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We recently described that epidermal and fibroblast growth factors (EGF and FGF) regulate the IGF-I signaling
pathway at the level of IRS-1 through the cooperative action of two independent signaling pathways; one
dependent on phosphatidylinositol 3-kinase (PI 3-kinase) and the other on protein kinase D1 (PKD1)
(Karam et al. [22]). To determine whether this mechanism could be generalized to another tyrosine kinase
receptor-dependent growth factor, the effect of platelet-derived growth factor (PDGF) on the IGF-I signaling
pathway was studied. PDGF inhibited IGF-I-stimulated IRS-1 tyrosine phosphorylation and subsequent
IGF-I-induced PI 3-kinase activity, and stimulated IRS-1 serine 307 phosphorylation. These effects were medi-
ated through a PI 3-kinase-dependent but extracellular signal-regulated kinase (ERK)-independent signaling
pathway. However, PDGF-induced IRS-1 serine 307 phosphorylation was not sufficient per se to inhibit the
IGF-I signaling but required another independent pathway. Noteworthy, although acutely stimulated by PDGF,
and contrary to what we previously described (Karam et al. [22]), PKD1 did not associate with IRS-1and did
not inhibit the IGF-I signaling in response to PDGF. However, we identified PKCβI as a new regulatory partner
of PI 3-kinase for PDGF-induced inhibition of the IGF-I signaling pathway. Therefore, our results reinforce the
idea that a coordinated action of two independent pathways seems absolutely necessary to negatively regulate
IRS-1. Moreover, they also demonstrated that, depending of the cross-talk considered, subtle and specific regu-
latory mechanisms occur at the level of IRS-1 and that a unique regulatory model is not conceivable.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Insulin-like growth factors (IGF-I and -II) are two mitogenic poly-
peptides secreted by most tissues that regulate cell proliferation, dif-
ferentiation and survival by autocrine, paracrine and/or endocrine
pathways (for review [21]). Their biological effects are transmitted
through their binding to the extracellular α-subunits of the type I
IGF receptor (IGF-IR), a widely expressed transmembrane protein
with strong structural homology with the insulin receptor (IR) [34].
Binding of IGFs to IGF-IR leads to the conformational change of the
receptor and to the autophosphorylation of the intracellular domain
of the transmembrane β-subunits. This stimulates the tyrosine kinase
activity of the β-subunits which phosphorylate onto tyrosine residues
extracellular signal-regulated
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several intracellular targets such as insulin receptor substrate-1
(IRS-1) [31].

As a docking protein, IRS-1 represents a crucial crossroad in the
IGF-I signaling pathway. In fact, after being phosphorylated onto
18 potential tyrosine residues [13,36] by the IGF-IR, IRS-1 associates
with Src homology 2 (SH2) domain-containing proteins like Shc, Nck,
Grb2, Gbr10 and the p85 regulatory subunit of phosphatidylinositol
3-kinase (PI 3-kinase). This initiates specific intracellular signaling
pathways resulting in the biological effects of the IGFs (for review
[35]). Therefore, any modulation of the amount or of the tyrosine phos-
phorylation state of IRS-1 modulates the IGF-I signaling pathway.
Increased IRS-1 expression stimulates cell transformation [19] whereas
decreased IRS-1 amount reduces cell viability [27]. Moreover, tyrosine
phosphorylation level of IRS-1 can be reduced by tyrosine phosphatase
activities [10,26] or modulated by additional serine/threonine phos-
phorylations mediated by kinases like MAPK, protein kinase C (PKC),
protein kinase B, casein kinase II, and PI 3-kinase (for review [12]).
Among the 50 potential serine phosphorylation sites of IRS-1, serine
307 residue was more largely studied since it represents an inhibitory
signal of IGF-IR- and IR-induced IRS-1 tyrosine phosphorylation and
was implicated in insulin resistance [2,5,28].

http://dx.doi.org/10.1016/j.bbamcr.2013.02.019
mailto:jean-marc.ricort@um2.fr
http://dx.doi.org/10.1016/j.bbamcr.2013.02.019
http://www.sciencedirect.com/science/journal/01674889
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbamcr.2013.02.019&domain=pdf


