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The Definition of Random Sequences 
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Kolmogorov has defined tile conditional complexity of an object y 
when the object x is already given to us as the minimal length of a 
binary program which by means of x computes y on a certain asymp- 
totically optimal machine. On the basis of this definition he has 
proposed to consider those elements of a given large finite popula- 
tion to be random whose complexity is maximal. Almost all elements 
of the population have a complexity which is close to the maximal 
value. 

In this paper it  is shown that  the random elements as defined by 
Kolmogorov possess all conceivable statistical properties of random- 
ness. They can equivalently be considered as  the elements which 
withstand a certain universal stochasticity test. The definition is 
extended to infinite binary sequences and i t  is shown that  the non 
random sequences form a maximal constructive null set. Finally, 
the Kollektivs introduced by yon Mises obtain a definition which 
seems to satisfy all intuitive requirements. 

I.  THE COMPLEXITY MEASURE OF KOLMOGOROV 

Cons ide r  the  set  of all  words  ove r  some f ini te  a lphabe t .  T h e  l eng th  n of 
such a s t r ing  x = ~i~2 - . .  ~, wil l  be  d e n o t e d  b y  l ( x ) .  L e t  A be  a n  a lgo-  
r i t h m  t r a n s f o r m i n g  f ini te  b i n a r y  sequences  in to  words  ove r  some f ini te  
a lphabe t .  W e  suppose  t h a t  the  a l g o r i t h m  concep t  has  been  m a d e  precise  
in one  of t h e  va r ious  equ iva l en t  w a y s  t h a t  h a v e  been  p roposed ,  e.g. b y  
means  of t h e  t h e o r y  of p a r t i a l  r ecurs ive  funct ions .  

Fo l lowing  K o l n m g o r o v  we define t he  comple x i t y  of the  e l e me n t  x w i t h  
respec t  to  t h e  a l g o r i t h m  A as  t he  l eng th  of t he  sho r t e s t  p r o g r a m  which  
compu te s  i t ,  

K A ( x )  = m i n l ( p ) .  

I f  the re  is no such p rog ram,  i.e. A ( p )  ~ x for  al l  b i n a r y  s t r ings  p,  we 
p u t  K.~(x)  -- -t- oo. Thi s  c o m p l e x i t y  m e a s u r e  de pe nds  in  a n  essent ia l  w a y  
on the  bas ic  a l g o r i t h m  A.  W e  a l m o s t  ge t  r id  of  th is  de pe nde nc e  b y  
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means of the following theorem, proved by Kohnogorov and Solomonoff 
(196~). 

There exists an algorithm A such that for any algorithm B 

KA(x) =< K , ( x )  q- c, 

where c is a conslanl (dependent on A and B but nol on x).  
Such an algorithm is called asymptotically optimal by ]Kolmogorov 

and universal by Solomonoff. The complexity of x with respect to a fixed 
algorithm of this type we shall call simply the complexity of x and de- 
note by K ( x ) .  

In an analogous way we can introduce the concept of conditional com- 
plexity. To do this, let p, x ---> A (p, x) = y bc an algorithm of two vari- 
ables, where p is a finite binary sequence, called the program, x a string 
over some alphabet, and y a word ovei" a possibly different alphabet. The 
quantity 

KA(y Ix) = minl(p)  

will be called the conditiolml complexity of y given x with respect to A. 
There exists an algorithm A such that, for an arbitrary algorithm B, 

K a ( y l x )  <= K , ( y l x )  q- c, 

where c is a conslant (dependent on A and B but not on x and y).  
A proof of this theorem, which is not more complicated than that of the 

previous one, was given by Kohnogorov (1965). Again wc shall fix a 
universal algorithm, whose existence is guaranteed by the theorem, and 
write simply K ( y l x ) ,  speaking of the conditional complexity of y 
givea x. 

I t  is an immediate consequence of the theorem that there exists a con- 
stant c such that 

K ( h ~  - . "  ~ I n )  --< n + c 

for every binary string $i~2 "'" ~ .  On the other hand, the number of 
sequences of length n for which 

K ( 5 5 0 . . . -  $. I n )  --  n - c 

is larger than (1 -- 2-~)2 ~, so that for large n the overwhehning ma- 
jority of sequences $~ . . .  ~. have a conditional complexity approxi- 
mately equal to the maximal value n. Let us call these elements of maxi- 
nml complexity random sequences. The thesis has been put forward by 
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Kolmogorov tha t  this provides an adequate formalization of our intuitive 
notion of randomness.  

