
Journal of Computational and Applied Mathematics 153 (2003) 321–330
www.elsevier.com/locate/cam

Integrable systems on the lattice and orthogonal
polynomials of discrete variable
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Abstract

Some particular examples of classical and quantum systems on the lattice are solved with the help of
orthogonal polynomials and its connection to continuous models are explored.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, there is an increasing interest on discrete models in classical and quantum physics.
Numerical calculations use computational technics to solve di3erential equations [3]. Lattice 8eld
theories have become a very powerful tool to avoid in8nities in perturbative methods, and to obtain
exact solutions of the 8eld equations [8]. Ponzano–Regge calculus introduced in gravitational 8eld is
equivalent to Penrose spin network that discretizes riemannian manifolds [1]. Statistical mechanics
has been working from the beginning with lattice approximation.

The orthogonal polynomials of discrete variable [9] o3ers a new approach to these models. They
are exact solutions of di3erence equations from which raising and lowering operators, eigenvalue
equation, symmetries and constant of motion can be calculated. If a physical problem is not given
in a discrete form, this can be guessed if we know the di3erential equation of some orthogonal
polynomial which is the continuous limit of the di3erence equation.

We present some simple examples of discrete models in classical and quantum systems, that can
be solved by the above method. In the last case, special care has to be taken in the construction of
Hilbert space when the basis are the orthogonal polynomials of discrete variables.
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2. Orthogonal polynomials of discrete variable

A polynomial of hypergeometric type Pn(x) of discrete variable x satis8es two fundamental rela-
tions from which one derives raising and lowering operators [7]:

(i) Di3erence equation:

�(x)�∇Pn(x) + �(x)�Pn(x) + �nPn(x) = 0; (1)

where �(x) and �(x) are polynomials of, at most, second and 8rst degree, respectively, �(∇) are
the forward (backward) operators and �n is the eigenvalue corresponding to the eigenfunction
Pn(x).

(ii) Three term recurrence relations:

xPn(x) = 	nPn+1(x) + 
nPn(x) + �nPn−1(x): (2)

(iii) Raising operator

�(x)∇Pn(x) =
�n

n�′n
�n(x)Pn(x) − �2n

2n
Pn+1(x); (3)

where

�n(x) = �(x + n) + �(x + n) − �(x):

(iv) Lowering operator

(�(x) + �(x))�Pn(x) =
[
−�n

n
2n + 1
�2n+1

�(x) − �n − �2n

2n
(x − 
n)

]
Pn(x)

+
�2n

2n
�nPn−1(x): (4)

These polynomials are orthogonal with respect to the weight function (x), particular examples
of which are the Kravchuk, Meixner, Charlier, and Hahn polynomials.

From the orthogonal polynomials of discrete variable we can construct the corresponding orthonor-
mal functions of discrete variable, by the de8nition

�n(x) = d−1
n

√
(x)Pn(x); (5)

where dn is some normalization constant. They satisfy

(i) Di3erence equation√
(�(x) + �(x))�(x + 1)�n(x + 1) +

√
(�(x − 1) + �(x − 1))�(x)�n(x − 1)

−(2�(x) + �(x))�n(x) + �n�n(x) = 0: (6)

(ii) Three term recurrence relation:

�2n

2n
	n

dn+1

dn
�n+1(x) +

�2n

2n
�n

dn−1

dn
�n−1(x) +

�2n

2n
(
n − x)�n(x) = 0: (7)
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(iii) Raising operator

L+(x; n)≡
[
�n

n
�n(x)
�′n

− �(x)
]
�n(x) +

√
(�(x − 1) + �(x − 1))�(x)�n(x − 1)

=
�2n

2n
	n

dn+1

dn
�n+1(x): (8)

(iv) Lowering operator

L−(x; n)≡
[
−�n

n
�n(x)
�′n

+ �n +
�2n

2n
(x − 
n) − �(x) − �(x)

]
�n(x)

+
√

(�(x) + �(x))�(x + 1)�n(x + 1) =
�2n

2n
�n

dn−1

dn
�n−1(x): (9)

The di3erence equation (i) written in the form H (x; n)�n(x) = 0, can be factorized with the help
of the raising and lowering operators:

L−(x; n + 1)L+(x; n) = �(n) + u(x + 1; n)H (x; n); (10)

L+(x; n)L−(x; n + 1) = �(n) + u(x; n− 1)H (x; n + 1); (11)

where

�(n) =
�2n

2n
�2n+2

2n + 2
	n�n+1; u(x; n) =

�n�n(x)
n�′n

− �(x):

