffusion studies, we stopped attempts to solve Eq.

5 analytically in the general case and concentrated our attention on numer-

ical algorithms.

Principles of the numerical algorithm

In the original model described by Eq. 5, spatial coordinates and time are

continuous variables. For numerical solution of Master equations, we

replace this model by another one that is better suited for computer

calculations. We assume that the molecule under study may have only a

finite number of locations that may be changed by random jumps between

neighbor locations in short time-steps of typically Dt¼ 0.1 ms. Note that the

time-steps of numerical calculations are very short compared to the width of

the counting time interval T. Instead of a straightforward Euclidean three-

dimensional spatial grid, we select a grid in two-dimensional cylinder

coordinates. This reduces the number of grid points tremendously.

Furthermore, the density of the grid need not be uniform, and it makes

sense to select the highest density in the focus. We have used a constant grid

step for the first few grid points, and a geometrically progressing grid step

for representing high-numeric coordinates (i.e., out-of-focus periphery).

Parameters of the grid (such as the initial step divided by the waist radius of

the beam, and the progressing factor) have been selected as a tradeoff

between calculation accuracy and speed. The results of calculations must not

significantly depend on grid parameters. We have used 36–40 grid points per

dimension, making ;1300–1600 grid points altogether.

We keep a careful track of the evolution of the probability distribution of

discrete variables, P(ir,iz,e,n). Here ir and iz are grid coordinates, e is

electronic state, and n is the number of photons already emitted by the

molecule. We start from time zero when no photons have been emitted. The

molecule is located in each grid point with the probability that is pro-

portional to the volume that the particular grid point represents. We recal-

culate the distribution in many time-steps, until the end of the counting time

interval is reached.

WðtS; TÞ ¼ kST
kST 1 kTS

expð�kTSTÞdðtsÞ1 kTS
kST 1 kTS

expð�kSTTÞdðT � tsÞ1 exp½�kSTtS � kTStT�

3
2kSTkTSI0ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSTkTStStT

p Þ
kST 1 kTS

1
½kSTtT 1 kTStS�

ffiffiffiffiffiffiffiffiffiffiffiffi
kSTkTS

p
I1ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSTkTStStT

p Þ
ðkST 1 kTSÞ ffiffiffiffiffiffiffi

tStT
p

� �
: (13)
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Spatial brightness distribution

For our calculations, we have selected the spatial brightness distribution of

Bðr;zÞ ¼ 1

11ðz=hz0Þ2
1

11ðz=z0Þ2

3exp � 2r
2

w
2

0½11ðz=z0Þ2�

 !
1Qðf1Þ: (14)

The second and the third factors on the right-hand side describe the ideal

intensity profile of a focused laser beam, while the first factor is a Lorentzian

approximation of the transmission function of a microscope with a pinhole.

The first term of Eq. 14 resembles the square of Gaussian-Lorentzian

function (Eq. 2), but there is an additional parameter h. It takes account of the

fact that along the optical axis, the excitation profile may have a different

characteristic length than the transmission profile.

By the term Q(f1) we have denoted a spatially undefined function that

contributes to the first moment of the profile (as a fraction f1) but not to the

higher moments. It takes account of fluorescence from peripheral parts of the

sample contributing to fluorescence above the ideal level defined by the first

term of Eq. 14. A similar approach has been used earlier (20), but in respect

to three-dimensional Gaussian profile. We have experienced that the first

term alone would not yield a good fit quality. This is the reason why we have

introduced the second term. We consider it as a kind of perturbation; but

details of the shape of the perturbation are unknown. We do not know how

adequately the second term describes deviations of the true profile from that

described by the first term, but it improves fit quality indeed. Artifacts due to

this term cannot be excluded, but it is not likely that their magnitude is high.

In our examples, the fraction f1 is typically 6%.

Note that we have defined the spatial brightness distribution as a product

of the excitation and the transmission profiles. It does not include the

saturation of fluorescence intensity due to uneven triplet population; these

effects are taken into account by other parameters of the model.

Precalculated data

To recalculate the distribution P(ir,iz,e,n) in a loop of time-steps, we need the

following data that characterize a single time-step. First, each grid point has

four neighbors where the molecule may jump to; thus, the four jump

probabilities have to be precalculated for each grid point. Secondly, for each

grid point and each pair of initial and final electronic state of the molecule,

the distribution of the photon-count number is precalculated.

