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l. Introduction. Let x denote a fixed non-negative real number. Let 
X1, X 2, ... be independent and identically Qistributed random variables 
andSn=X1 + ... +Xn. Then Nn will denote the number ofindices m=1, 
... , n for which 

either Sm > X > Sm-1 or Sm-1 > x > Sm. 

Further, Kn will denote the number of indices m= 1, ... , n with Sm>X. 
We shall be interested in the generating functions 

00 

ck = L tnPr(N n = k) E(eKn es(Sn-X)JN n = k), 
n~o 

where Jtj < 1, Jel < 1, Re(s) = 0. For the case x = 0, e = 1, the problem of 
determining the ck was first considered by BAXTER [2], who reduced it 
to the problem of finding a certain factorization, see section 5. 

In this paper, a method is presented which in many important special 
cases yields an explicit formula for the Ck. More specifically, such formulae 
can be found when, for y>O, Pr(Xn>Y) is an exponential polynomial 
in y and also when the Xn are integral valued and, for j:>jo, Pr(Xn=j) 
is an exponential polynomial in j, (j an integer, jo sufficiently large). In 
fact, a little more is proved by allowing {zn=Sn-x} to be a Markov 
chain satisfying zo= -x and (3.1). 

In working out the details, we have concentrated our attention on the 
random variable N n (and its limit N 00), the random variable Kn having 
been studied already in [1], [4] and [6]. Further results on Nn may 
be found in [7], [8] and [9]. 

The method employed has a definite interest of its own and can easily 
be modified so as to apply to a large number of important problems. For 
some such applications, see [4], [6] and [10]. 

2. Preliminaries. Let we denote the commutative Banach algebra of 
all the complex-valued finite regular Borel measures on the real line R, 
the product fl,V being defined as the convolution of f1, and v. The norm 
Jlfl!J of f1, Ewe is defined as the total variation of the measure f1,; in partie-

1) Sponsored by the U.S. Army under Contract No. DA-11-022-0RD-2059. 
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ular, ll,ull = 1 if ,u is a probability measure, that is, a non-negative measure 
with ,u(R) = l. 

The Fourier transform f1 of ,u E we is defined as 
00 

fl(s) = f e8Y ,u(dy), (Re(s) = 0), 
-00 

thus, 1/l(s)l<ll,ull; we shall define 11/lll=ll,ull· In fact, the mapping ,u----0>-/1 
is a 1 : 1 linear norm-preserving mapping from we unto a commutative 
Banach algebra, denoted by B, of bounded and continuous functions 
such that 

(,uv)~ = f1 v. 
By we- and we+ we shall denote the class of measures ,u Ewe having their 
support contained in the interval (- oo, 0] or (0, oo ), respectively. The 
corresponding classes of Fourier transforms will be denoted as B-and B+. 
Each of B- and B+ is a closed linear subspace of B which is also closed 

00 

under multiplication. Thus, if iX E B+ then e"-1 = _2 iXnjn! E B+. 
1 

Each iX E B has a unique decomposition as iX = iX- + iX+ with iX- E B-
and iX+ E B+. In fact, if iX = ,U then 

O+ 00 

iX- = f e8Y ,U(dy), 
-00 

iX+ = f eSY ,u(dy), 
O+ 

(s purely imaginary). 
If iX = ,U with ,u as the probability distribution of a random variable Z 

one can write iX=E(e 8Z) and 

(2.1) 

Here, and furtheron, if II denotes a possible event then {II}= 1 or 0 
according to whether the event II does or does not occur. 

3. Stating the problem. In this paper {zn; n=O, 1, 2, ... } denotes a 
Markov chain defined by 

and 
Zo =-X 

Pr(zn EAizn-l=y)=,u(A-y) 

= v(A -y) 

if y,;;;O, 

if y>O. 