1368 C. Lassarre et al. / Biochimica et Biophysica Acta 1833 (2013) 1367–1377
The crucial role of IGFs in tumor progression [15,17] makes them
as attractive targets for the development of innovative therapeutic
strategies [30]. However, the efficacy of these approaches requires
having a wide understanding of the regulatory mechanisms that
occur in vivo in a context where each cell is simultaneously subjected
to multiple stimulatory and inhibitory signals. With this in view, we
recently demonstrated that two growth factors [epidermal growth
factor (EGF) and fibroblast growth factor (FGF)] inhibited the IGF-I
signaling at the level of IRS-1 through the coordinated action of two
independent signaling pathways implicating PI-3 kinase and protein
kinase D1 (PKD1) [22]. Due to the increasing role of PKD1 in numer-
ous cell functions (for review [8]), such cross-talk identification leads
us to determine whether this regulatory process was generalizable
to another tyrosine kinase receptor-dependent signaling pathway or
specific to that of EGF and FGF.

We demonstrated that platelet-derived growth factor (PDGF) in-
hibits the IGF-I-stimulated IRS-1 tyrosine phosphorylation and PI
3-kinase activity. Similarly to EGF and FGF, this inhibition requires
the concomitant action of at least two independent partners including
PI 3-kinase. However, contrary to EGF or FGF [22], PDGF-activated
PKD1 had no role in this regulatory process which involves, however,
PKCβI. Therefore, by describing a new regulatory process that specifi-
cally occurs at the level of IRS-1 in response of PDGF and which is dis-
tinct from that induced by EGF or FGF, our results highlight the specific
and complex regulatory networks that take place at the level of IRS-1
in order to modulate the IGF-I signaling pathway. Moreover, we iden-
tified PKCβI as a crucial partner that acts in concert with PI 3-kinase to
regulate the IGF-I signal transduction efficiency in response to PDGF
treatment.

2. Materials and methods

2.1. Antibodies and materials

Anti-phosphotyrosine, anti-Akt1, anti-IRS-1, anti-phospho-ERK1/2
and anti-phospho-IRS-1 (Ser307) antibodies used for immunoblotting
were purchased from Upstate Biotechnology-Millipore (Lake Placid,
NY). Anti-IRS-1 and anti-p85-subunit of PI 3-kinase antibodies
used for PI 3-kinase assay and immunoprecipitation were a kind gift
from J-F Tanti (INSERM, Nice, France) or were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA) like anti-PKD1, anti-PKCα, anti-
PKCβI, anti-α-actinin and anti-actin antibodies. Anti-phospho-PKD1
(Ser744/748) and anti-phospho-Akt (Thr308 and Ser473) antibodies
were from Cell Signaling (Danvers, MA). EGF, bFGF and PDGF were
from PeproTech (RockyHill, NJ), and IGF-Iwas fromGroPep (Adelaide,
Australia). PKD1-targeting (sc-36245), PKCα-targeting (sc-36243),
PKCβI-targeting (sc-29450) and control non-targeting (sc-37007)
siRNAs were purchased from Santa Cruz Biotechnology. Gö6976,
Gö6983 and GF109203X were from Calbiochem (La Jolla, CA) and
wortmannin was from Sigma-Aldrich (Saint-Quentin Fallavier,
France). Protein A-Sepharose was from GE Healthcare Life Sciences
(Orsay, France). All other biochemicals were from Sigma-Aldrich
(Saint-Quentin Fallavier, France) or ICN (Orsay, France).

2.2. Cell culture

TheMCF-7 cell line was grown to 80–85% confluence in Dulbecco's
modified Eagle's medium supplemented with 10% fetal bovine serum
(FBS), 100 U/mL penicillin and 100 μg/mL streptomycin. Before each
experiment, cells were starved in serum free media for 16–24 h.

2.3. Western immunoblotting

MCF-7 cells were cultured as described and treated for different
periods of timewith or without EGF, FGF or PDGF before being acutely
stimulated or not for 5 min with IGF-I. Cells were then solubilized in
buffer A (20 mM Tris, pH 7.4, 137 mM NaCl, 100 mM NaF, 10 mM
EDTA, 2 mM Na3VO4, 10 mM pyrophosphate, 1 mM PMSF, 100 U/mL
aprotinin) containing 1% Nonidet P-40 (NP-40), and proteins were
separated by SDS-PAGE and transferred to polyvinylidene difluoride
(PVDF) or nitrocellulose sheets. These were incubated with the spe-
cific antibodies for 1 h at room temperature or overnight at 4 °C and
revealed by chemiluminescence (ECL, Amersham).