The jump probabilities must fulfill the following conditions. First, the

mass center must be conserved. The distribution of a molecule that is located

in a particular grid point before a jump, must be centered on the original grid

point after the jump. (This condition is relaxed only at the borders of the

reservoir.) Secondly, the variance of the distribution after the jump is

determined by the diffusion coefficientD and is given by 2DDt in each of the

three spatial dimensions (i.e., in each Cartesian coordinate). In case of a

constant grid density using Cartesian coordinates, all jump probabilities

would be equal. However, the problem becomes more complicated in the

case of an uneven grid density and radial coordinates. For the axial

z-coordinate at the ith grid point, the two jump probabilities, up and down,

must fulfill the following set of equations (they are mathematical expressions

of the above-mentioned conditions):

PðupÞ
i ðzi11� ziÞ�PðdownÞ

i ðzi� zi�1Þ ¼ 0;

P
ðupÞ
i ðzi11� ziÞ21P

ðdownÞ
i ðzi� zi�1Þ2 ¼ 2DDt: (15)

The solution of this set of equations is

PðupÞ
i ¼ 2DDt

ðzi11� ziÞðzi11� zi�1Þ;

P
ðdownÞ
i ¼ 2DDt

ðzi� zi�1Þðzi11� zi�1Þ: (16)

In the radial r-coordinate, a set of equations similar to Eq. 15 can be written

down as

P
ðupÞ
i ðri11�riÞ�P

ðdownÞ
i ðri�ri�1Þ�

DDt

ri

¼ 0;

P
ðupÞ
i ðri11�riÞ21P

ðdownÞ
i ðri�ri�1Þ2 ¼ 2DDt; (17)

FIGURE 1 An exemplary distribution of the relative time that a mole-

cule spends in the singlet state. This graph is calculated for kST ¼ 0.125

3 106 s�1, kTS ¼ 0.5 3 106 s�1, and T ¼ 10�5 s. The distribution consists

of a continuous function plus two d-functions. The left d-function covers

an area of only 0.0013, which is the probability that the molecule is in

the triplet state throughout the entire counting time interval. The right

d-function covers an area of 0.229, which is a probability that the molecule

is in the singlet state all the time. Overall distribution is normalized to

unity.

FIGURE 2 Distribution of the average brightness in a counting time

interval accounting all possible coordinates of the molecule. Here both the

fraction of time that the molecule spends in the singlet state and spatial

coordinates of the molecule are random variables that determine the average

brightness, but the molecule is assumed to be immobile during the counting

time interval. The Y axes measure relative contribution to emitted intensity.

The distribution has been graphed for a case without singlet-triplet

transitions and for cases with singlet-triplet transitions at two different

widths of the counting time interval. The area under the first graph is unity,

while the two other graphs correspond to fluorescence of 6.5% lower

intensity. The three distributions are similar at low brightness values having

a singularity at zero brightness, but we have selected a scale for Y axes that

best demonstrates the difference between the three graphs.
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and the solution is

P
ðupÞ
i ¼DDt

3ri�ri�1

riðri11�riÞðri11�ri�1Þ
;

P
ðdownÞ
i ¼DDt

3ri�ri11

riðri�ri�1Þðri11�ri�1Þ
: (18)

From jump probabilities, one may calculate relative volumes that are

represented by each grid point. The ratio of volumes represented by two

neighbor grid points equals to the ratio of jump probabilities between them.

Relative volumes are needed when determining the initial probability

distribution of the molecule: the probability that a molecule is in a particular

grid point is proportional to the volume represented by the particular grid point.

Further, we precalculate photon-count number distributions emitted by the

molecule in a given grid point and a given pair of initial and final electronic

states. In calculations of count-number distributions during each time-step, time

is a continuous variable, in contrast to our model of diffusion. If we could omit

singlet-triplet transitions, the classical intensity of emission would be constant in

each grid point, equal to qB(ri,zj) where (ri,zj) are grid point coordinates. Any

count-number distribution in a time-step Dt would be Poissonian, with the mean

value of qDtB(ri,zj). However, we consider also singlet-triplet transitions. We

introduce variable u ¼ tS/Dt (which is the fraction of time spent in the singlet

state) and apply Eqs. 6, 9, and 10 for each initial state:

WSSðuÞ ¼ expð�kSTDtÞdðuÞ1Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSTkTSu

1�u

r
exp½�ðkSTu

1kTSð1�uÞÞDt�I1ð2Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSTkTSuð1�uÞ

p
Þ; (19a)

WSTðuÞ ¼ kSTDtexp½�ðkSTu1kTSð1�uÞÞDt�
3I0ð2Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSTkTSuð1�uÞ

p
Þ; (19b)

WTTðuÞ ¼ expð�kTSDtÞdð0Þ1Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSTkTSð1� uÞ

u

r
3exp½�ðkSTu1kTSð1�uÞÞDt�
3 I1ð2Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSTkTSuð1�uÞ

p
Þ; (19c)

WTSðuÞ ¼ kTSDtexp½�ðkSTu� kTSð1�uÞÞDt�
3I0ð2Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSTkTSuð1�uÞ

p
Þ: (19d)

Expressions above are pairwise-normalized, e.g.,
R 1
0
½WSSðuÞ1WSTðuÞ�du ¼ 1.