Here, x denotes a fixed non-negative number, while ,u and v denote 
probability measures. Hence, letting 

Xn=Zn-Zn-1 

and ,U=cp(s), v=tl>(s), we have 

(3.1) ~ E(e8Xnlzn-l=y)=tp(s) 
( =tl>(s) 

(s purely imaginary). 

if y,;;;O, 

if y>O, 
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By Nn we denote the (random) number of indices m= 1, 2, ... , n for 
which either Zm>O:>Zm-1 or Zm-1>0:>zm. We denote py Kn the number 
of indices m=1, 2, ... , n for which Zm>O; in particular, No=Ko=O. 
Further, t and (! denote fixed real or complex constants with 

0<jtj<1, lei< 1; 

the dependence of a quantity on t or (! will usually not be exhibited by 
the notation used. 

We now introduce 

(3.2) 

(s purely imaginary), in particular, from zo= -x, 

(3.3) 

Finally, let 

(3.4) 

~ Ook(s): ~-sx 

00 

if k=F 0, 

if k= 0. 

ok = Ok(s) = L tn Onk(s). 
n~o 

Our aim is to present a general method which in many important special 
cases enables us to obtain explicit formulae for the generating functions ok. 
These in turn often lead to useful explicit formulae for 

Pr(Nn=njzo= -x) = [Onk(O)Je~I· 

Of special importance is the particular case !f! = l/> where the increments 
Xn are independent and identically distributed. 

4. Basic relations. Because zo= -x<;O we have that Nn is even if 
and only if Zn < 0, thus, N n is odd if and only if Zn > 0. Therefore, we 
have the identities 

and 
{Nn= 2k} (!Kn= {zn < 0} [{N n-1 = 2k} +{N n-1 = 2k-1}J (!Kn-t, 

(k=O, 1, 2, ... ). Hence, from (3.1) and (3.2), (cf. (2.1)), 

( 4.1) On, 2k+l(s) = e[On-1, 2k(s) !fi(s) + On-1, 2k+l(s) l/>(s) ]+ 

and 

( 4.2) On, 2k(s) = [On-1, 2k(s) !p(S) + On-1, 2k-1(s) l/>(s)]-, 

(n> 1, k;>O), where Oo,-1(s) _ 0. Using (3.3) and (3.4), we obtain 

o2k+1 = et[02kT + 02k+1tJ>]+, 

02k+2 = t[02k+2T +02k+1tJ>]-, 
(k;>O), and 

Oo=e-sx +t[Oo!p]-. 

20 Series A 
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Consequently, 

(4.3) 02k E B-, 02k+l E B+, (k;;;.O), 

(4.4) (1- 12tt:P)02k+l-etrp02k E B-, (k;;;.O), 

(4.5) (1-trp)02k+2-t<J>02k+l E B+, (k> 0), 

and 

(4.6) (1-trp)00 -e-sx E B+. 

These relations form the starting point of our method, see section 6. 

5. Baxter's method. Though the results of the present section will not 
be needed later on, it might be helpful to explain how BAXTER's [2] method 
would work for the problem on hand. For this purpose, we introduce the 
generating functions 

00 00 

(5.1) Hz( B) = L uk L tn E( {N n = k} eKn eBZnlzo = z) 
k~o n~o 

and 
~ Ez= (1- trp)H.- -tu<l>Hi, 

? Fz= -eturpH.- + (1-et<l>)Hi. 
(5.2) 

Here, u denotes a fixed parameter' I u I < 1. If Zo = -X< 0 then ok as defined 
by (3.2) and (3.4) satisfies (4.3)-(4.6), consequently, 

(5.3) E.- =e8z, Fi = 0 if z,;;;;O. 

Vice versa, if z,;;;;O is fixed then the functions_!£; and Hi are uniquely 
determined by (5.2), (5.3) and the condition that each can be expanded 
as a power series in t and u with coefficients in B- and B+, respectively. 
A similar statement holds for z> 0, where (5.3) is to be replaced by 

(5.4) E.- = 0, Fi = esz if Z> 0. 