2.4. Immunoprecipitation

Cells were washed with ice-cold buffer A and solubilized as
described above. Supernatants from solubilized cells were then
immunoprecipitated for 2 h at 4 °C with anti-IRS-1 antibodies pre-
adsorbed to protein A-Sepharose. The immune pellets were washed
three times with buffer A, treated with Laemmli buffer, boiled for
10 min, and separated by 7.5% acrylamide SDS-PAGE. Proteins were
then transferred to nitrocellulose sheets and immunoblotted with
anti-PKD1 and anti-IRS-1 antibodies as described above.

2.5. Determination of PI 3-kinase activity

Lysates from cells treated as above were incubated for 2 h at 4 °C
with anti-IRS-1 or anti-p85 antibodies coupled to protein A-Sepharose
beads. Thereafter, immune pellets were successively washed twice
with each of the three following buffers: (a) PBS containing 1% Nonidet
P-40 and 200 μM Na3VO4; (b) 100 mM Tris pH 7.4, 0.5 M LiCl, and
200 μM Na3VO4; and (c) 10 mM Tris pH 7.4, 100 mM NaCl, 1 mM
EDTA, and 200 μM Na3VO4. Immunoprecipitated PI 3-kinase activity
was measured in the immune pellets by in vitro phosphorylation
of phosphatidylinositol (PI) [9,16]. The reaction products were sep-
arated by thin layer chromatography on silica plates in methanol/
chloroform/ammoniac buffer. After autoradiography, PI 3-kinase ac-
tivity was quantified by Cerenkov analysis of the spots corresponding
to PI 3-P.

2.6. siRNA transfection

siRNA transfection was done according tomanufacturer's protocol.
Briefly, 2.5–3 × 105 cells were seeded per well in 2 mL antibiotic-free
DMEM supplemented with 10% FBS and incubated for 24 h. For each
well, 1 μg of siRNA (siPKD1, siPKCα or siPKCβI) and 8 μL of siRNA trans-
fection reagent, eachdiluted in 100 μL siRNA transfectionmedium,were
combined, incubated for 45 min at room temperature and then applied
to the cells in a final volume of 1 mL siRNA transfection medium.
After 7 h of incubation at 37 °C, DMEM supplemented with 10% FBS
was added and cells were cultured for an additional 18–24 h at 37 °C
before analysis.

3. Results

3.1. PDGF inhibits the IGF-I-induced tyrosine phosphorylation of IRS-1 in
MCF-7 cells

We previously showed that EGF and FGF modulate the IGF-I
signaling pathway through the concomitant action of a PKD1- and
a PI 3-kinase-dependent signaling pathways [22]. Therefore, we
searched to determine whether this mechanism could be general-
ized to other tyrosine kinase receptor dependent-growth factors
such as PDGF. Thus, MCF-7 cells were pretreated or not with PDGF
for different periods of time (5 to 60 min) before being acutely stim-
ulated for 5 min with IGF-I. The cells were lysed and the tyrosine
phosphorylation state of IRS-1 was analyzed. In unstimulated cells,
tyrosine phosphorylation of IRS-1 was not detectable but increased
dramatically after 5 min of IGF-I stimulation (Fig. 1A). Whatever
the preincubation time, PDGF pretreatment markedly inhibited the
IGF-I-induced IRS-1 tyrosine phosphorylation. This inhibition occurred
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Fig. 1. PDGF pretreatment inhibits IGF-I-induced IRS-1 tyrosine phosphorylation and IGF-I-stimulated PI 3-kinase activity. Cells were pre-incubated for different periods of time (5–60 min)
with PDGF (50 ng/mL) and then acutely stimulated for 5 min with IGF-I (22.5 ng/mL). A. Cells were lysed and proteins were separated by SDS-PAGE, transferred to PVDF sheets and
immunoblotted with anti-phosphotyrosine or anti-actin antibodies as described in Materials and methods. The autoradiograms presented are those of typical experiments conducted in
duplicate. Histogram represents quantitative analysis of total tyrosine phosphorylated IRS-1 under each set of conditions, corrected for background, and expressed as percentages of
phosphotyrosylated IRS-1 measured after 5 min of IGF-I stimulation without any pretreatment with PDGF (control). Results are the means ± SEM for three independent experiments
(*, P b 0.01). B. Cellswere lysed andproteinswere immunoprecipitatedwith anti-IRS-1 antibodies. The immunepelletswere used tomeasure PI 3-kinase activity as described underMaterials
andmethods. Results are themeans ± SEM for four independent experiments. The results are expressed as percentages of the activitymeasured after 5 min of IGF-I stimulationwithout any
pretreatment with PDGF (control). C. Same experiment as before except that PI 3-kinase activity was measured in immunoprecipitates from anti-p85 subunit of PI-3 kinase antibody. Histo-
gram (left) presents the respective part of PDGF- (hatched symbol) and IGF-I-stimulated (plain symbol) PI 3-kinase activity. Graph (right) presents only the latter. Results are the means ±
SEM for four independent experiments. The results are expressed as percentages of the activity measured after 5 min of IGF-I stimulation without any pretreatment with PDGF (control).
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rapidly (as soon as 5 min of PDGF pretreatment) and remained
mostly stable (around 55–60%) for at least 60 min. PDGF-mediated
inhibition of IGF-I-induced IRS-1 tyrosine phosphorylation was not
a consequence of a decreased IRS-1 protein content [23] nor of a re-
duced IGF-I-induced autophosphorylation of the IGF-IR β-subunits
(data not shown).
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3.2. PDGF modulates the IGF-I-induced PI 3-kinase activity in MCF-7 cells