With each of the expressions in Eq. 19, we apply Mandel’s formula using u as

the integration variable. For example,

PSSðn;ri;zjÞ ¼
Z 1

0

WSSðu;ri;zjÞPPoissonðn;uqTBðri;zjÞÞdu:
(20)

We calculate the integrals of the type of Eq. 19 numerically. When using

1400 grid points, we precalculate 4 3 1400 count-number distributions

before launching the calculation of cumulative count-number distributions.

As an illustration, in Fig. 3 four count-number distributions are plotted that

have been calculated for a single grid point near the focus under a realistic

set of parameter values.

Calculation of a single-molecule
count-number distribution

After having precalculated the above described set of data, we can start

calculating time evolution of the distributions of count numbers and

electronic states in each grid point. At time zero, we set all count numbers to

zero. Initial distribution also concerns electronic states. As a good

approximation, we have used steady-state probability values in each grid

point without diffusion: PT ¼ ðkST=kST1kTSÞ;PS ¼ 1� PT:

The first and all consecutive time-steps are similar. First, because our

model assumes no movement in space during a time-step Dt, we calculate a
new count number and electronic state distribution for each grid point that

takes account of additionally detected photons and singlet-triplet transitions

during the time-step:

PðnewÞðir; iz;S;nÞ ¼+
n

j¼0

½PðDtÞ
SS ðir; iz; jÞPðir; iz;S;n� jÞ

1P
ðDtÞ
TS ðir; iz; jÞPðir; iz;T;n� jÞ�;

PðnewÞðir; iz;T;nÞ ¼+
n

j¼0

½PðDtÞ
ST ðir; iz; jÞPðir; iz;S;n� jÞ

1P
ðDtÞ
TT ðir; iz; jÞPðir; iz;T;n� jÞ�: (21)

Here, S and T denote singlet and triplet states, respectively. At the end of

each time-step, diffusion jumps occur:

It makes sense to keep the first term on the right-hand side of Eq. 22 positive;

in fact, this is the criterion for selection of the time-step Dt.
When the number of time-steps that correspond to the counting time have

passed, we sum up the count-number distributions from both final electronic

states in each grid point. The outcome is the photon-count number

distribution of a single molecule.

From single-molecule to overall
count-number distribution

It is possible to convert the photon-count number distribution of a single

molecule into an overall count-number distribution of many molecules using

the approach which uses a convolution of many single molecule distribu-

tions (3). We present here another conversion algorithm.

The probability distribution P(n;T,r) of photon-count numbers emitted by

a molecule located in point r at the end of the counting time interval T

already represents an average over all possible paths of the molecule that end

at r. The number of molecules in a volume element dV is Poisson-dis-

tributed,

Pðm;c;dVÞ ¼ ðcdVÞm
m!

expð�cdVÞ: (23)

PðnewÞðir; iz; e; nÞ ¼ ½1� pr;upðirÞ � pr;downðirÞ � pz;upðizÞ � pz;downðizÞ�Pðir; iz; e; nÞ
1 pr;upðizÞPðir�1; iz; e; nÞ1 pr;downðizÞPðir11; iz; e; nÞ
1 pz;upðizÞPðir; iz�1; e; nÞ1 pz;downðizÞPðir; iz11; e; nÞ:

(22)
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The number of photons emitted by a random number of molecules from a

volume element is

PdVðn;T;c;dVÞ ¼ +
N

m¼0

ðcdVÞm
m!

expð�cdVÞPðmÞðn;T;rÞ: (24)

Here P(m)(n;T,r) is the distribution of count numbers from m independent

molecules that are all in the same volume element by the end of the counting

time interval. This may be expressed as a m-fold convolution of P(n;T,r).
However, expressions with convolutions are clumsy and calculation of

convolutions is time-expensive; therefore, we avoid them. Let us select the

representation of generating functions now. Generally, the generating func-

tion of the distribution P(n) is defined as

GðjÞ ¼ +
N

n¼0

j
n
PðnÞ: (25)

The generating function of the distribution given by Eq. 24 can be expressed

as

Gðj;T;c;dVÞ ¼ +
N

n¼0

j
n +

N

m¼0

ðcdVÞm
m!

expð�cdVÞPðmÞðn;T;rÞ

¼ expð�cdVÞ +
N

m¼0

ðcdVÞm
m!

½Gðj;T;rÞ�m

¼ expfcdV½Gðj;T;rÞ�1�g: (26)

In the first step, we have used the property that the generating function of

m-fold convolution of a distribution equals the mth power of the generating

function of the distribution. In the second step, we have used the identity

+N
m¼0

ðxm=m!Þ ¼ ex.