II.  A UNIVERSAL TEST FOR RANDOMNESS 

Ill order to justify the proposed definition of randomness we have to 
show tha t  the sequences, which arc random in the stated sense, possess 
the various properties of stochasticity with which we are acquainted in 
the theory of probability. Assuming the binary alphabet  to consist of the 
letters 0 and 1, the number  of ones in ~x~2 "" • ~, should be close to n/2 ,  
the nmnber  of zero runs to n/4 ,  the number  of occurrcnces of 0110 to 
n/16, and so on. I t  is not difficult to provide a proof in each of these 
cases, but  the question arises whether  it is possible to prove once and for 
all tha t  the random scquences introduced possess, in some sense, all pos- 
sible properties of stochasticity. Such a theorem should enable us to 
carry over automatical ly  the various theorems of probabil i ty theory 
on random sequences. For  example, with s~ = ~/, -4- ~2 -4- - ' .  A- ~,,, 
we should be able to obtain a bound on ]2s,,- n[ by  means of 
K(~,~2 - . -  6, [ n) and n, this bound being of the order of magnitude %/n 
when K(~h~2 --" ~, ] n) equals n approximately.  

Let  us borrow idcas from statistics. Consider a test  for randomness,  for 
example the one which rejects when the relative frequency of ones differs 
too nmch from ½. Since wc are always intcrcstcd merely in the order of 
magnitude of the level of significance, we nmy restrict our at tent ion to 
levels e = ½, ~, ~, - . -  . The  particular test  mentioned is given b y  the 
following prescription. 

Reject  the hypothesis of randomness on the level e = 2 -'~ provided 

[2s,  -- n I > f (m,  n) .  

Here f is determined by  the requirement tha t  the number  of sequences of 
length n for which the inequality holds should be < 2  "-m. Further,  i~ 
should not be possible to diminish f without  violating this condition. 

Generally, a test  is given by  a prescription which, for every level of 
significance E, tells us for what  observations (in our ease, binary strings) 

e)--m the hypothesis should be rejected. Taking e = . , m = 1, 9 . . -  this 
amounts  to saying tha t  we have an effective description of the set 

U C _ N X X  

(N denotes the set of natural  numbers  and X the set of all binary strings) 
of nestcd critical rcgions 
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U~= {x;m, xE U}, 

U , , ~  U~+,, m = 1 , 2 , - . .  

The condition that  U,~ be a critical region on the level e = 2 -'~, amounts 
to requiring tha t  the number of sequenccs of length n contained in U~ 
be =<2 "-~. 

Invoking the thesis of Church, we now formalize the fact that  the 
fanfily of critical regions is given by an explicit prescription by assuming 
the set U to bc rccursively enumerable. This is the weakest requirement 
we can imagine, and, in fact, all the tests of use in statistical practice 
are even of a much simpler type. In the following we shall, when speaking 
of a test, understand a recursively enumerable set U, interpreted as the 
family of critical regions, satisfying the restrictions above. 

Having thus made precise the concept of a test, we are able to prove 
the following theorem, which, as will be shown below, could have been 
stated equivalently ]n terms of the conditional complexity measure and 
proved as a corollary of the second theorem of the previous section. 
Roughly speaking, it states that  there exists a test, to be called universal, 
such tha t  if a binary scqucnce is random with respect to that  test, then 
it is random with respect to every conccivable test, neglecting a change 
in the level of significance. 

There exists a test U such that, for  every test V, 

V,,+c ~ U,~ , m = 1, 2, . . .  , 

where c is a conslant (dependent on U and V ) .  
The proof is accomplished by first proving that  the set of all tests is 

effcctivcly enumcrable. 
There exists a recursively enumerable set T ~ N X N X X such that U 

is a test i f  and only i f  

U = { m , x ; i , m ,  x C  T} 

for  some i = 1, 2, . . . .  
I t  is well-known tha t  the set of all recursively cnumerable subsets of 

