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Abstract 

Mekler, A. and J. Oikkonen, Abelian p-groups with no invariants, Journal of Pure and 

Applied Algebra 87 (1993) 51-59. 

We prove for abelian p-groups a non-structure theorem relative to approximations of Ehren- 

feucht-FraissC games of length w1 in terms of linear orderings with no uncountable descending 

sequences. Our result shows that there is a group which is too complicated to be characterized 

up to isomorphism by the Ehrenfeucht-Fraisse game approximated by a fixed ordering. This 

means that such a group cannot have any complete invariants which are bounded in the sense of 

these approximations of the Ehrenfeucht-Frai’ssC game. On the other hand, all the approxi- 

mations characterize together the notion of isomorphism among groups of cardinality at most 

0,. From the point of view of Stability Theory, our result concerns certain stable theories with 

NDOP and NOTOP. 

1. Introduction 

There is an elegant and well-understood way of approximating the relation of 

being isomorphic among countable structures. Let IY and 23 be two countable 

structures. Recall first that ‘)I and 93 are isomorphic, if and only if they are 

partially isomorphic, i.e., there is a set I of isomorphisms between substructures 

of 91 and PI which can be extended in I ‘back and forth’. The latter relation is by 
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Karp’s theorem equivalent to the structures being elementarily equivalent in the 

infinitary logic L_, 

(see [l] and [ll]). Th e set of sentences of L,, can be filtered according to a 

notion of quantifier rank which assigns an ordinal to every formula. Thus to every 

ordinal (Y we have a relation 

which holds exactly when the structures 91 and ‘3 satisfy the same sentences of 

quantifier rank 5~. This means that the countable structures 91 and CW are 

isomorphic, if and only if ‘$1 -z, \%J holds for all CY. By a refined version of Karp’s 

theorem, 91 -z, 8, if and only if 91 and 23 are cr-partially isomorphic (see [l]). 

These ideas have also a game-theoretic expression. The notion of being 

partially isomorphic can be expressed in terms of the well-known Ehrenfeucht- 
Frai’sst game. In it, the two players V and 3 choose elements x0, x,, . . . and 

y,,, y, , . . from the two structures in alternating turns, V beginning. When V has 

chosen X, from one of the structures, 3 has to reply with y,, from the other 

structure. Thus a play of the game creates a sequence a,), a,, . . . of elements of 91 

and a sequence b,,, b, , . of elements of 93. Player 3 wins, if a, ++ b, generates 

an isomorphism between some substructures of Yl and 93; otherwise t’ wins. It is 

easy to see that 91 and ,%3 are partially isomorphic exactly when player 3 has a 

winning strategy in the Ehrenfeucht-Fraisse game between Bl and ‘23. 

This game becomes more interesting when we observe that it easily yields a 

game-theoretic interpretation for Karp’s characterization of elementary equiva- 

lence up to given quantifier rank. Indeed, ?I-“,,, 23, if and only if player 3 has a 

winning strategy in the following approximation of the Ehrenfeucht-Frai’ssC game 

which we call the a-game. In the a-game the players make the same moves as in 

the Ehrenfeucht-Frai’sse game with the addition that simultaneously with every 

move X, of V, V also has to give an element t, of CY in such a way that the elements 

t,, form a descending sequence. This means especially that x,, is chosen only if t,, is 

chosen, and therefore the game ends when t,, no more can be chosen. So every 

play of the a-game is necessarily finite. 

These observations give the fact that the countable structures 91 and 23 are 

isomorphic, if and only if for every countable ordinal (Y, player 3 has a winning 

strategy in the a-game between 91 and 23. Also it is not difficult to give direct 

proof of this. 