Now, consider the pair of matrices 

(5.5) p =(E., E.,) 
H+ H+ ' 

Zt Z:1: 

where z~, z2 denote fixed real numbers. Then (5.2) for z=z~, z=z2 1s 
equivalent to 

( 1 tu<J> ) ( 1 -et<l> o) (1-et<P) 0 P = (1-trp) 1 Q, 
1-trp eturp 

in other words, 

(5.6) 

where 

P=SQ, 

(
(1-trp)(1-et<P)- (turp)(etu<J>) 

s = u-et<P)-1 
etuq; 
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In following Baxter's method, one would try to find a pair of matrices 
(5.5) satisfying (5.6) such that the Ez., Fz. have the properties (5.3), (5.4), 
while Hz-. and H.+ are all power seri~s i~ t and u with coefficients in B-

' ' and B+, respectively. Somewhat by trial, BAXTER [2] succeeded in doing 
so whene = l, z1 ~ 0, z2 = 0 + and either cp = (/) = (l-s2)-1 or cp = (/) = pe8 + qe-s. 

6. Recursion formulae. We shall now convert the basic relations (4.3)
(4.6) into recursion formulae. Namely, let 

(6.1) 

and 

(6.2) 

~ L-(s) =,Jl (e~n (ifJn)-, 

? L+(s) = n~9 (e::n (ifJn)+. 

Consider further the linear operators on B defined by 

(6.3) T -x = t [ifJe1+ +L+ xJ-
and 

(6.4) 

Then the quantities 

(6.5) 

satisfy the recursion relations 

(6.6) 

(thus, F0- = l if X= 0), and 

(6.7) \ Fik+ 1 = T + r2k• 
? F2k+2 = T _ FilcH , 

In proving this, observe first that z- E B-, l+ E B+ and 

00 

(6.8) (l-tcp)-1 = exp L (tnjn) cpn = ez-+z+. 
n=l 

Similarly, L- E B-, L+ E B+ and 

(6.9) 

00 

Multiplying (4.4) by eL- = L (L-)njn! E B-, one obtains 

(k> 0) 

(k> 0), 

(k;;.O), 

(k;;.O). 
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Here, from (4.3) and e-L+ -1 E B+, the first term denotes a function in 
B+, therefore, 

e-L+ 02k+l = et [tp eL- 02k]+. 

Using the definitions (6.4) and (6.5) this implies the first relation (6.7). 
Similarly, (4.5) implies the second relation (6.7), while (4.6) implies (6.6). 

The usefulness of the scheme (6.5)-(6.7) depends to a large extent on 
the possibility of obtaining useful explicit formulae for the operator T + 
restricted to B- or for the operator T _restricted to B+. As will be shown 
in the sections 8 and 9, such explicit formulae can be found when the 
cumulative d.f. F(y) corresponding to tp(s) has a certain simple behavior 
for y > 0. However, before restricting ourselves to this special case, let 
us first make a few remarks on the number N 00 of changes of sign in the 
entire sequence {zn}· 

7. Total number of changes of sign. From the definition of Nn, we have 
N n+l > N n, hence, the limit 

N 00 =lim Nn 
n---+00 

always exists, N 00 <;,oo. Further, 

thus, as n -+ oo we have 

Pr(Nn-:>k) -+Pr(Noo>k) and Pr(Nn=k) -+Pr(N00 =k). 

It follows from (3.2), (3.4) that 

(7.1) 

k=O, 1, 2, ... ; remember that zo= -x<;,O. 
For the moment, let us restrict ourselves to the special case that 

(7.2) tp(s) tl>(s) =,i l. 

Then the Xn=Zn-Zn-1 are independent random variables with 

E(esX,.) = tp(s), 

thus Pr(Xn#O)>O. Let further Sn = X 1 + ... +Xn, hence, E(e8Sn) = tp(s)n 
and 

[tp(s)n]- = E({Sn<:.O} esS,.), [tp(s)n]+ = E({Sn> 0} esSn). 

From (6.1) and Abel's theorem, 

(7.3) ) 
lim Z-(O) = I n-1 Pr(Sn<:.O) =A, 
til n~l 

00 

lim Z+(O) = _2 n-1 Pr(Sn> 0) = B, 
ttl n~l 

Clearly, A+ B = .2 n-1 = oo. 