N X X is cffcctivcly enumerable. We exploit this fact by choosing a 
partial recursive function f of type N X N --+ N X X with the property 
that  if it  is defined for i, j ,  then i, 1, i, 2, . . .  , i, j -- 1 likewise belong to 
the domain of definition. Further, a set in N X X is rccursivcly enumer- 
able if and only if it equals 
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{ f ( i , j ) ; j  = 1, 2, . . . }  

for some i = 1, 2, • • • . The  sets in this enumera t ion  are now, if neces- 
sary,  modified so tha t  t hey  all sat isfy the  condit ions for a test.  R e m e m b e r  
tha t  a recursively enumerable  set  U ~ N × X is defined to be a test  if, 
firstly, 

U,~ ~ U,~+I, m = 1, 2, . . .  , 

and, secondly, tile number  of elements  of length n contained ill U,~ is 
< 2  ~-'~ for all m and  n. Fix an  a rb i t r a ry  i = 1, 2, . .  • . I f f ( i , j )  is unde-  
fined for all j ,  the corresponding recursively enumerable  set is e m p t y  and  
hence tr ivial ly a test. Othenvise,  calculate f ( i ,  1) = m , ,  x l .  I f  the  set  
of all m, x, for m < m, satisfies the condit ions for a test  ( in this case, 
m~ <= l(x~)), we include i, m, x~ into T for all m =< m l .  Otherwise the  
section of T a t  i remains e m p t y  and the  modificat ion procedure is com- 
pleted for this i. I n  the former  case we proceed b y  calculat ing 
f(i ,  2) = m2, x2 if defined and adding  i, m, x2 to T for all m < m2 pro- 
vided the condit ions for a test  are no t  violated.  I f  they  are, the section 
of T a t  i is left unaffected by  the last s tep and the modif icat ion is finished. 
I t  should now be evident  how the  cons t ruc t ion  is carried on. Wc  note  
t ha t  the  section of  T at  i is a tes t  for every  i = 1, 2, • • • which equals 
{f(i, j )  ; j = 1, 2, . - .  } provided this set  a l ready satisfies the definition 
of a test. T h e  proof  is finished. 

The  universal  test  U is obta ined  as the  image of T under  the nmpping  

i , m  -t- i , x ~ m , x .  

For  suppose tha t  V is all a rb i t r a ry  test. Then ,  for some i, 

I r = { m , x ; i , m , x  C T}, 

so t h a t  

V,~+,= { x ; i , m + i ,  x 6  T} C { x ; m ,  x 6  U} = U,~ 

for all m = 1, 2, . . -  . We  see t h a t  the  cons tan t  c which figures in the 
t tmorem m a y  be chosen as the GSdel n u m b e r  of  the test  V in the enumer-  
at ion T. 

As in statist ical  practice,  it is convenient  to in t roduce the critical level, 
the smallest  level of significance on which the  hypothes is  is rejected.  

= ¢-)--Tn 
Since we have  chosen to work  wi th  m instead of  e ~ , wc in t roduce 

mu(x) = m a x  m ,  
xEVm 
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where the dependence on the particular t e s t  used is imlicatcd by  the 
subscript  U. I n  order that  m y ( X )  be defined for all x we define U0 to 
be the set of all b inary strings, so tha t  

0 <-_ m d x )  < l(x) 

for all x. In  terms of the critical level the existence of a universal test  
can be s ta ted thus. There  exists a test  U such that ,  for any test  V, there 
is a constant  c with the proper ty  tha t  

my(x) -_< mu(x) + c 

for all  x. The  critical level of x with respect to a fixed universal test  we 
shall call s imply the critical level of x and denote by  re(x) .  The  relation 
to the complexity measure of Kolmogorov is given b y  the following 
theorem. 

• There  ex is l s  a conslanl  c such lhat 

I z (x )  - K ( x  I t ( x ) )  - m ( ~ ) l  < 

f o r  all b inary  s tr ings  x .  
Define 

V = {m,  x;  K ( x l l ( x ) )  < l ( x )  - -  m} 

= {m,  x;  ( 3 p ) ( l ( p )  < l ( x )  - -  m & A ( p ,  l ( x ) )  = x)} _ N X X,  
where A denotes the universal algorithm basic to the complexity meas- 
ure. V is a test  and 

m y ( x )  -- l ( x )  - K ( z [ l ( x ) )  - 1, 

so tha t  
/ (x)  -- K ( x  l l ( x )  ) <= r e ( x )  + c 

for some constant  c. 
To prove the inequality in the converse direction let U denote the 

universal test  defining the critical level and choose a general rccursive 
function f of type  N ~ N X X which enumerates  U without repetitions. 
By  means of f we construct the following algorithm from X X N to X. 
I f  f (1 )  = ml ,  x l ,  then 

A ( O 0  . . .  O0, l ( x~ ) )  = x~ ,  

l(xl)  "-- m ,  

where the length of the string of zeros is l ( x l )  - -  m~ .  I f  f (2 )  = m2, x2 and 
ml  , l ( x l )  = m2 , l (x2) ,  then 
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otherwise 

A(00 . - -  01, l(x~)) = x : ,  
l(z2)"- m2 

A(O0 . . .  00, l(x2) ) = x2. 