Since IGF-I-stimulated PI 3-kinase activity is dependent upon
the tyrosine phosphorylation state of IRS-1, we asked whether PDGF
pretreatment affects subsequent IGF-I-induced PI 3-kinase activity.
MCF-7 cells were pretreated or not with PDGF for different periods
of time (5 to 60 min) and then acutely stimulated for 5 min with
IGF-I. Cells were lysed, proteins were solubilized and PI 3-kinase ac-
tivity was measured in immunoprecipitates obtained with antibodies
directed against either IRS-1 (Fig. 1B) or the p85 regulatory subunit
of PI 3-kinase (Fig. 1C). IGF-I strongly stimulated IRS-1-associated
(52.6 ± 7.02-fold increase; n = 4) and total (5.27 ± 0.42-fold in-
crease; n = 4) PI 3-kinase activities. PDGF pretreatment modulated
with characteristic and very similar triphasic time courses IRS-1-
associated (Fig. 1B) and total (Fig. 1C) PI 3-kinase activities stimu-
lated by IGF-I. Indeed, these activities were first rapidly inhibited
by PDGF pretreatment, with maximal effect (approximately 33% and
75% inhibition for IRS-1-associated and total PI 3-kinase activities,
respectively) obtained after 5–15 min of pretreatment, then this inhi-
bition decreased after 30 min of PDGF pretreatment before increasing
again after 60 min (30% and 60% inhibition, respectively).

3.3. PDGF inhibits the IGF-I-induced IRS-1 tyrosine phosphorylation by a
PI 3-kinase dependent but ERK-independent signaling pathway

In MCF-7 cells, two major signaling pathways (i.e. PI 3-kinase and
extracellular-regulated kinase (ERK) signaling pathways) are com-
monly activated after tyrosine kinase receptor stimulation. However,
in these cells, although PDGF strongly stimulated PI 3-kinase activity
(maximal effect, 2.15-fold, observed after 5 min and remained stable
for at least 60 min) (Fig. 2A), this growth factor had, as previously
shown [22,23], and contrary to EGF and FGF, no effect on ERK activity
(Fig. 2B). This last result was confirmed whatever the PDGF incuba-
tion period considered (data not shown).

Since the PI 3-kinase signaling pathway remains the main pathway
to be activated in response to PDGF, we determine whether it could
mediate the PDGF-induced inhibition of the IGF-I-stimulated IRS-1
tyrosine phosphorylation. Thus, cells were incubated with or without
wortmannin, a specific inhibitor of PI 3-kinase, then pretreated or not
with PDGF for different periods of time before being acutely stimulated
for 5 minwith IGF-I and analyzed for the tyrosinephosphorylation state
of IRS-1. Tyrosine phosphorylation of IRS-1, that was barely detectable
in basal conditions (untreated cells), was strongly stimulated by IGF-I
and not affected by wortmannin preincubation (Fig. 3A). Noteworthy,
PDGF-induced inhibition of the IGF-I-stimulated IRS-1 tyrosine phos-
phorylation was strongly impaired by wortmannin (Fig. 3A). The phos-
phorylation state analysis of Akt (a downstream target of PI 3-kinase)
onto two activating phosphorylated residues (T308 and S473) con-
firmed the specific inhibitory action of wortmannin on the PI 3-kinase
signaling pathway (Fig. 3B).