(say), 

(say). 
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Theorem 7 .1. Suppose that (7.2) holds true. Then 

(i) If A=B=oo then Pr(N00 =oo)=l. 

(ii) If A< oo then Pr(N oo = oo) = 0 and 

(7.4) 

(k=O, l, 2, ... ). 

~ Pr(N oo = 2k +I) = e-A [F2~+ 1 (0)JQ~l. t~l, 

( Pr(N00 =2k) = 0, 

(iii) If B<oo then Pr(N00 =00)=0 and 

(7.5) 

(k= 0, 1, 2, ... ). 

~ Pr(Noo=2k) = e-B [F2k(O)JQ~l.t~l' 

( Pr(N00 =2k+1) = 0, 

(iv) If E(jXJ)<oo these three cases correspond to E(X)=O, E(X)>O and 
E(X) < 0, respectively. 

Proof. Let us take e= 1. From (7.2), we have L+=l+. From (6.5), 
(6.8) and tp(O) = 1, 

(1-t) 0 2kt1(0) = e-no) Fv.,+ 1(0), 

(1-t) 02k(O) = e-z+(o) F2k(O). 

Hence, (7.1) and (7.3) imply the first parts of (7.4) and (7.5). 
The remaining assertions are an immediate consequence of known 

results, cf. [5] p. 331 or [4]. In particular, if A=B=oo then sup Zn= +oo 
and inf Zn = - oo with probability 1. The same is true if E(jXJ) < oo and 
E(X)=O. 

Further, A< oo implies that lim Zn = + oo with probability l, similarly, 
B < oo implies that lim Zn = - oo with probability 1. By the strong law of 
large numbers, the same is true if E(jXJ)<oo and E(X)>O or E(X)<O, 
respectively. 

8. A special case. The remaining part of this paper is concerned with 
the application of (6.7) to a certain special case, where all the r~+1 are 
situated in a finite-dimensional subspace of B+. Letting 

(8.1) tp(s) =I esY dF(y), <P(s) =I esY dG(y), 

(F(-oo)=G(-oo)=O), this will turn out to be the case when, for y>O, 
F(y) can be expressed as an exponential polynomial and also when both 
F and G correspond to an integer valued random variable, such that, for j 
as a sufficiently large integer, the jump of F(y) at j can be expressed as 
an exponential polynomial in j. 

In order to treat these two situations simultaneously, we consider a fixed 
closed subgroup Ro of the reals, having at least two distinct elements. 
Hence, either Ro coincides with the group R of all real numbers or with 
a discrete group of the form 

Id={jd; j=O,± 1,± 2, ... }. 
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Let Eo consist of all thm:e elements fi E E for which the corresponding 
measure fl E iUC is carried by R0 • Let further 

Then each of E 0 , Er; and Et is a closed linear manifold of E which is also 
closed under multiplication. Clearly, if X E Eo then x- E Er; and x+ E Et. 

Let us assume that 

(8.2) x E Ro, rp E Eo, f/J E Eo. 

From (6.1) and (6.2), z+ and L+ are in E(i, z- and L- are in Er;. Hence 
from (6.3) and (6.4), T _E0 C Er; and T +Eo C E(i, thus, from (6.6) and 
(6.7), T'iJc E Er; and T'iic+ 1 E Et. 

We now introduce the crucial assumption that the space T +Eo be 
finite-dimensional. In other words, there exist finitely many elements 
A.,t(v= l, ... , r) m Et such that 

r 

(8.3) T+x- = 2 a.{x-}A.,t if x- EE[), 
v~l 

where a.{x-} denotes a complex number independent of s; (the quantities 
a.{x-} and A.,;t- will turn out to be rather simple, see section 9). Introducing 

c~kl = a. { T'iJc}, 

and using (6.6), (6. 7), o'ne easily obtains the following simple scheme for 
computing the T'iJc and T'ik+I· 

One has 

(8.4) 

(T0- = l if x=O). Let 

(8.5) 

and 

(8.6) 

where 

(8.7) 