We have denoted the generating function of P(n;T,r) by G(j;T,r).
However, it is useful to take into account that G̃ðj; T; rÞ ¼ Gðj; T; rÞ � 1 is

a generating function of a function P̃ðn;T; rÞ that is a modification of

P(n;T,r):

P̃ðn;T;rÞ ¼ Pðn;T;rÞ; n.0;

P̃ð0;T;rÞ ¼ Pð0;T;rÞ� 1: (27)

Now we may extend Eq. 19 to the case when all volume is considered. Since

all volume elements are independent sources of emission, the contributing

generating functions are multiplied. We get

Gðj;T;cÞ ¼ exp½c
Z
G̃ðj;T;rÞdV�: (28)

Note that
R
G̃ðj; T; rÞdV is the generating function of

R
P̃ðn; T; rÞdV. They

do not depend on the selection of the integration volume, provided the

volume is large enough to include all parts of space contributing to emission.

Fourier-transform is a special selection of the generating function. To

calculate the overall count-number distribution, we start with the calculation

of a function describing a single molecule,
R
P̃ðn;T; rÞdV. Afterwards, we

apply the Fourier-transform, apply Eq. 28, and finish with the reversed

Fourier transformation.

We have assumed a single fluorescent species above. If more than a

single species is involved, then their contributions are simply summed up in

the exponent on the right-hand side of Eq. 28.

Representation of generating functions has been a cornerstone when

deriving theoretical expressions and developing calculation algorithms for

FIDA (3), two-dimensional FIDA (11), FIMDA (15), and FILDA (16).

Corrections for afterpulsing and dead-time
of the detector

Distortions in photon-count number distributions due to nonideal detectors had

been studied long before the first fluorescence fluctuation experiments (24,25).

Such distortions have an impact in FFS, too; in particular, the dead-time

distortions are stronger at higher count rates (26). Afterpulsing and dead-time

are expected to have a strong impact on the shape of the count-number

distribution of extremely short photon-counting time intervals, because the

characteristic time of these processes is in the range of tens of nanoseconds.

Afterpulsing denotes a nonideal behavior of the detector where an

artificial count is generated soon after a real photon pulse. This occurs with a

probability that is almost independent of variations in the count rate but

characteristic for a given detector. According to manufacturer’s specifica-

tion, the afterpulsing probability of the detector SPCM-AQR (EG&G,

Vaudreuil, Quebec, Canada) that we use is 0.3%. If we ignore the delay

between the original and the artificial pulse then it makes no difference

whether to apply afterpulsing corrections to the single-molecule or multi-

molecule count-number distribution. Otherwise, it is preferable to apply it

when information about the intensity fluctuations within a counting time

interval is available, i.e., when we calculate a single molecule count-number

distribution. In this study, we have ignored the delay between the original

and artificial pulse and applied afterpulsing correction to the overall theo-

retical distribution. Provided the number of photon-counts is n and the

probability that a photon-count is followed by an artificial count is q, the

number of afterpulses j follows a binomial distribution,

Pbinomialðj;n;qÞ ¼C
j

nq
jð1�qÞn�j

: (29)

As a correction formula, the distribution of true photon-counts P0(n) and the

distribution of counts including afterpulses Pc(n) are related by a convolution,

PcðnÞ ¼+
n

j¼0

P0ðn� jÞPbinomialðj;n� j;qÞ: (30)

Dead-time of our photon detector is 50 ns, according to producer’s specification.

Compared to afterpulsing, dead-time correction is more difficult in theory. In this

study, we have applied an approximated formula,

PcðnÞ ¼+
N

j¼0

P0ðn1 jÞPbinomial j;n1 j;
ðn1 jÞtD

T1ðn1 jÞtD

� �
: (31)

Our approximation means that each count number is redistributed by a bi-

nomial distribution, Eq. 29, with the probability of missing a count depen-

ding on the original count number.

Dead-time causes a drop in the count rate. If we applied Eq. 31 without a

modification to a series of count-number distributions corresponding to dif-

ferent T, then the mean count rate after the correction would not be constant

but a function of sampling time. To keep all count-rates after the corrections

equal, we have replaced tdead in Eq. 31 by effective dead-time as a function

FIGURE 3 An exemplary set of photon-count number distributions cal-

culated for a grid point near the focus and time-step of 0.0690 ms. A set of

parameter values that are close to those of the fit curve (that will be described

later) has been used in this example.
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of sampling time. The dead-time of the shortest counting time interval T0 is

considered as a primary model parameter, whereas effective dead-time at

any other sampling time T is adjusted to yield the same count rate.