Therefore, taken all together, our results demonstrate that PDGF
inhibits the IGF-I-induced tyrosine phosphorylation of IRS-1 by a
PI 3-kinase-dependent and ERK-independent signaling pathway.

3.4. PDGF stimulates serine 307 phosphorylation of IRS-1 by a PI
3-kinase-dependent signaling pathway

To further characterize how PDGF modulates the IGF-I signaling
pathway at the level of IRS-1, MCF-7 cells were stimulated with
PDGF for different periods of time (5–60 min) before analysis of
IRS-1 phosphorylation onto S307 residue. As shown in Fig. 4A, PDGF
stimulated the phosphorylation of IRS-1 onto serine 307. This phos-
phorylation was rapid (significantly occurring after 5 min stimulation),
reached maximal values after 15 min of treatment, and remained
elevated for at least 1 h. PDGF-stimulated serine 307 phosphorylation
of IRS-1 was totally impaired by wortmannin (Fig. 4B) demonstrating
that PDGF-induced serine 307 phosphorylation of IRS-1 is mediated
by a PI 3-kinase-dependent signaling pathway.

3.5. PDGF activates PKD1 by a PI 3-kinase-independent signaling pathway

In response to EGF or FGF, PI 3-kinase acts in concert with PKD1
which associates with IRS-1 to negatively regulate this docking pro-
tein [22]. We therefore asked whether PDGF may regulate the IGF-I
signaling by the same mechanism. PDGF induced the activating phos-
phorylation of PKD1 in MCF-7 cells (Fig. 5A and B). This occurred, as
previously shown for EGF and FGF [22], by a PI 3-kinase independent
signaling pathway since PDGF-induced PKD1 phosphorylation was not
affected by wortmannin (Fig. 5A). Maximal phosphorylation occurred
after 15 min of PDGF treatment and remained stable up to 60 min
(Fig. 5A). As expected, PDGF-stimulated PKD1 phosphorylation was to-
tally impaired by Gö6976 but not by GF109203X and Gö6983 (Fig. 5B),
confirming the inhibitory spectra of these three compounds, Gö6976
(inhibitor of PKCα, βI, and μ/PKD1), Gö6983 (inhibitor of PKCα, β, γ,
δ, and ζ), and GF109203X (inhibitor of PKCα, βI, βII, γ, δ, and ε) [11,24].

3.6. PDGF does not induce the association of PKD1 with IRS-1 and inhibits
the IGF-I signaling pathway independently of PKD1

Since PDGF activated PKD1 similarly to EGF and FGF [22], we
asked whether this kinase may be implicated in the PDGF-induced
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inhibition of the IGF-I signaling pathway. Interestingly, unlike EGF
and FGF and whatever the incubation time tested (5–60 min), PDGF
did not induce PKD1 association with IRS-1 (Fig. 5C). Moreover, spe-
cific inhibition of PKD1, performed by transfecting cells with specific
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(Thr308) or anti-Akt antibodies as described in Materials and methods. Autoradiograms presented are those of typical experiments conducted in triplicate.
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and Akt (Fig. 5D, right panel) remained unchanged. This result indicates
that PDGF inhibited the IGF-I signaling independently of PKD1. Taken
together, these results demonstrated that, although activated by PDGF,
a tyrosine kinase receptor-dependent ligand such as EGF and FGF,
PKD1 does not systematically associate with IRS-1 and regulate the
IGF-I signaling pathway, which therefore puts in evidence the existence
of subtle and specific regulatory mechanisms.
3.7. PDGF inhibits the IGF-I-stimulated IRS-1 tyrosine phosphorylation
and the IGF-I-stimulated PI 3-kinase activity by PKC-dependent signaling
pathway