Then 

(8.8) 

and 

(8.9) 

+ rr; = [e-sxel ]-, 

cfOl =a {r-} 
p v 0 ' 

r 

r + - "' lk) 1+ 
2k+l - £., Cv Av ' 

v~l 

r 

r - - "' lk) T , + 
2k+2 - £., Cv - Av ' 

v=l 

If desired, the generating functions 
00 

Yv = .2 c~k) uk 
k~O 

(v= l, ... , r), 

(fl=l, ... , r; k;;;.O), 

(k;;;.O), 

(k > 0). 
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may be computed first from the system of linear equations 

r 
yl'- u Law Yv = c~ol, 

v~l 

(fl= 1, ... , r). 

In particular, this would be a good method for studying the moments of 
N n through the derivatives of the y. at u = 1, cf. (6.5), (3.4) and (3.2). 

9. More details. Let us now determine under what circumstances (8.3) 
is satisfied. Observing that x E Br; if and only if e1_+L_ x E B 0 , we have 
from the definition (6.4) of T + that (8.3) is equivalent to 

r 

(9.1) [~Px-J+ = .L b.{x-p .• + 
V=l 

provided that 

(9.2) 

By the way, (6.8) implies 

e-1+ + ttp e1- = e1- E B-, 

hence, 

thus, from (9.1 ), 

r 

(9.3) e-z+ = l-t _L b.{ez-p.;. 
V=l 

We next observe that (9.1) is in turn equivalent to the special case where 
x-(s) = esv for some fixed y E R0, y < 0. More precisely, letting b.{ esv} = {J.(y), 
(y.;;;O), (9.1) implies 

oo r 

(9.4) J esz dF(z-y) = _L {J.(y) J.;(s), (y E Ro, y.;;;O), 
O+ v~l 

where F denotes the d.f. defined by (8.1). Moreover, if (9.4) holds (with 
{J.(y) as a bounded measurable function, y < 0), and x- E Br;, 

o+ 
x- = J esY dH(y), 

-00 

(say), then (9.1) holds with 

o+ 
(9.5) b.{x-} = J {J.(y) dH(y). 

-00 

One may assume that the cumulative d.f. F(y) is continuous to the right. 
Let J./~a. (say); denoting the a.-measure of the interval {u: u>z} by 
y.(z), we have that (9.4) is equivalent to the functional equation 

r 

(9.6) F(y+z) = _L (3.( -y) y.(z), 
V=l 



300 

where F(y) = 1- F(y). Clearly, Yv(z) is a function of bounded variation 
which is continuous to the right and tends to 0 when z __,.. =· Moreover, if 
Ro=la then, (from .A.: E Eft), Yv(z) is a step function with d, 2d, 3d, ... as 
the only possible discontinuities. 

We shall now distinguish between the two cases Ro = R and Ro =I d· 

Suppose first that Ro=R. Then 1), as may be seen from a slight mod
ification of a proof ofFENYo [3], (9.6) implies that, for y> 0, F(y) = 1- F(y) 
is an exponential polynomial. More precisely, for y>O, the derivative 
F'(y) of F(y) exists and admits the expression 

p kh 
(9.7} F'(y) = L L dhk yk-1 e-txhv if y>O. 

h~l k~l 

Here, the kh denote positive integers while the dhk and IXh denote complex 
numbers, such that (9. 7) defines a real valued and non-negative function 
with IZ" F'(y) dy<, 1. Thus, we may assume that Re(1Xh}>0 and further 
that the IXh are distinct and dh,kh=/=0, (h=1, ... ,p). 

Let the 

pairs (h, i}, (h= 1, ... , p; i= 1, ... , kh), be enumerated as v= 1, ... , r. Then, 
(9. 7) in turn implies (9.6) with 

kh 

f3v( -y) = L dhk yk-i e-IXkY (k-1}!/(k-i)!' 
k~ -

y;(z) =- zi-1 e-(Xh"/(i -1}!. 