Since U is a test, the construction can be carried on without ambiguities. 
Evident ly  

IG(x I t ( z ) )  = l ( ~ )  - r e ( z ) ,  

so tha t  

K ( z  I Z(z))  =< l ( x )  - -  re (x )  + c, 

where c is a constant. The  proof is finished. 
Let  us return to the concrete test considered in the beg!nning of this 

section. By  means of the universal test we obtain the~following in- 
equality, holding for all binary strings ~l~ • "" ~, ,  

I Zs. - n l _-< f ( m ( 5 ~  " "  ~ . )  + c, n ) ,  

or, equivalently, 

l 2 s .  --  n [ <= f ( n  - -  K ( ~ , ~ 2 . . .  ~. I n ) +  c, n ) .  

According to the theorem of de Moivre and Laplace, 

1 
/-z f (m,  n)  -+ cI,-X(1 -- 2 - ~ - ' )  

"Vn 
with 

'~(x) = f ~ e -~1~ J--, V ~  dy, 

so that  1 2 s ~ -  n I is of the order of maguitude %/n provided 
K(~1~2 . - -  ~n I n) equals n approximately. 

III. TItE DEFINITION OF INFINITE RANDOM SEQUENCES 

In the case of finite binary sequences the introduction of the universal 
test led to nothing but  a useful reformulation of what  could have been 
established by  means of the complexity measure of Kolmogorov. We shall 
now see tha t  by  defining in a similar way a universal sequential test we 
obtain a natural  definition of infinite random sequences. Such a definition 
has so far not  been obtained by  other methods. 
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Imagine a random device, such as the tossing of a coin, capable of 
delivering a potenti 'dly infinite binary sequence ~18:-." ~ n - ' - .  To 
confornl with our intuitive conception of randomness, such a sequence 
has to satisfy for example the law of large numbers, 

lira s, _ 1 

or, requiring more, the law of the i terated logarithm, 

- -  2 s .  - -  n = 4 - 1 .  

lira,~= %/2 n log log n 

In the measure theoretic probability theory this is motivated by  proving 
that  the set of all sequences violating the law has measure zero. By defi- 
nition this means that  to every e :> 0 there exists an open covering qt of 
the set such tha t  

u(~t) -< ~. 

Here u denotes the usual measure with respect to which all coordinates 
are independent and take on the values 0 and 1 with probability ½. Let  
5 ( ~ - . - ~ , )  denote the set of all infinite sequences beginning with 
~ 2  --" ~, • Then, instead of % we may just  as well consider the set 

U = [x ;~ (z )  _ ~} _c x .  

Note that ,  conversely, 

~t = U ~(~) 
xEU 

if and only if 'it is open. Further,  U has the property that  it contains all 
possible extensions of any of its elements, y being an extension of x, in 
symbols y _~ x, if the string y begins with x. In other words, U may be 
regarded as the critical region of a sequential test on the level ~. The 
definition of a null set may hence be stated in statistical terms as follows. 
For  every ¢ > 0 there exists a sequential test on that  level which rejects 
all sequences of the set. 

We can now argue just as in the previous section. Any sequential test of 
present or future use in statistics is given by an explicit prescription, 
which, for every level of significance e = ½, ¼, - - .  , tells us for what  
sequences the hypothcsis is to be rejected. Equivalently, when proving 
the law of large numbers or some other theorem involving the words 
almost surely, we actually construct an open covering of measure =< ~ for 
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qrbitrarily small ~, which, without restriction of generality, we may  take 
to be of the form 9 - "  . . . .  ' . , m = i, 2, "Ihese s ta tements  are nmde precise 
by assuming tha t  the family of critical regions (open coverings) 

U c _ N X X  

is rccursively enmncrable. U has to satisfy the following rcstricfions. If 
m, x E U, then so does n, y for all n -< m and y ___> x. Further, the number 
of sequences of length n contained in 

U = =  {x;m, x E  U} 

is =< 2 . . . .  for all m and n. 
Again we can prove the key theorem to the effect tha t  the set of all 

sequential tests (open coverings) is cffcctivcly cnumerable. 
There exists a recursively enumerable set T ~ N X N X X such that U 

is a sequential test i f  and only i f  

U = { m , x ; i , m ,  x E  T} 
for some i = 1, 2, . . .  