There is even more to say. For every countable structure 91 (over a countable 

language) there is by Scott’s theorem a countable ordinal (Y which satisfies for 

every structure 5% that if player 3 has a winning strategy in the ~-game between VI 

and ‘3, then 91 and ,%? are isomorphic. The smallest such (Y is called the Scott 
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height of ‘21. Moreover, every countable structure %!l has in LWlo a Scott sentence 
o( ?I) which is such that for every countable !J3, !8 k a( 8) implies that ‘)I = 5?3. 

Barwise and Eklof have shown in [2] that the relation -z, and the Scott heights 

are closely connected to the Ulm invariants for p-groups. 

After recalling these well-known properties of countable structures we shall see 

how this picture can be carried over for uncountable structures. For the sake of 

concreteness we consider throughout this paper only structures of cardinality wi. 

The Ehrenfeucht-Fraisse game of length wi is exactly like that of length w, but 

now the players choose the elements x, and y, for all v < wi. Let n be a linear 

ordering containing no uncountable descending sequences. The T-game between 

two structures is like the Ehrenfeucht-Fraisse game of length w1 but simulta- 

neously with every move x,, player V chooses also an element t, in such a way 

that the elements t, form a descending sequence. Since there is no uncountable 

descending sequence in 7, every play of the T-game is countable. If n is an 

ordinal, then this definition coincides of course with the previous one. In the 

literature, the Ehrenfeucht-Fraissi game of length o1 is most commonly approxi- 

mated in terms of trees with no uncountable branches. These two approaches are 

closely connected. The n-game is in the other terminology the Ehrenfeucht- 

Frai’sse game approximated by the tree of all descending sequences of r]. On the 

other hand, the ordering of a tree with no uncountable branches can be extended 

to a linear ordering with no uncountable ascending sequences (see [3]). 

The notion of isomorphism can be approximated by means of these v-games as 

the following proposition shows. Here, as well as in all of our results, we shall 

assume the Continuum Hypothesis. 

Lemma 1 (Hyttinen, see [9]). (CH) Zf ‘21 and % are of cardinality 5w1, then 
?I = ‘x3, if and only if, player 3 has a winning strategy in the v-game between !?I and 
‘8 for every linear ordering v of cardinality swl which contains no uncountable 
descending sequences. 0 

The situation with Scott heights is essentially more complicated for uncountable 

structures than for the countable ones. In [9] a version of Scott heights is 

developed for describing the difference between two given structures. Under CH, 

no universal notion of a Scott height, which would distinguish 5?l from every other 

structure 5!J of the same cardinality, is possible for uncountable structures as the 

following result of Hyttinen and Tuuri shows. 

Lemma 2 [8]. (CH) There is a linear ordering 77 of curdinality 6.1~) and for every 
linear ordering 9 of cardinality SW, which contains no descending uncountable 
sequences, there is a linear ordering Q of curdinality w,, where 

(1) 3 has a winning strategy in the %-game between 7 and Q, 
(2) q contains an uncountable descending sequence, 
(3) Q contains no uncountable descending sequences. 0 
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Notice that we can assert in Lemma 2 that also n -‘IT + 7, since the result 

remains true, if we replace r] and nH by n @ Q and ns @ Q. 

Hyttinen and Tuuri use Lemma 2 to prove non-structure theorems for unstable 

theories in [8]. We use the lemma here to prove a non-structure theorem for 

abelian p-groups. For the sake of concreteness we shall consider only groups of 

cardinality SW, but it is clear that our constructions can easily be generalized for 

higher cardinalities, too. 

2. Hahn powers 

In this section we describe the kind of groups that we shall use in our 

constructions. We show that in the specific applications it suffices to prove that 

our construction leads to non-isomorphic groups. The existence of winning 

strategies for 3 will follow from a general result proved in this section. The reader 

is asked to consult [5] and [lo] for general information and notation concerning 

abelian groups. 

An abelian torsion group H is a p-group for a prime p, if for all x E H, there is 

some n E w with p”x = 0. The sock of a p-group H is the subgroup H[p] = {x E 
H: px = O}. A p-group H is reduced, if it has no non-trivial divisible subgroups. 