If we graphed the calculated photon-count number distributions, then one

could hardly notice differences between the results when using different

models. It is more informative to plot a characteristic of the shape of the

count-number distribution, such as g3 ¼ ðK2
2=K1K3Þ, as a function of

sampling time. (Ki denotes the ith factorial cumulant of the count-number

distribution.) A better known characteristic of count-number distributions is

the apparent count-rate per molecule, qa ¼ ðK2=TK1Þ. Fig. 4 illustrates how

the graphs of qa and g3 versus the width of the counting-time interval T are

modified when singlet-triplet transitions, dead-time, and afterpulsing are

taken into account. Diffusion time is kept at 30 ms in all cases.

TEST EXPERIMENTS

We have used a standard FCS fluorescence microscope

(Insight, Evotec Technologies, Hamburg, Germany) to study

a solution of tetramethylrhodamine in water. The microscope

had 403 water immersion objective with numeric aperture

of 1.15. The diameter of the confocal pinhole was 30 mm,

and the excitation source was a green HeNe laser at 544-nm

wavelength. We have studied a series of three samples at

different concentrations (with mean numbers of molecules

per confocal volume of 0.2–2.0), and a single sample at three

different excitation powers. Overall count rates vary from 25

to 269 kHz in experiments at different concentrations and

from 42 to 98 kHz in experiments at different excitation

power. The excitation power was varied with the help of

neutral density filters by the factors of 1.72 and 2.68. Dura-

tion of each measurement was 100 s, and each measurement

was repeated eight times. The first measurement of each

series was repeated at the end of the series. This way we have

estimated that drift of the concentration is below 2%, and

drift of the laser power has been ,2.5%.

In experiments, we have saved the photon-count numbers

in 2-ms counting intervals, using an ISA-bus counter card

built at Evotec. Raw data could be later converted into a set

of histograms, each corresponding to a specific counting

time interval of 2, 4, 6, 8, 10, 12, 16, 20, 30, 40, 50, and

60 ms. In parallel, FCS data were acquired.

FCS data were fitted using a three-dimensional Gaussian

model for the intensity profile. We do not think it is the

appropriate model, but this is, by far, the most widely used

model in FCS. Thus, we have applied the following formula

to fit the normalized autocorrelation function of photon

detection:

ÆIð0ÞIðtÞæ
ÆIæ2

¼ 11
1

mð11aÞ2
11

k
ðaÞ
ST

kTS
exp½�ðkTS1k

ðaÞ
STÞt�

11
t

tD

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

t

s
2
tD

r
0
BB@

1
CCA:

(32)

Here, m is the mean number of molecules per confocal

volume, a is the ratio of constant background to fluorescence

intensity, k
ðaÞ
ST is the apparent singlet-to-triplet rate constant,

tD is the diffusion time, and s is longitudinal/transverse axial
ratio of the brightness profile. Furthermore, from the overall

fluorescence count rate and the estimate of m, one may

calculate the apparent count rate per molecule,

qa ¼ ÆIæð1�aÞ
m

: (33)

However, the apparent count-rate per molecule is numeri-

cally different from the count rate of a molecule exactly in

the focus (r ¼ 0). Indeed, the overall fluorescence count rate

can be expressed as the product of concentration, count rate

in the focus, and the first moment of the profile, cq(0)m1,

whereas the number of molecules in the confocal volume is

cm2
1=m2: Brightness in the focus is greater than qa by a factor

of m1/m2, which is 2
ffiffiffi
2

p
for the three-dimensional Gaussian

model.

FIGURE 4 Apparent count-rate per molecule (top panel) and a shape

characteristic of count-number distribution g3 (bottom panel) versus

sampling time calculated for four different sets of parameters. (Dotted

line) A model taking account of diffusion but no singlet-triplet transitions,

no afterpulsing, and no dead-time. (Solid line) The model taking account of

diffusion and singlet-triplet transitions. (Dashed line) The model taking

account of diffusion, singlet-triplet transitions, and detector afterpulsing.

(Dash-and-dot line) The model taking account of diffusion, singlet-triplet

transitions, and dead-time. Values of parameters are selected close to the

corresponding values of the final fit curve to experimental data, except the

background count-rate is set to zero.
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Furthermore, the amplitude of the triplet term of the

correlation function (k
ðaÞ
ST=kTS in Eq. 32) is not a straightfor-

ward triplet/singlet population ratio. Rather, the population

ratio is a function of spatial coordinates, and amplitude of the

triplet term is a certain average over spatial coordinates. Con-

tribution to correlation function from a volume element is

proportional to the square of brightness, therefore

k
ðaÞ
ST ¼

R
kSTðrÞB2ðrÞd3rR

B
2ðrÞd3r

¼ kSTð0Þ
R
B

3ðrÞd3rR
B

2ðrÞd3r
:

Assuming a three-dimensional Gaussian profile, the conver-

sion formula is

kST ¼ 3
ffiffiffi
3

p

2
ffiffiffi
2

p kðaÞST : (34)

Now it remains to express the brightness characterizing a

molecule in the focus and in the singlet state,

q¼ 2
ffiffiffi
2

p kST1kTS
kTS

qa: (35)

Note that other profile formulas would yield other values of

the numerical coefficients.