3. The quantum harmonic oscillator of discrete variable

We start from the orthogonal polynomials of a discrete variable, the Kravchuk polynomials k(p)
n (x)

and the corresponding orthonormal Kravchuk functions [6]

K (p)
n (x) = d−1

n

√
(x)k(p)

n (x); (12)

where d2
n = [N !=n!(N − n)!](pq)n is a normalization constant, (x) = [N !pxqN−x=x!(N − x)!](pq)n is

the weight function, with p¿ 0; q¿ 0; p + q = 1; x = 0; 1; : : : ; N − 1.
From the di3erence equation√

pq(N − x)(x + 1)K (p)
n (x + 1)

+
√

pq(N − x + 1)xK (p)
n (x − 1) + [x(p− q) − Np + n]K (p)

n (x) = 0 (13)

and the recurrence relation√
pq(N − n)(x + 1)K (p)

n+1(x)

+
√

pq(N − n + 1)nK (p)
n−1(x) + [n(q− p) + Np− x]K (p)

n (x) = 0; (14)
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we construct raising and lowering operators

L+(x; n)K (p)
n (x) = pq(x + n− N )K (p)

n (x)

+
√

pq(N − x + 1)xK (p)
n (x − 1) =

√
pq(N − n)(n + 1)K (p)

n+1(x); (15)

L−(x; n)K (p)
n (x) = pq(x + n− N )K (p)

n (x)

+
√

pq(N − x)(x + 1)K (p)
n (x + 1) =

√
pq(N − n + 1)nK (p)

n−1(x): (16)

As in the general case, these operators factorize the di3erence equation

L+(x; n− 1)L−(x; n) = pq(N − n + 1)n + pq(x + n− 1 − N )H (x; n); (17)

L−(x; n + 1)L+(x; n) = pq(N − n)(n + 1) + pq(x + n + 1 − N )H (x; n): (18)

In order to justify the name of quantum oscillator of discrete variable we substitute x = Np +√
2Npqs, and take the limit N → ∞ in the former expressions. We get

K (p)
n (x) →

√
1

2nn!�
e−s2=2Hn(s) ≡  (s); (19)

where Hn(s) is the Hermite polynomial of continuous variable. The di3erence and recurrence relations
for the Kravchuk functions becomes in the limit the di3erential and recurrence relations for the
normalized Hermite functions  (s) which are the solution of the quantum harmonic oscillator.

In the limit the raising and lowering operators becomes the creation and annihilation operators

1√
Npq

L+(x; n)K (p)
n (x) →

N→∞
1
2

{
s− d

ds

}
 n(s) ≡ a+ (s); (20)

1√
Npq

L−(x; n)K (p)
n (x) →

N→∞
1
2

{
s +

d
ds

}
 n(s) ≡ a (s): (21)

The commutator of the raising and lowering operators are closed under the SO(3) algebra.

1
Npq

[L; L+]K (p)
n (x) =

(
1 − n

j

)
K (p)

n (x) ≡ L3K (p)
n (x); (22)

which in the limit becomes [a; a+] (s) =  (s).
Similarly, the anticommutation relation of the raising and lowering operators becomes in the limit

the Hamiltonian of the quantum oscillator

1
Npq

[L; L+]K (p)
n (x) =

1
j

(j(j + 1) − (j − n)2)K (p)
n (x)

→ (aa+ + a+a) n(s) = (2n + 1) n(s): (23)



M. Lorente / Journal of Computational and Applied Mathematics 153 (2003) 321–330 325

4. The hydrogen atom of discrete variable

We de8ne the orthonormal Meixner functions [6]

M (�;�)
n (x) ≡ d−1

n

√
1(x)m(�;�)

n (x); (24)

where m(�;�)
n (x) are the Meixner polynomials,

dn =
n!"(n + �)

�n(1 − �)�"(�)
; 1(x) =

�x"(x + � + 1)
"(x + 1)"(�)

and �; � are real constants 0¡�¡ 1; �¿ 0.
They satisfy the orthogonality condition∑

M (�;�)
n (x)M (�;�)

n′ (x)
1

�(x + �)
= $nn′

and the following properties:

(i) Di3erence equation√
�(x + �)(x + 1)(x + �)

x + � + 1
Mn(x + 1)

+
√

�(x + �)xMn(x − 1) − [�(x + �) + x − n(1 − �)]Mn(x) = 0: (25)

(ii) Recurrence relation

−
√

�(n + �)(n + 1)Mn+1(x) −
√

�(n + �− 1)nMn−1(x)