Let H be a reduced p-group. Consider the descending sequence of subgroups 

H,, 2 H, > . . . where H, = H, HY+, = pHU and HU = U v<D1 HY for limit ordinals 

a. Since H is reduced, there is a smallest ordinal cy = f(H) with H, = (0) called 

the length of H. For every element x # 0, there is v with x E H,,\H”+,. This 

ordinal v is called the height of x. 

Let V be a vector space. A valuation of V is a function u : V+ X where X is a 

linear ordering with suprema and where 

(1) U(U) = sup X, if and only if a = 0, 

(2) u( ha) = u(a) for all scalars A # 0, 

(3) u(a + b) P min(u(u), u(b)). 

If H is a reduced p-group, then the socle H[p] is a 2, vector space and 

h : H[p]+l(H) IS a valuation of it. The readers can find more about vector 

spaces with valuations in [6] and [7]. 

It has turned out that structures of the form of an abstract Hahn power ‘2’ are 

fruitful sources of examples. The Hahn powers and products come from the 

theory of ordered algebraic structures (see [4] and [7]), but there are also other 

applications of the same idea. By 5%” we mean the set of those x : q+ 3 where the 

carrier {t E T,I: x(t) # 0} is of the order type (Y* for some (countable) ordinal (Y. 

Here 91 must contain a distinguished element 0, of course, and (Y* denotes the 

opposite of (Y. Typical cases where this kind of Hahn powers give interesting 

structures are those where 5?I is either a linear order with a smallest element 0 or 

an algebraic structure like a group. In case 8 and n are ordinals, the Hahn power 

%?I” coincides with the usual ordinal exponentiation. 
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In [ll] Karp proves that in case (Y = o a and A is a linear order with a smallest 

element. then 

In [12] this is generalized for the T-game and uncountable linear orderings of the 

form of a Hahn power. The original proof of Lemma 2 gave 77 in the form of a 

Hahn power where a saturated linear order is an essential building block of the 

exponent. (The construction presented in [S] is quite different.) 

We are here interested in the following kind of Hahn powers. Let 77 be any 

linear ordering and H any group (or more generally, any algebraic structure with 

a distinguished zero element). Then H” is the set of those functions x : q+ H 
where the order type of the carrier carr(x) = {t E 7: x(t) # 0} is the opposite Q * of 

some countable ordinal (Y. Clearly H’ is a subgroup of the product n, H. The 

torsion subgroup of H’ is denoted by G(T, H). 
If V is a vector space and u : V-t X is a valuation of it, then we consider the 

function u’ : VT+ X, where 

u’(a) = inf{u(a(t)): t E q} . 

The following two lemmas are obvious. 

Lemma 3. (1) If H is a (reduced) p-group, then also G(T, H) is a (reduced) 
p-group. 

(2) If V is a vector space and u : V-+ X is a valuation of V, then V” is a vector 

space and u” is a valuation of V”. 0 

Lemma 4. (CH) If H, V and TJ are of cardinality SW,, then H”, V’ and G(T, H) 
are of cardinality SW,. 0 

It is relatively easy to arrange a winning strategy for 3 in the q-game between 

the groups G(v), H) and G(v)‘, H). Below, w* @J 7 is understood to mean 77 

copies of w* and w* denotes the opposite ordering of w. Vector spaces with 

valuations are considered there as two sorted structures. 

Theorem 5. If 3 has a winning strategy in the w’” @ O-game between r) and v’, then 
3 has a winning strategy in the O-game between 

(1) H” and H”‘, 

(2) G(v, H) and G(v), H), and 
(3) (V’, X, u”) and (V”, X, u”). 