Consequently, using (9.5), (9.7) implies that (9.1) holds with 

(9.8} 

and 

(9.9) 

00 

.A.,;+-(s) =I esYzi-1e-txh•dzj(i-1}!=(1Xh-s)-i 
0 

kh-i 

bv{x}= L dh,i+;(-1)Jx(J)(1Xh) (i+j-1)!/j!, 
i~O 

when X E B-. Here, x<J> denotes the j-th derivative of the function x(s). 
Note that for each x E B-, 

O+ 
x(s) = I e8Y dH(y), 

-00 

1 ) A more elementary proof would be as follows. Using the result which we 
shall prove concerning (9.14), one obtains that for each s ~ 0 and each integer 
q ~ 1 there exists an exponential polynomial fs.q of the type (9.7), (with 'J,k, ~ r), 
such that F(s + ijq!) = f,.q(s + ifq!) when i = r + 1, r + 2, .... Varying q, it follows 
that fs.q does not depend on q. This yields an exponential polynomial /, such 
that F(s + y) = f,(s + y) for each positive rational number y, hence, for all y > 0, 
F(y) being monotone; (it can be shown that even measurability ofF would suffice). 



301 

(say), there is a natural extension of x(s) with Re(s) = 0 to a continuous 
function in Re(s);;.O which is analytic in Re(s)>O; (clearly, such an 
extension is unique). In a similar way, each function x(s) E B+ with 
Re(s)=O can be extended to a continuous function in Re(s)<;O which is 
analytic in Re(s) < 0 and tends to 0 as Re(s) -+- oo. 

These remarks apply in particular to the functions l-(s) E B- and 
l+(s) E B+. Consequently, (assuming that (9.7) holds), (9.3) and (9.8) imply 
that e-l+(s) is of the form 

(9.10) 

(Re(s),;;;;O), wherer= l,kn and the ;i denote yet unknown complex numbers 
having a positive real part. 

Further, from (9.7), 

O+ p kh 

(9.ll) 1-ttp(s) = 1-t f e8Y dF(y) -t 2, 2, (k-1)! dnk(1Xn-s)-k 
-00 h~l k~l 

yielding an extension of the function 1-ttp(s), (Re(s) = 0), to a continuous 
function in Re(s) > 0 which is analytic in Re(s) > 0, except for the pole 
IXh (h=l, ... , p) which is of order kn, from dh,kh=I=O and t=/=0. Finally, 
from (6.8), 

e-l+(s> =ens> (1-t tp(s)) 

when Re(s)=O, hence, whenever Re(s);;.O provided that e-l+<s> is there 
defined by (9.10). It follows that the ;i are distinct from the IXn and in 
fact that {;1, ... , ;r} is precisely the full set of zeros of the function 1-ttp(s) 
in Re(s) > 0, (each zero being counted as often as its multiplicity). 

Also the function 
ro-(s) = [e-sx el+]_ 

can now easily be obtained by decomposing el+ as given by (9.10) into 
partial fractions. For instance, in case all the zeros ;1, ... , ;r are distinct, 
letting 

we have 

(9.12) 

p r r 
el+(s) =IT (1Xn-s)k;; IT (;i -s)-1 =I+ L DMt-s)-1, 

h~l i~l i~l 

\ Fr;(s) = e-sx+i~ Dt(e-sx_e-~i'") (;t-s)-1 

( 
r 

= e-sx el+(s)- L Dt e-~i'" (;i -s)-1. 
i~l 

Next, let us consider the case Ro=la,; one might as well assume that 
d= 1, thus, Ro is the additive group of integers. Further, the standing 
condition (8.2) now means that x is a non-negative integer, while 

(9.13) tp(s) = L Pi eis, 
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(PJ>O, q;-;;.0, LPi= L,q;= 1). In particular, F(y) has a jump Pi at the 
integer j, hence, (9.6) implies in this case 

r 

(9.14) Pi+i= L f3v(-i)Yvi' (i=O, 1, ... ; j=1, 2, ... ), 
:v=l 

(where Yvi=Yv(j-0)-yv(j+O), thus, LiiYvii<oo). Let Xo, ... ,Xr denote 
numbers, not all zero, such that 

r 

L f3v( -i) Xt = 0, (v= 1, ... , r). 
i~o 

Let m and M denote the smallest and largest index i, respectively, for 
which Xt#O; O<m<M <r. Multiplying (9.14) by Xt and summing, we 
obtain 