+ (�x + �n + �� + n− x)Mn(x) = 0: (26)

(iii) Raising operator

L+(x; n)Mn(x) =−�(x + � + n)Mn(x) +
√

�(x + �)xMn(x − 1)

=
√

�(n + �)(n + 1)Mn+1(x): (27)

(iv) Lowering operator

L−(x; n)Mn(x) =−�(x + � + n)Mn(x) +

√
�(x + �)(x + 1)(x + �)

x + � + 1
Mn(x + 1)

=−
√

�(n + �− 1)nMn−1(x): (28)

Notice that we have omitted, for the sake of brevity, the superindices (�; �) in Mn(x).
In order to make connection between the Meixner functions of discrete variable and Laguerre

functions of continuous variable we substitute � = 	 + 1, � = 1 − h, x = s=h in the former and take
the limit h → 0, x → ∞, hx → s;

M (�;�)
n (x) →

√
n!

"(n + 	 + 1)
e−ss	+1L	

n(s) ≡  	
n (s): (29)
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We also take also the limit of the following expressions:

(i) Di3erential equation

 	′′
n (s) +

[
&
s
− 1

4
− 	2 − 1

s2

]
 	
n (s) = 0; & = n +

1
2

(	 + 1): (30)

(ii) Recurrence relations

−
√

(n + 	 + 1)(n + 1) 	
n+1(s)

−
√

(n + 	)n 	
n−1(s) + (2n + 	 + 1 − s) 	

n (s) = 0: (31)

(iii) Raising operator

L+(s; n) 	
n (s) =−1

2
(2n + 	 + 1 − s) 	

n (s) − s
d
ds

 	
n (s)

=−
√

(n + 1)(n + 	 + 1) 	
n+1(s): (32)

(iv) Lowering operator

L−(s; n) 	
n (s) =−1

2
(2n + 	 + 1 − s) 	

n (s) + s
d
ds

 	
n (s)

=−
√

n(n + 	) 	
n−1(s): (33)

If we substitute in the di3erential equation (30) 	 = 2l + 1, & = n + l + 1, we obtain the reduced
radial equation for the hydrogen atom,

d2u
ds2 +

[
&
s
− 1

4
− l(l + 1)

s2

]
u(s) = 0; (34)

the solutions of which are given by the generalized Laguerre functions

u&l(s) =
{

(&− l− 1)!
(& + l)!

}1=2

sl+1es=2L2l+1
&−l−1(s): (35)

This correspondence shows that we can use the di3erence equation of Meixner function as quantum
model of hydrogen atom of discrete variable.

5. Calogero–Sutherland model on the lattice

We start with the di3erence equation for the Hahn polynomials of discrete variable, in the particular
case 	 = 
 = �− 1

2 , namely,

[x(N − x − �− 3
2) + (� + 1

2)(N − 1)]h(�−1=2; �−1=2)
n (x + 1)

+ x(N + �− 1
2 − x)h(�−1=2; �−1=2)

n (x − 1)

− [2x(N − �− 1) + (� + 1
2)(N − 1)]h(�−1=2; �−1=2)

n (x)

+ n(n + 2�)h(�−1=2; �−1=2)
n (x) = 0: (36)
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In the continuous limit N → ∞, x=N → s, the Hahn polynomials become the Jacobi polynomials
of continuous variable, that in the particular case 	 = 
 = �− 1

2 are proportional to the Gegenbauer
polynomials, namely,

h(�−1=2; �−1=2)
n (x) → P(�−1=2; �−1=2)

n (s) =
(� + 1=2)n

(2�)n
C�

n (s): (37)

The di3erence equation for the Hahn polynomials becomes in the continuous limit the di3erential
equation for the Gegenbauer polynomials

(s2 − 1)
d2

ds2 C�
n (s) + (2� + 1)s

d
ds

C�
n (s) = n(n + 2�)C�

n (s): (38)

Using polar coordinates s = cos q, this equation becomes,

− d2

dq2 C�
n (q) − 2� cot q

d
dq

C�
n (q) = )n(�)C�

n (q)

with )n(�) = En(�) − E0 = (n + �)2 − �2 = n(n + 2�).
If we normalize the solution by the weight function (q) = (sin q)�, that is,

 �
n (q) = dn(sin q)�C�

n (q); (39)

we get the standard di3erential equation for the Calogero–Sutherland model [10] in one dimension

H �
n (q) = En(�) �

n (q); En(�) = (n + �)n

H = − d2

dq2 − �(�− 1)
1

sin2q
: (40)

6. Discrete time quantum mechanical systems

Let H (q; p) be the time-independent Hamiltonian of some quantum mechanical system in one
dimension [4]. The Heisenberg equation of motion for the position and momentum operators as
functions of discrete time can be written as follows:

i
)

(qn+1 − qn) =
1
2

[qn+1 + qn; H ]; (41)

i
)

(pn+1 − pn) =
1
2

[pn+1 + pn; H ]; (42)

where the position operator qn ≡ q(n)), and momentum operator pn ≡ p(n)) must satisfy [qn; pn] =
i ∀n.