Proof. We consider here only case (2) which will be used later. We fix a winning 

strategy S for 3 in the o* @ &game between 77 and q’. It is a winning strategy for 
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3 in the t9-game between the two groups to simulate the w* @ o-game between n 

and v’. The same argument works for both of the two cases. Assume that the 

game has been played according to the strategy to be described so that on round I, 

player V has just played an element x, from one of the groups and an element t, 

from 7. During the earlier rounds 3 has found out his moves by a simulation 

which has determined an initial segment of a play of the w* @ o-game between 7 

and n’. Let carr(x,) = {u,: n < GJ}, not necessarily in descending order. Then the 

simulation is continued so that we let for y1< w V move U, and (n, t,) to which the 

winning strategy S replies with some u,. Then we can let 3 play in the game 

between the groups the element y, where carr(y,) = {u,: n < w} and y,(u,) = 

X”(%,). 
It is easy to see that it is a winning strategy for 3 to play according to this 

strategy. Indeed, G = G’ where G is the subgroup of G(T, H) consisting of those 

elements x whose carrier contains only points played in the simulated game, and 

G’ is defined similarly for G(n’, H). 0 

When we combine this result with Lemma 2, we see that our real task lies in 

proving that for a suitable choice of H, G(T, h) and G(n’, H) (H” and HV’) 

cannot be isomorphic if exactly one of the exponents n and 7’ contains descend- 

ing uncountable sequences. 

Corollary 6. (CH) Let 77 and Q be as in Lemma 2. Then: 

(1) Lf 77’ = rlw-c%9 then 3 has a winning strategy in the e-game between G(q, H) 
and G(q’, H), between H” and H”‘, and between (V’, X, uR) and (V”‘, X, u”). 

(2) 77 contains uncountable descending sequences. 

(3) %*CM contains no uncountable descending sequences. 0 

Let n be as in Lemma 2 and assume that 7 = T+ n. Recall that this property 

can be included in Lemma 2. Let G be H’ or G(n, H) and let T = Th(G, +, 0). 
Then one can easily see that G = G2. This implies that T = T”” (see [13, p. 411). 

Hence by Theorem 5.41 in [13], T has NOTOP. On the other hand, every 

complete theory of modules is stable (see Theorem 3.1 in [13]), and is non- 

multidimensional and hence has NDOP (see p. 143 and Corollary 6.21 in [13].) 

Thus our results fall in the case left uncovered by those of [8]. 

3. p-groups 

We prove in this section the following result. 

Theorem 7. (CH) There is a p-group G of cardinality a_+ and for every linear 
ordering 8 of cardinality SW, which contains no descending uncountable se- 
quences, there is a p-group G, of cardinality SW, which satisfy 
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(1) 3 has a winning strategy in the 8-game between G and G,, 

(2) G/G,. 

The rest of this section is devoted to a proof of Theorem 7. It follows from 

Corollary 6 that it suffices to show for a suitable p-group H of cardinality SW, 

that G(v, H) #G(v), H) whenever exactly one of the orderings n and 77’ contains 

uncountable descending sequences. We prove actually as an application of a result 

on vector spaces with valuations that G(q, H)[p] #G(v’, H)[p]. 

Let V be a vector space with a valuation u : V-+X and let (VU),,,, be an 

ascending sequence of its countable subspaces. We assume that there is an 

ascending sequence (.$,),,,, of elements of X where for every cy < w, the 

subspace V, contains an element x, with u(x,) = .$,, but u(x) < 5, for all 

XEU y<a V,. We shall consider the vector space 

w= a3 V” 
“<Id, 

and its Hahn powers. 

If a E W, then we denote by spt(a) the set of those v where a has nonzero 

projection in V,. Because W is a direct sum, spt(a) has to be finite for all a. 

Lemma 8. The Hahn powers W’ and W” are not isomorphic, if exactly one of the 
two linear orderings q and 7’ contains an uncountable descending sequence. 

Proof. Let S be the set of countable ascending sequences of elements of wr 

ordered according to the initial segment relation. 