We have not corrected FCS data against afterpulsing and

dead-time, except that in fitting we have ignored the corre-

lation function at delay times below 0.4 ms. (Distortions are
tremendous between time zero and ;0.1 ms.) In fact, count

rates are affected rather modestly. Under conditions of exper-

iments described below, afterpulsing is expected to increase

the count rate by 0.33%, whereas dead-time is expected to

reduce count rate by 0.5% at the lowest excitation power up

to 1.1% at the highest one.

The results of FCS fitting serve as reference data to

evaluate the results of fitting the series of count-number

histograms.

When fitting count-number histograms, we have applied a

number of different models. A model that has been used as a

reference is the original FIMDA model as described in the

year 2000 (15). We denote it FIMDA-2000. The ME-theory

described above has been used in its full length (ME-FIMDA),

but we have applied it also without afterpulsing and dead-

time corrections, as well as on the basis of three-dimensional

Gaussian brightness profile modified by f1-parameter.

Whatever model was used for fitting the set of histograms,

fit quality has been evaluated using the estimator

x
2 ¼

+
i

Wi½PðEÞ
i �PðTÞ

i �2

N
ðEÞ ; (36)

where i is index of the data point (each corresponding to a

different histogram and/or different count number), Wi ¼
M=ðPðTÞ

i 11=MÞ is weight of a particular data point, PðEÞ
i is a

data point on a histogram (an estimate of probability), P
ðTÞ
i is

the corresponding data point of the fit function, N(E) is the

sum of the length of histograms, and M is the number of

counting time intervals per experiment (which is different for

different histograms). The value of x2 as defined above is

slightly below unity for a good fit quality (the value of 0.75

has been obtained when fitting simulated data), and much

above unity for a poor fit quality.

RESULTS

The series of measurements at different concentrations but a

single excitation power was undertaken as a test of reason-

ability of the applied models and theories: ideally, fitting

should yield estimates of brightness and diffusion time that

are independent of the sample concentration. All three methods

that were applied (FCS, FIMDA-2000, and ME-FIMDA)

passed this test well. The most remarkable difference is the

fit quality between FIMDA-2000 and ME-FIMDA, but this

difference is also represented in the measurement series on a

single sample but varying the excitation power. This second

series has a number of other remarkable results too; therefore,

we shall describe its results in detail.

Fit quality when fitting a series of
count-number histograms

The value of x2 as a quantifier of the fit quality significantly

depends on the excitation power, but even more significantly

on the model that is used in fitting. On Fig. 5, the mean value

of x2 is plotted against the excitation power for FIMDA-

2000 (as described in (15)) and ME-FIMDA with detector

afterpulsing and dead-time corrections (as described in this

article). In both cases, some parameters of the model of

identical or a similar meaning were fixed in fitting. Back-

ground count rate was fixed to 0.333, 0.395, or 0.470 kHz,

depending on the excitation power; these values were

FIGURE 5 Fit quality parameter x2 for measurements at different

excitation power (X axis) and two different models. The lowest power of

excitation has been selected as a unity; it corresponds to ;60 mW power

of the laser beam focused on the sample. To our estimation, this yields a

525-kHz count-rate from a tetramethylrhodamine molecule if in the singlet

state and exactly in the focus.
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determined from measurements on pure water. In FIMDA-

2000, the axial ratio was fixed to the mean value from fitting

FCS data; this is 5.6, 5.8, and 6.3 for the lowest, medium,

and highest excitation power, correspondingly. Correspond-

ingly, in ME-FIMDA, the ratio z0/w0 was fixed to a rather

arbitrarily selected value 2.5. (Fit quality only very weakly

depends on this parameter.) Lifetime of the triplet state was

fixed to 2.2 ms, which is a mean value obtained by FCS

fitting. Afterpulsing probability has been fixed to 0.0033 and

dead-time to 0.039 ms. Both these values were estimated

from fitting count-number histograms measured under con-

stant illumination of the detector, using the same formulas

with the same approximations as when correcting theoretical

count-number distributions for fluorescence. At the end,

FIMDA-2000 and ME-FIMDA had an equal number of free

parameters in fitting: number of molecules, specific bright-

ness, diffusion time, population of the triplet state, and two

adjustment parameters of the brightness profile.