To further address and determine the molecular mechanisms in-
volved in the regulation of the IGF-I signaling in response to PDGF
and since PKC family is usually implicated in the regulation of tyrosine
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kinase receptor-dependent signaling, the inhibitory effect of PDGF on
IGF-I-stimulated IRS-1 tyrosine phosphorylation and IRS-1-associated
PI 3-kinase activity was analyzed in the presence of PKC inhibitors.
Cells were incubated for 1 h with or without one of the three PKC in-
hibitors, then pretreated with PDGF for 15 min before being acutely
stimulated for 5 min with IGF-I. As previously described (Fig. 1),
IGF-I-stimulated IRS-1 tyrosine phosphorylation and PI 3-kinase
activity were inhibited by PDGF pretreatment (Fig. 6A and B). Such in-
hibitions were totally impaired by all three inhibitors used (Fig. 6A
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and B), and were specific since none of the three inhibitors affected
basal and IGF-I-stimulated IRS-1 tyrosine phosphorylation state [22]
or IGF-I-stimulated PI 3-kinase activity (Fig. 6B) [22]. Similar results
were obtained for total PI 3-kinase activity measured in anti-p85
immunoprecipitates (data not shown). Noteworthy, whatever the
PKC inhibitor used, PDGF-induced serine 307 phosphorylation of
IRS-1 was unchanged (Fig. 6C). Taken together, these results demon-
strated that PDGF-induced inhibition of the IGF-I signaling occurred
by a PKC-dependent signaling pathway but that the serine 307
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phosphorylation of IRS-1 occurred by a PI 3-kinase-dependent (Fig. 4B)
but a PKC-independent signaling pathway.

3.8. PDGF inhibits the IGF-I-signaling by a PKC beta I-dependent signaling
pathway

According to the inhibitory spectra of the three inhibitors used,
two PKC isoforms, PKCα and PKCβI, were suspected to be implicated
in the PDGF-induced inhibition of the IGF-I signaling pathway. In
order to determine whether one or both of these two proteins played
a role in the regulation of the IGF-I signaling, inhibition of PKCα
and PKCβI was performed by transfecting cells with specific PKCα-
(siPKCα) and PKCβI-(siPKCβI) targeting or control non-targeting
(siControl) siRNAs. As shown in Fig. 7, PKCα and PKCβI expression
was unchanged after transfection of MCF-7 cells with siControl but
very efficiently and specifically inhibited with siPKCα and siPKCβI
(about 85% and 81%, respectively, n = 3). Whereas siControl and
siPKCα had no significant effect, siPKCβI transfection profoundly re-
duced PDGF-induced inhibition of the IGF-I-stimulated IRS-1 tyrosine
phosphorylation and Akt serine 473 phosphorylation. Noteworthy,
and as may be expected, whatever the siRNA transfection condition,
PDGF-induced IRS-1 serine 307 phosphorylation was unchanged
(data not shown). Taken together, these results demonstrated that
PDGF inhibits the IGF-I signaling pathway through PKCβI.

4. Discussion

By regulating fundamental biological processes such as prolifera-
tion, survival and metabolism, RTK signaling pathways are attractive
siControl siPKCα

PDGF

IGF-I +- +
- +-

+-
- -

Fig. 7. PKCβI mediates the PDGF-induced inhibition of the IGF-I signaling pathway. MCF-7 c
or control non-targeting siRNAs (siControl). Three days after transfection, cells were pretre
(22.5 ng/mL) for 5 min. Then, cells were lysed and proteins were separated by SDS-PAGE,
anti-phospho-Akt (Ser473), anti-Akt, anti-PKCα, anti-PKCβI or anti-actin antibodies as desc
ments conducted in triplicate.
targets for therapies against major diseases such as cancer and dia-
betes. However, each receptor-dependent signaling pathway is sub-
mitted to a plethora of regulatory mechanisms that play a crucial
role in signal transduction efficiency and specificity. Therefore, the
identification of these regulatory mechanisms appears essential to
further develop more pertinent and safer pharmaceutical strategies.
In the present study, we identify a new regulatory cross-talk be-
tween two tyrosine kinase receptor-dependent signaling pathways,
PDGF and IGF-I. We showed that PDGF negatively modulated the
IGF-I signaling pathway by inhibiting the IGF-I-induced IRS-1 tyro-
sine phosphorylation through PI 3-kinase- and PKCβI-dependent
and PKD1-independent signaling pathways. PI 3-kinase was previ-
ously demonstrated as a negative regulator of several tyrosine kinase
receptor-dependent pathways such as IGF-I [22] or insulin [29] thus
appearing as a major regulatory actor in signal transduction. In
the in vitro cross-talk context, this enzyme acts in a dual way, either
as a positive mediator of its upstream tyrosine kinase receptor-
dependent stimulatory pathways [20] or as a negative regulator of
its target tyrosine kinase receptor-dependent signaling pathways
[6]. Therefore, this dual role may allow PI 3-kinase to promote its
activating (i.e. first in time) pathway to the disadvantage of the
others. Nevertheless, in an in vivo context, the initiator signal con-
cept is more difficult to assess since a cell is constantly subjected
to multiple afferents. In this case, the predominant pathway could be
determined by the local ligand concentration or the receptor expres-
sion level. Since MCF-7 cells express different PI 3-kinase isoforms,
another hypothesis would be that this dual role could be fulfilled
by the specific action of different members of this family. However,
this hypothesis seems unlikely since similar results as those obtained
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with wortmannin were achieved with inhibitors that specifically tar-
get PI 3-kinase isoforms (data not shown).