Let U be any vector space with a valuation u : U+ X. We say that U has 

property (a), if in U there are elements z,, s E S, where z. = 0 and with the 

notation 2, I = z, - z, and y, 6 = z,$ (sj - z,, it holds that 

when r = s--( 6 )--s’. This means intuitively that z, is a sum of a sequence of 

countably many terms yS,, of ascending values. 

We shall show that W” has property (*), if and only if q contains an 

uncountable descending sequence. 

Claim 1: If 71 contains an uncountable descending sequence, then W” has 

property (*). 

To prove this, we let (t,),_, be a descending sequence of elements of n. 

Consider a sequence (av)v<wl of elements of W, where for all v < wr , u(a,) = 5,. 
The elements zsr s E S are defined as follows. Let the length of s be p and 

s = @A<& Then carr(z,Y) = {t,: Y < p} and for v < p, z,(t,) = a,“. It is immedi- 

ate to see that (*) becomes true. 
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Claim 2: If W’ has property (*), then there is an uncountable descending 

sequence in n. 

The rest of the proof of this lemma is devoted to a verification of this assertion. 

Assume that the system (z,),~~.~ witnesses that W’ has property (*). 

We observe first that for all s E S there is an ordinal 6 where for all Y E S with 

s--( 8) 5 r, it holds that carr(z,Y) c carr(z,) and for all t E carr(z,), spt(z,(t)) c 

spt(z,( t)). Indeed, we choose 

6 = sup({i + 1: i E spt(z,Y(t)) for some t E carr(z,)}) . 

Notice that this is a supremum of a countable set of countable ordinals. If r is as 

in the claim, then u(z, - zJ) is 5, which is too high to cancel any z,(t) # 0 or any 

z,s(t)(i) # 0. 

Consider then an ascending sequence (s,, ) vow, of elements of S, where for all Y 

there is some 6 with 

6 2 sup( { i + 1: i E spt(z,,,(t)) for some t E carr(z,J}) , 

and s, ~~-(a) <.sy+,. 

We observe next that for all t ET, the projection z,Y,,(t) is constant when v is 

large enough. 

To prove this, fix t and assume to the contrary that z,YZ,(t) is not eventually 

constant. Then certainly t E carr(z,Yb) for some v, and hence for sufficiently large v. 

(Otherwise z,Y,,(t) is constantly 0 for all v.) By (*), u(z,,,(t) - z,,P(t)) 2 5, if v > p, 

and since z,,,(t) - z,(t) is not 0, the sets spt(z,“(t)) cannot be constant. Since by 

the choice of the sequence (s,), they form an ascending sequence, there exists v 

with spt(z,“(t)) infinite, contrary to the definition of W as a direct sum. 

By the choice of (s,) y<w,, also the sets carr(z,Z) form an ascending sequence. It 

cannot become constant by (9) and the previous observation. So there are 

elements ty, v < w,, where for all (Y < w, there is some p < w, with { ty : 

v -=c a} c carr(z,p). Hence {t,: v < w,} must be an inversely well-ordered subset 

of n. Especially, there is an uncountable descending sequence in n. 0 

We shall finally apply this result to the Hahn powers of the socle of a suitable 

p-group in order to prove Theorem 7. 

For a proof of the following fact, see p. 85 in Vol. II of [5]. 

Lemma 9. There is for every v < w, a countable reduced p-group HU of Ulm-length 

v + 1 and containing therefore an element x with h(x) = v but no elements y Z 0 

with h(y) > v. Here h(x) denotes the Urn-height of an element x. 0 

Let H,, be as in this lemma. Notice that if x E HU and h(x) = v, then px = 0. Let 

us consider the p-groups H = @,,,, Hv and G(n, H) for various 7. 
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It is easy to see that 

59 

So the valuated vector space G(n, H)[p] is of the form IV’ where W satisfies the 

assumptions of Lemma 8. Hence we obtain from Lemma 8 that 

whenever exactly one of the two orderings n and 7’ contains an uncountable 

descending sequence. This completes the proof of Theorem 7. 0 
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