The proof differs only negligibly from tha t  of the previous section. We 
choose the partial  recursive function f just  as before, fix an arbi t rary  
i = 1, 2, . .  • and calculate f ( i ,  1) = rex, xx if defined. Provided we do 
not violate the conditions connected with the level of significance (in this 
case, mx < l ( x , ) )  we include into T i ,  m, x for a l lm  =< ml and x => x~. 
Otherwise the section of T at  i remains empty .  I f  we have not finished 
already, we continue by  trying to ca lcula tef ( i ,  2) = m2, x2 and includ- 
ing i, m, x for all m =<_ m2 and x _-> x2 • These indications should suffice. 

There exists a universal sequential lest U such that, for any sequential 
test V, 

V.,+~ ~ Un,, m = 1, 2, . . .  , 

where c is a constant (dependent on U and V) .  
Again U is obtained as the image of T under tlm mat)ping 

i, 7n --I- i, x ~ m, x. 

I t  is readily verificd t lmt U is a sequential test  satisfying the conditions 
of the theorem. 

The  critical level 

m~(z) = max m 
xE Um 

with respect to a sequential test  U satisfies not only 
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0 < mu(x) < l(x) 

but  also 

m~(x) < m~(y) 

for all x -< y. Consequently, we can introduce the critical level of an 
infinite sequence }I}~ " '"  }. " '"  

mv(},}~-.. }. - . - )  = limmv(~,~2..- }n), 

0 _-< m~(h}~ . - "  }. " - - )  < + ~ .  

Having fixed a universal test U, we shall drop the index U and speak 
simply of the (sequential) critical level. 

An infinite binary sequence },}~ --. ~'~ .. • is called a random sequence 
provided 

m(},}2 "-" } .  " - ' )  < + ~ .  

Note that this definition does not depend on the choice of the universal 
test with respect to which the critical level is defined. 

Abnost all infinite binary sequences are random sequences. 
hl t roduce the open sets 

' u~=  U ~(x), m =  1 , 2 , - . - .  
zEU~ 

Since U is a sequential test, 

ql, ~ 'U2 ~ . . -  

and 

u (%, )  < 2 -~, m = 1, 2 , . . -  

The  set of all nonrandom sequences is precisely the null set 

r a i l  

provided U was chosen universal. 
Let  us make another reformulation, this t ime in the spirit of con- 

structive analysis. An open set ~ of infinite binary sequences is called 
constructively open if {x; 3(x) ~ ~} is recursively enumerable. 
~ ,  ~ 2 ,  • • • is a constructive sequence of constructively open sets pro- 
vided {m, x; 3(x) ~ ql~} is recursively enumerable. (~ is defined to be a 
constructive null set if 
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a___ql~,  m = 1 , 2 , . ' .  , 

where ~ , ,  '112, • • • is a construct ive sequence of const ruct ively  open  sets 
such tha t  

, ( ~ t ~ )  ~ 0 

construct ively  fast  as m ---* oo. B y  this wc undcrs tand  tha t  u(ql,,) ~ 2 -k 
for all m => h(k) ,  where h is a general recursive function.  I n  this termi-  
nology we can say tha t  the  set of  all non random sequences form a maxi-  
mal const ruct ive  null set, i.e., a construct ive null set a with the rcmark-  
able p roper ty  t h a t  any  construct ive  null set 63 is conta ined in it. Fo r  let 
63 be an a rb i t r a ry  construct ive null set  and ~3~, ~ ,  -- • the associated 
coverings. W i t h o u t  restriction of  gcncral i ty  wc m a y  assume tha t  

"01 D_. ~ D . . .  , 

tt(T3~) < 2-" ,  

so t h a t  

V = {m, x; ~(x) _ v.,} 

is a sequential  test.  According to the definition of a universal  sequential  
test  U 