PDGF induced serine 307 phosphorylation of IRS-1 by a PI 3-kinase-
dependent signaling pathway (Fig. 4). Once phosphorylated, this
residue was described to exert an inhibitory action on IGF-I- or
insulin-induced IRS-1 tyrosine phosphorylation therefore playing a
role in insulin resistant states [1–3,28]. Nevertheless, we showed that
this PDGF-induced IRS-1 serine 307 phosphorylation is not sufficient
per se to block the IGF-I signaling since IGF-I-stimulated IRS-1 tyrosine
phosphorylation and PI 3-kinase activity were not affected by PDGF
treatment when cells were cultured in the presence of PKC inhibitors
(Fig. 6). This indicates that PI 3-kinase, which mediates IRS-1 serine
307 phosphorylation, needs the cooperative action of at least another
independent pathway to inhibit the IGF-I one at the level of IRS-1. We
previously showed that, when stimulated with EGF or FGF, PI 3-kinase
cooperates with PKD1 to inhibit the IGF-I signaling pathway [22].
However, a feature of our work was to show that, although being
strongly activated by PDGF in MCF-7 cells, and contrary to what might
be suspected, PKD1 is not involved in PDGF-induced inhibition of
the IGF-I signaling and therefore is not, in this specific case, the cooper-
ative partner of PI 3-kinase. This result could be due to the lack of asso-
ciation between IRS-1 and PKD1 in response to PDGF thereby further
strengthening our hypothesis that an association between PKD1 and
IRS-1 is crucial for EGF- and FGF-induced IRS-1 inhibition [22]. Another
argument would reside in the kinetics of activation of PKD1 which are
not absolutely identical in response to these three growth factors. In
fact, PKD1 was more rapidly activated (maximal effect observed after
15 min) by PDGF than by EGF or FGF (maximal PKD1 activitymeasured
after 30 min) [22]. Such small but significant difference may allow
PKD1 to interact with distinct intracellular partners permitting or not,
according to its steric environment or its subcellular sequestration, its
association with IRS-1. Therefore, taken all together, these new results,
obtained in the context of the cross-talk between the PDGF and the
P
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generating binding sites for docking proteins as PI 3-kinase. Active PI 3-kinasemediates the IGF
two independent signaling pathways that lead to the respective activation of PI 3-kinase and PK
potentially (?) phosphorylates IRS-1 onto distinct serine residues. These two events concomit
quent IGF signaling pathway. Moreover, PDGF stimulates PKD1 which does not play a role in t
IGF-I signaling pathways, highlight the complexity and specificity of
the regulations that take place between signaling pathways and dem-
onstrate that a general regulatory model is not always systematically
applicable.

Instead of PKD1, PKCβI was identified to cooperate with PI 3-kinase
and inhibit the IGF-I signaling in response to PDGF. PKCβ was recently
described as a main regulator of physiological processes such as prolif-
eration, apoptosis and metabolism induced by several factors [7,14,32].
Moreover, this PKC isoform seems to play a crucial role in obesity and
insulin resistance [18,25,33]. Given the strong similarities between the
insulin and the IGF-I signaling, it is therefore conceivable that PKCβI
modulates, by a similar way, key proteins of these two pathways, such
as IRS-1, leading to a blockade of downstream signals. In the context
of the IGF-I signaling, PKCβI would therefore exert a negative control
of cell proliferation. Contrary to PKD1 that associates with IRS-1 in
response to EGF and FGF [22], we observed no association between
PKCβI and IRS-1 (data not shown). This suggests that either PKCβI
acts indirectly on the IGF-I signaling pathway at the level of IRS-1
through one of its downstream targets or that the association between
PKCβI and IRS-1 is too fleeting or occurs in too small amount to be
detected by a co-immunoprecipitation approach.