As an additional illustrator of the significant improvement

of the fit quality by ME-FIMDA compared to FIMDA-2000,

on Figs. 6 and 7 residuals of fitting are graphed corresponding

to the two models. In fact, each individual histogram can be

perfectly fitted by FIMDA-2000, but this model is not well

suited to fit the full series of histograms simultaneously. On

Fig. 8, the histograms and their fit functions are characterized

by functions g3(T). After inspecting this graph, it is clear that
the assumption of FIMDA-2000 that this shape characteristic

is independent of T is not supported by experimental data,

whereas ME-FIMDA is a theory that can describe the

experimental dependence g3(T) more adequately.

One may ask what is important in the model to achieve a

good fit quality. To answer that question, we have applied a

few other models than FIMDA-2000 and ME-FIMDA for

fitting. First, we have applied afterpulsing and dead-time

corrections in connection with FIMDA-2000, but this has not

improved fit quality. Instead, the value of x2 increased by a

factor of ;1.3. Next, we have applied ME-FIMDA without

afterpulsing and dead-time corrections. Historically, this was

FIGURE 6 Weighted residuals of fitting a set of count-number histograms

using FIMDA-2000 theory (15). The interval between horizontal lines is

worth six units of standard deviation. Residuals of the six histograms that are

graphed with solid circles are characterized by x2 above 2.

FIGURE 7 Weighted residuals of fitting of the set of count-number his-

tograms using the theory outlined in this article and the model with diffusion,

singlet-triplet transitions, afterpulsing, and dead-time.

FIGURE 8 A characteristic of the shape of photon-count number dis-

tributions, g3, as a function of sampling time. (Circles) Experimental data.

(Dotted line) The best fit distributions when using FIMDA theory. (Dashed

line) The best fit distribution when using the theory outlined in this article

and the model with diffusion and singlet-triplet transitions, but assuming an

ideal detector. (Solid line) The best fit distribution by the theory of this article
and the model with diffusion, singlet-triplet transitions, afterpulsing, and

dead-time.
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our first attempt to apply the ME-FIMDA approach. Com-

pared to FIMDA-2000, the value of x2 had decreased from

3.0 to 1.6. As the worst model but still worth mentioning, we

have applied the ME-FIMDA approach but in connection

with the three-dimensional Gaussian profile (with f1-modi-

fication) instead of Eq. 14. In this case, we have got values of

x2 of ;60 and above.

In summary, all three aspects—sufficiently adequate bright-

ness profile, account of molecular dynamics during the count-

ing time interval, and corrections for detector nonideality—are

responsible for a good fit quality of our ME-FIMDA model.

Estimated mean number of molecules

On Fig. 9 the estimated mean number of molecules per

confocal volume is plotted as a function of excitation power

for FCS as well as for ME-FIMDA. In both cases, confocal

volume is defined as

V ¼ ðRBðrÞdVÞ2R
B

2ðrÞdV ;

but in the context of the particular FCS model, B(r) is the
profile distorted by saturation due to singlet-triplet transi-

tions, while in the context of ME-FIMDA, B(r) is the unsat-
urated profile. To our understanding, this is the reason why

the numerical value of the mean particle number estimated

by FCS significantly depends on excitation power, while the

dependence is at least three times weaker for ME-FIMDA. It

should be pointed out here that this difference is not a sole

property of the ME-approach described in this article: a more

adequate FCS model taking account of profile distortions

(27,28) might yield similar results as well.

Diffusion time

We have got qualitatively similar results when plotting

diffusion time instead of the mean number of molecules (Fig.

10): FCS-estimated values significantly increase with excita-

tion power, whereas ME-FIMDA yields a remarkably weaker

dependence. A comment from the previous section is valid

here again: if a better FCS model was applied, then its results

would look more reasonable, too.

Population ratio of the triplet and the
singlet states

Because the rate of singlet-triplet transitions is proportional

to excitation intensity, although molecules leave triplet-state

at a rate independent of excitation intensity, it is expected

that the ratio of populations of the two states is proportional

to the excitation power. This is indeed so if we plot corre-

sponding results of fitting by the ME-FIMDA model; see

Fig. 11. However, FCS data are shifted up (roughly by

a constant). According to our interpretation, this is an artifact

due to a bad FCS model. The triplet term is partly compen-

sating for an inaccurate shape of the diffusion term. This

shortcoming of the three-dimensional Gaussian FCS model

has been studied and described in detail before (29).

FIGURE 9 Number of molecules per confocal volume estimated from

measurements at different excitation power. FCS and ME-FIMDA data have

been plotted. Dashed lines to guide the eye.

FIGURE 10 Diffusion time estimated from measurements at different ex-

citation power. FCS and ME-FIMDA data have been plotted. Lines are linear

regression curves.