V,~+~_ U, , ,  m = 1, 2, . . .  , 
for some cons tan t  c. Consequent ly ,  

~ ao  

(B ~ f l v , . =  fl v.,+oc_ N , u . , = a ,  
m ~ l  m ~ l  m ~ l  

where, as before, 

~ . , =  U ~(x), m =  1 , 2 , - . . .  
XE Um 

IV. RANDOM SEQUENCES WITII  RESPECT TO AN ARBITRARY 
COMPUTABLE PROBABILITY DISTRIBUTION 

So far we have  in t roduced r a n d o m  sequences t h a t  were to represent  
the result  of  tossing a perfect  coin. We shall now see t h a t  in a similar w a y  
we can in t roduce finite and infinite sequences which are r andom with re- 
spect  to an a rb i t r a ry  computab le  probab] l i ty  distr ibution.  

Le t  p(x) denote  the probabi l i ty  of the  b ina ry  s tr ing x (or, bet ter ,  the  
condit ional  probabi l i ty  of x given its length) .  The  condit ions to be satis- 
f ied b y  p are as usual  
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p(x) >= O, ~ p(x) = 1 
lCx)~n 

for all n. By  the computabili ty of p we understand that  p is a general 
recursive function which for evcry x calculates a G6del number of the 
computable real imn~ber p (x). 

In the case of a random device giving out  sequentially a potentially 
infinite binary sequence, the probability p(x) that  the first n digits cqual 
x = ~1~2 . - -  ~ must satisfy 

p(x) >__ O, p()  .= 1, 

p(x) = p(xO) + p ( x l )  

for all x. The  computabili ty of p is defined as before. 
A test for p is a recursively enumcrable set 

U ~ N X X  

with the usual property that  

UI __ U.. __ - ' -  , 

the condition on the level being 

Z: p(x) < 2 
zE U,,,,l( x ) ~ n  

for all m and n. The choice of strict inequality is due to the factl tha t  if 
a and b are computable real numbers such that  a <: b, we will get to 
know this sooner or later by calculating the successive approximations 
to a and b. This does not hold, in general, when <: is changed to =<. 

A sequential test for a sequential computable probability distribution 
is defincd in the same way except for one additioiml condition. With x the 
critical region U,~ has to contain all y => x, m = 1, -,° . . .  

Using the technique that  has bccn demonstrated twice already, we can 
prove the effective eimmerability of all (sequential) tests for a certain 
(sequential) computable probability distribution and hence the existence 
of a corresponding universal (sequential) test. The critical level is intro- 
duced and, in the sequential case, extended to infinite sequences, 

0 ~_~ m(~ l~2  - ' '  ~a " ' ' )  = l i m  m(~i~2 " .  $,) <: + ~o. 

Finite binary strings x are random with respect to the computable 
probability distribution considercd, provided the critical level re(x) is 
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low. In  the infinite case the dependence on the choice of the universal 
sequential test  disappears, ~1~2 • • • ~n • • • being by  definition random if 

m ( ~ . . .  ~ . . . - )  < + ~ .  

The set of all nonrandom sequences is precisely 
o o  

N ~t,,, 

where U denotes the universal sequential test  and 

m~ = U ~(x). 
xE Um 

Lett ing 7r denote the measure (in the usual sense) obtained b y  extending 
the computable  probabil i ty distribution p, the set of all random se- 
quences has measure one with respect to ~-. I t  would be natural  to call 
it the constructive support  of ~-. 

V. FINITE BERNOULLI SEQUENCES 

For an arbi t rary  binary string ~1~2 " "  " in with s~ = ~1 -{- ~2 -I- "" • -}- ~,, 
put  

p(~,~ . - .  ~ )  = ¢~(1 -- 0)~-% 

where 0 < 0 -< 1. I f  0 is a computable real ,mmber,  this defines a com- 
putable probabil i ty  distribution and the results of the preceding section 
can be applied to obtain a defiifition of fiifite and infinite Bernoulli 
sequences associate(1 with a computable  success probability.  These are 
precisely the Bernoulli sequences tha t  can be produced by  a computing 
machine with access to a t able of random numbers  as defined in Sections I I  
and I I I ,  and so we have  met  exactly the needs of the Monte  Carlo theory. 
However,  we cannot  be satisfied with th is  as a mathemat ica l  description 
of the sequences obtained, e.g., b y  tossing an imperfect coin. Indeed, 
there seems to be no reason whatsoever to assume tha t  such a success 
probabili ty,  thought  of as a physical constant  associated with the coin, 
is a computable  real number.  