111-m 

(9.15) Pi= L av Pi-v if j ~ M + 1; 
v~l 

here, a"= -xM_vfx111 , aiYI-m # 0. If two solutions of (9.15) coincide for 
j = m + 1, ... , M they coincide for all j > m. Let the distinct roots of 

111-m 

I a" e-· = 1 
:v=l 

be denoted as e1, ... ' ep and let k1, ... ' kp denote the corresponding 
multiplicities. Then (9.15) admits the linearly independent solutions 
jlc-1@hi, (h= 1, ... , p; k= 1, ... , kh). It follows that there exist complex 
constants chic such that 

p kh 

Pi= L L chdlc-1 e~ if j>m. 
h~l k~l 

Here, m+ L,kh=M <,r. From LPi=1, we have ch~c=O whenever j0hi>L 
Conversely, let 

(9.16) 

with kh as positive integers, dhlc and cxh as complex constants, Re(cxh) > 0, 
and suppose that 

(9.17) \Pi= P; 
( = pj+p7 

if j>m, 

if 1 <,j<,m, 

where m > 0 is a fixed integer. Then, for each 

0 

x-(s) = L Xi eis 
i= -00 

m Br;, we have 
0 oo m m-g 

[tpx-J+ = L Xi L Pi-1 eis = L esu L X-i P7+u 
i~ -oo i~l y~l i~O 

p kh 

+I I ahlc[(-i}fi)cx)lc-1 x-(cx) (e"'-s-l)-1J"'~"h. 
h~l k~l 
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Consequently, (9.17) implies (9.1) with r=m+ L kh, 

l ,1,;-(s) =! ji- 1 e(•-"hlij(i-1)! 
i=l 

= (b/bs)i- 1l(e"h-•-1)- 1/(i-1)! 

(9.18) 

for v = 1, ... , Lkh; here, v stands for one of the Lkh pairs (h, i) with 1 < h < p, 
1.;;;i.;;;kh. Further, for these indices v, bv{X} is aga;n given by formula 
(9. 9). Finally, 

m-u 
(9.19) bv{X} = L X-1 P7+u 

i~O 

if v= L kh+g and 1 <;g<;m. 
We are now also in a position to determine an explicit formula for e-1+<8>. 

One may assume that in (9.16) the <Xh are distinct and dh,k" + 0, (h= 1, ... , p) 
and further that in (9.17) the number m is minimal in the sense that 
p';,. # 0 if m>O. 

Letting w=e8 and using (9.3), (9.18), (9.19) and (9.17), it follows from 
a reasoning completely analogous to the proof of (9.10) that 

(9.20) 
r 'P 

e-z+<8> =II (1-W/'f)i) II (1-we-"h)-kh, 
i~1 h=l 

Here, r = m + L kh. Further, {171, ... , ?]r} is precisely the full set of zeros 
of the function 1-ttp(w) in the region Jwj > 1, (each zero counted as often 
as its multiplicity). Here, 

tp(w) = L p1wi, 
i 

(jwj = 1), 

which can be extended to a function which is continuous for Jwj > 1, 
analytic for Jwj > 1, except for the pole e"h which is of order kh, (h= 1, ... , p). 

Decomposing ez+<8> into partial fractions, one obtains an explicit formula 
for T0 = [e-sxel+]-, (x;;;;,O a fixed integer). For instance, if all the ?]b ... , ?]r 
are distinct, letting 

one has 

(9.21) 

where w=e8. 

~ T0 (s) = w-x +i~1 Di(w-x -ni-x) w(?]i- w)-1 

? 
r 

= w-x el+(8)- L Di ?]i-xw(?]i -w)-1, 
i=1 

(To be continued) 