Let Pk(x) be an polynomial of the variable x ≡ qp + pq. It is easy to prove that

[q; Pk(x)] = (Pk(x + 2i) − Pk(x))q;

[p; Pk(x) = (Pk(x − 2i) − Pk(x))p:
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When H is a polynomial of the type Pk(x) we have

i
)

(qn+1 − qn) = [Pk(x + 2i) − Pk(x)]
1
2

(qn+1 + qn)

hence

qn+1 =
1 − (1=n)i)(Pk(x + 2i) − Pk(x))
1 + (1=2)i)(Pk(x + 2i) − Pk(x))

qn: (43)

By iteration we can calculate qn in terms of the initial condition q0. Similarly

pn+1 =
1 − (1=n)i)(Pk(x + 2i) − Pk(x))
1 + (1=2)i)(Pk(x + 2i) − Pk(x))

pn: (44)

Since Pk(x) is Hermitian we have [qn+1; pn+1] = [qn; pn].
When H is a function of x we can expand it in terms of some orthonormal polynomials of the

variable x. In particular, if we take the continuous Hahn polynomials Sk(x) de8ned by the two terms
recursion relation

kSk(x) = xSk−1(x) − (k − 1)Sk−2(x);

we can express the totally symmetric polynomial Tk;k(q; p) of all possible monomials containing k
factors of q and k factors of p as this formula was proved rigorously by Koornwinder [2]

Tk;k(q; p) =
(2k)!
k!2k Sk(qp + pq):

In all these cases we have

qn =
[

1 − 1=2i)(H (x + 2i) − H (x))
1 + 1=2i)(H (x + 2i) − H (x))

]n

q0; (45)

pn =
[

1 − 1=2i)(H (x + 2i) − H (x))
1 + 1=2i)(H (x + 2i) − H (x))

]n

p0; (46)

which in the limit n → ∞, ) → 0, n) → t, become

qn → q(t) = exp(itH (x))q(0) exp(−itH (x));

pn → p(t) = exp(itH (x))p(0) exp(−itH (x)):

7. Dirac equation on the lattice

Given a function  (n�) de8ned on the grid points of a Minkowski lattice with elementary lengths
)�, di3erence operators �(∇), average operators �̃(∇̃), we construct the Hamiltonian for the Dirac
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8elds  	(n�) on the lattice [5]

H = )1)2)3

N−1∑
n1n2n3=0

�̃1�̃2�̃3 +(n�)

×
{
�0�1

1
)1

�1�̃2�̃3 + �0�2�̃1
1
)2

�2�̃3 + �0�3�̃1�̃2
1
)3

�3 + m0c�0�̃1�̃2�̃3

}
 (n�) (47)

from which we obtain (by the Hamilton equation of motion) the Dirac equation
i��

1
)�

��

∏
& �=�

�̃& − m0c�̃0�̃1�̃2�̃3


  (n�) = 0; (48)

the solution of which can be expressed in terms of the plane waves on the lattice, namely, the
orthogonal functions:

f(n�) =
3∏

�=0

exp
(
−i

2�
N

m�n�

)
; m�; n� = 0; 1 : : : N − 1

provided the dispersion relations are satis8ed

k�k� = m2
0c

2; k� ≡ 2
)�

tg
�m�

N
: (49)

The transfer matrix, which carries the Dirac 8eld from one time to the next time step can be obtain
from the evolution operator

U =
1 + 1=2i)0H
1 − 1=2i)0H

;  (n0 + 1) = U (n0)U+: (50)

Our model for the fermion 8eld on the lattice satis8es the following conditions in order to escape
the no-go theorem of Nielsen–Ninomiya.

(i) the Hamiltonian is translational invariant,
(ii) the Hamiltonian is Hermitian,

(iii) for m0 = 0, the wave equation is invariant under global chiral transformation,
(iv) there is no fermion doubling,
(v) the Hamiltonian is non-local (its Fourier transform has a singularity in the Brillouin zone) but

the evolution operator, due to the Stone theorem, is unitary.
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