We shall, instead, define Bernoulli sequences without  using any meas- 
ure theoretic concepts, by  mcrely requiring tha t  the successes be located 
a t  random. In  other words, a Bernoulli sequence is a sequence whose only 
regularities are given by  the frequencies of successes and failures. This  
is connccte(1 with the statistical concept of sufficiency. Indeed,  the 
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success and failure frequencies form a sufficient statistic for the class of 
all Bernoulli (listributions. 

A test for the Bernoulli property or, simply, a Bernoulli test is given 
b'a~ a rccursively enmncrable set 

U ~ N X X  

such that  

UI_____ U~D . . -  _____ U,~_____ " - ' .  

1;m'ther, the mm~ber of sequences with s~ ones and n -- s~ zeros con- 
tained in U,,, should be 

<o-~( n ) 
for all m, n and s , .  Thus, thc test is carried out as a conditional test. 
Now everything can be carried out  just as before. 

There exisls a recursively enumerable sel T c N X N X X such that U 
is a Bernoulli test i f  and only i f  

U =  { m , x ; i , m ,  x E  TI 

for some i = 1, -,') . . .  
There exists a universal Bernoulli lest U such that i f  V is an arbitrary 

such tesl, 

Vm+~ ___ U,~, m = 1, 2, . - .  , 

for some eonslanl e. 
Finite Bernoulli sequences are those strings whose critical level (with 

respect to a fixed universal test) ,  

m ( ~ )  = m~x m, 
xE Ura 

is low. Again we could have reached this definition equivalently by  
means of the complexity measure of ]r.olmogorov. In terms of that  con- 
cept the Bernoulli sequences are defined by requiring the conditional 
complexity, given the frequencies of zeros and ones, to be maximal, i.e., 
approximately equal to 

I ° g ( n )  " s .  
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Here and in the sequel the logarithm is taken to the base two. Note that  

K(~x ~2 " '"  ~,~ [ s~,  n --  s,~) =< log s. 

where c is a constant. 
There exists a constant c such that 

I l°g ( n )  - K(}t } 2 s .  " '"  $. I s~ n -  s . ) -  re(e, } 2 ,  .. .  }.) I -< c _  

for  all binary strings }x}2 "'" ~ .  
The proof so closely parallels tha t  of the corresponding theorem of 

Section II,  tha t  there is no need to give it in detail. 
Let  us make a slight but  illuminating digression. The interpretation of 

a probability is currently (e.g., in the Grundlagen by Kolmogorov) 
govcrncd not only by  the clause that  the relative frequency in a large 
number of repetitions of the experiment should be close to it, but  also by  
the following somewhat obscure additional clause. If  the probabil i ty is 
very small, we should be practically sure that  the evcnt  does not occur 
in a single trial. In the present formalism we can show that  if },}2 • "" }~ 
is a Bernoulli sequence with a very  low relative success frequency s~/n, 
then, necessarily, ~, = 0, so that  the event  cannot have occurred in the 
first trial. In other words, the assumption that  a success occurred already 
in the first trial implies substantial regularities in the sequence. 

There exists a constant c such that 

m(~l ~2 ~ )  < log n * ° "  ~ - -  ~ C 

8n 

implies ~1 = O. 
Construct the test which rejects oil the level e = 2 - "  when ~ = 1 and 

s , / n  =< 2 - ' .  Then the number of rejected sequences of length n with 
success frequency s, cquals 

Sa = n 8n ~ 8n ' 

so that  the definition is legitimate. Comparison with the universal test 
yields the theorem. 

VI. INFINITE BERNOULLI SEQUENCES 

The definition of infinite Bernoulli sequences is now straightforward. 
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We note that these are precisely the sequences for which von Mises intro- 
duced the term Kollcktiv. In our case the 5¢erkmalraum consists merely 
of two elements, but the extension to an arbitrary finite number is 
trivial. 

A sequential Bernoulli test is a recursively enumerablc set 

U ~ N X X  

which together with m, x includes n, y for all n =< m and y > x. Further, 
the number of strings of length n with s~ successes contained in 
U., = {x; m, x E UI should be 

for all m, n and s~. 
There exists a recursively enumerable set T c N X N X X ,  such that the 

sequential Bernoulli tests are precisely the sets 

{m, x; i, m, x E T}, i =  1 , 2 , . . . .  