FIGURE 11 Triplet/singlet population ratio at r ¼ 0 estimated from

measurements at different excitation powers. FCS and ME-FIMDA data

have been plotted. Lines are linear regression curves.
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Molecular brightness

So far, we have presented results that have been reasonable,

strongly supporting the model of ME-FIMDA. Results

described in this section do not belong directly to this class.

On Fig. 12, molecular brightness versus excitation power is

plotted. Since the data we present refer to brightness of the

molecule in the singlet state (i.e., data are corrected for time

that is spent in the triplet state), one might expect a propor-

tional dependence of estimated values on excitation power.

However, brightness grows slower with excitation than ex-

pected. This concerns both ME-FIMDA and FCS data. The

fact that numerical values determined by FCS are lower by a

factor of approximately two is related to the numerical coef-

ficient standing in Eq. 35: the FCS model assumes that it equals

2
ffiffiffi
2

p
, whereas ME-FIMDA model estimates it to be ;4.9.

We are not very sure about the reason of the nonpropor-

tional relationship. It is likely that mechanisms other than

singlet-triplet transitions are partly responsible for the overall

intensity saturation, such as saturation of the singlet excited

state.

DISCUSSION

In earlier studies, the theoretical count-number distributions

have been expressed as functions of mean particle numbers,

mean count-rates per molecule, and shape parameter(s) of

the spatial brightness function. Here, a theory has been in-

troduced taking account also of diffusion time, singlet-triplet

transition parameters, afterpulsing probability, and dead-

time of the detector.We have demonstrated that under experi-

mental conditions typical to FCS studies, all four additional

physical mechanisms have a significant influence on count-

number distributions. At this point, it is worth discussing

how and why in the earlier studies where the relevant pro-

cesses have been ignored, a rather good fit between a count-

number histogram and a theoretical curve has been achieved.

We think that the basic reason for a good fit quality has

been that the model describing the spatial brightness profile

has involved adjustment parameter(s). In fact, the adjustment

parameters of the brightness profile serve as a means to com-

pensate for the absence of some other physically relevant

processes in the model. The fact that the profile parameters

describe more than just the profile became very obvious

when fitting a series of histograms corresponding to different

sampling times (15).

An important outcome of this study is the realization that

under typical conditions of fluorescence fluctuation exper-

iments, diffusion, singlet-triplet transitions, afterpulsing, and

dead-time are all significant determinants of the count-number

distribution. It seems that attempts to derive analytical ex-

pressions for the count-number distributions are fruitless, but

numerical methods are of a practical value.

A drawback of this study is a low speed of the introduced

calculation algorithm. Fitting a series of count-number distri-

butions lasts tens of minutes. We have presented a theory

that has been successfully tested in first experiments, but it is

not yet a calculation algorithm suited for high throughput

applications. Slow calculation is reported to be an issue in

Monte Carlo calculations of PAID, too (19). Presently we

believe that further modification of calculation algorithms

will much more efficiently reduce calculation times than the

steady increase in the speed of computers.

A message of this study is that simple theories, which

ignore the intensity fluctuations during counting time interval,

can be successfully applied, but attempts to use the true spatial

brightness function may turn out even less fruitful than

representing the function by an empirical formula. Parameters

of the apparent brightness profile are, in fact, functions of a

number of different physical properties of both the equipment

and the sample. In a number of cases, a simple theory is good

enough for data analysis, but not always. Simultaneous fitting

of a series of count-number histograms is an example when

profile-driven theories are unsatisfactory. In these cases, the

theory introduced here is particularly useful.

In the approach that we have introduced, the theoretical

curve is calculated numerically. Generally, numeric calcu-

lation of the fit curve is slower and more sophisticated com-

pared to fitting data to analytical formulas, but it has its

favorable properties, too. For example, our approach can be

applied in connection with arbitrary brightness profiles. Thus,

it is applicable even in cases of rather dirty brightness pro-

files—nonideal profiles seem to be a characteristic property

of STED, for example (30).

The authors gratefully acknowledge Christian Eggeling and Jürgen Müller

for critical reading of the manuscript. We owe thanks to reviewers for

valuable comments that have stimulated a significant extension of the ex-

perimental part of the original manuscript.

FIGURE 12 Count-rate per molecule in the singlet state at r¼ 0 estimated

from measurements at different excitation powers. FCS and ME-FIMDA data

have been plotted. Lines represent linear functions through data points of the

lowest excitation power.
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5. Haupts, U., M. Rüdiger, S. Ashman, S. Tuconi, R. Bingham, C.
Wharton, J. Hutchinson, C. Carey, K. J. Moore, and A. J. Pope. 2003.

Single-molecule detection technologies in miniaturized high-through-
put screening: fluorescence intensity distribution analysis. J. Biomol.
Screen. 8:19–33.
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