The specificity of the recruited proteins that inhibit the IGF-I sig-
naling pathway together with PI 3-kinase (i.e. PKD1 or PKCβI) may
be the consequence of the specific pathways activated downstream
of each tyrosine kinase receptor. Thus, whereas EGF and FGF activated
both the PI 3-kinase and the MEK/ERK signaling pathways in MCF-7
cells, PDGF only activated the first one (Fig. 2B and [23]). Moreover,
as discussed above for PKD1, peculiar enzyme activation time courses
may also participate to this specificity. Thus, while EGF and FGF tran-
siently stimulated PI 3-kinase [22], PDGF ensured its prolonged and
sustained activation. Such differences may be determinant for the re-
cruitment, stimulation and subcellular localization of specific intra-
cellular partners and may implement particular signaling pathways.
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Consistent with this, it is of interest to note that, in 3T3-L1 adipocytes,
PI 3-kinase activation time courses were different in response to EGF
or PDGF (sustained and transient respectively) and that only PDGF
down-regulated the insulin-induced IRS-1 tyrosine phosphorylation
[29].

Taking these results into account, the following model can be
proposed to explain how PI 3-kinase and PKCβI might regulate the
IGF-I signaling in response to PDGF (Fig. 8). In cells only stimulated
by IGF-I (Fig. 8A), the IGF-IR induces the tyrosine phosphorylation
of IRS-1 which recruits docking proteins such as PI 3-kinase and initi-
ates specific IGF-I downstream signaling pathways. When cells were
pretreated with PDGF, the PI 3-kinase and PKCβI signaling pathways
were activated (Fig. 8B). On the one hand, the PI 3-kinase pathway
leads to serine 307 phosphorylation of IRS-1 whereas, on the other
hand, PKCβI would negatively regulate IRS-1 perhaps by phosphory-
lating it, directly or not, on another residue. The concerted action
of these two pathways would therefore reduce the affinity of IRS-1 to-
wards the IGF-IR tyrosine kinase activity and its subsequent tyrosine
phosphorylation in response to IGF-I. Moreover, PDGF also stimulates
PKD1 which does not interfere with the IGF-I signaling pathway at
the level of IRS-1.

PDGF-induced serine 307 phosphorylation of IRS-1 is mediated by
a PI 3-kinase-dependent but Gö6976-, Gö6983- or GF109203X-
insensitive signaling pathway. This excludes most of PKC isoforms,
among them is PKCβI, and indicates that another serine/threonine
kinase, distinct from PKCs and localized downstream of PI 3-kinase,
such as mTOR or p70/S6 kinase (for review [4]), would be implicated
in this mechanism. Such results may seem surprising since some
PKC isoforms have been described to phosphorylate IRS-1 and in
particular its serine 307 residue (for review [12]). Such discrepancy
may be due to cell context and ligand response specificity since
other studies have been conducted neither in MCF-7 nor in response
to PDGF.

Noteworthy,we noticed once again a high similarity between the in-
hibitory time courses of IGF-I- or insulin-stimulated IRS-1-associated PI
3-kinase activity measured after growth factor pretreatment in MCF-7
(Fig. 1B and [22]) or in 3T3-L1 adipocytes [29], respectively. These
characteristic triphasic curves further strengthen the hypothesis that a
subtle common regulatory mechanism exists for the insulin and the
IGF-I signaling pathways whose physiological significance remains to
be determined.

In conclusion, our results confirm the notion that a coordinated
action of at least two independent pathways, including that of PI
3-kinase, is necessary to regulate the IGF-I signaling at the level of
IRS-1. Moreover, by highlighting the role of PKCβI in this regulatory
process, we showed that the negative regulatory partners that coop-
erate with PI 3-kinase are highly specific upon the cell activating
ligand illustrating the complexity of the cellular processes that need to
be fully considered to develop efficient therapeutic strategies against
pathologies such as cancers and diabetes.
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