Maybe it is worth while point.ing out the following simple fact which is 
needed in the proof. Let A be a set of strings of length n and let a~ de- 
note the number of strings in A containing i successes. We suppose that 

< _ - o ,  , ,  . . .  , n .  

Let B be the set of all strings of length n -F 1 whose initial segments 
belong to A, and define bs in analogy with a~. Then, 

h i =  aj-~ .~- a # < 2  -'~ ( ( j  n ) (~.))  2-~ (n  -[-1)  
= _ _ 1  + = j ' 

j = 0, 1, -. • n ~- 1. Using this the proof is not more complicated than 
that of Section III. Taking again the image of T under the mapping 

i, m -~- i, x ~ m, x 

we obtain a universal test. 
There exists a universal sequential Bernoulli test U such that, for any 

sequential Bernoulli test V, 

V,~+~ c U,~, m = 1, 2, . . .  , 

where c is a constant. 
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Allowing infinite values, the critical level with respect to a sequential 
Bernoulli test is extended to infinite sequences. Bernoulli sequences 
(Kollektivs, in the terminology of von Mises) are defined by  the re- 
quirement tha t  the critical level (with respect to a universal test)  be 
finite, 

m(5~ - ' -  5- " " )  < + ° ~ .  

Let 7r0 denote the measure over the space of infinite binary sequences 
with respect to which all coordinates are independent and Bernoulli dis- 
tr ibuted with success probability 0, 0 -< 0 -< 1. 

The set o f  Bernou l l i  sequences has  measure  one wi th  respect to ~e fo r  all 

0 _ < 0 < 1 .  

As before, put  

so that  

m~ = U 5(x)  
XEUm 

a s n ~  oo. Bu t  

2 
xE Um,l(x)=n 

and henee 

Z: 0 ' . ( 1 -  0) . . . .  T ~0(~,.) 
xEVm, l ( x )=n  

0'"(1- 0)n-'"<2 -'~ ~ ( n)0""(1 --0) "-~ 9-~ 
~n=O 8 n  

• - q n  ° ° .  

7ro('lt,,) < 2 , m = 1 ,2 ,  , 

~ro ql,,, = O. 
1 

Note that  the set of Bernoulli sequence s is the complement of 

fl  'U,,. 
vn~l 

The aim of the present paper has only been to give the basic definitions. 
I t  is, however, too difficult to resist the temptat ion of proving two im- 
portant  properties of Bernoulli sequences. Remember  that  our definition 
is a kind of irregularity condition in tha t  we require the successes to be 
located at  random, no restriction being laid upon the frequencies. I t  is a 
remarkable fact tha t  the existence of the limit of the relative frequency 
as the number of trials grows beyond all bounds is a consequence of this 
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irregularity condition. Recall that  in the tentative definition of von 
Mises the convergence of the relative frequencies is introduced as a 
postulate, which is supplemented by a kind of irregularity condition. 

Let ~ 2  " '"  ~, "'" be an inf ini te  Bernoulli  sequence. Then the relative 
frequency s , / n  converges as n ~ oo. 

For all arbitrary rational e > 0 we construct the test which rejects on 
the level 2-"  provided 

7 - )  
for some i, j > h(m),  where h is a suitable nondecreasing general recur- 
sire function, an explicit definition of which we could evidently write 
down with soine effort. A comparison with the universal test completes 
the proof. 

Note that,  by the law of large numbers, all real numbers 0 (not only 
computable ones) occur as limit frequencies, 

lira-s" = O, 0 =< 0 =< 1. 

We finally state the analogue of the last theorem of the previous 
section, the idea of the proof being the same. 

The limit fl'equency cannot vanish, 

lhn s, = 0, 

unless ~ = 0 for  all n.  
This theorem is important since, in the ease of an experiment with an 

arbitrary finite number of outcomes, it allows us to reduce the sample 
space by excluding those outcomes whose limil~ frequencies equal zero. 
More suggestively, an event with vanishing limit frequency is actually 
impossible. This contrasts sharply with the conception of yon Mises, who 
explicitly stated tha t  the opposite might occur. I t  seems as if he strained 
his seldom failing intuition on this point in order not to conflie~ with his 
somewhat arbitrary definition of randomness. 
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