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Abstract 

Fault tolerance concern in the design of interconnection networks has arisen interest in the 
study of graphs such that the subgraphs obtained by deleting some vertices or edges have a 
moderate increment of the diameter. Besides the general problem, several particular families of 
graphs are worthy of consideration. Both the odd graphs and the n-cubes have been studied 
in this context. In this paper we deal with folded n-cubes, a much interesting family because: 
(i) like the n-cubes, their order is a power of 2, (ii) their diameter is half the diameter of the 
n-cube of the same order, while their degree only increases by one, and (iii) as we show, in a 
folded n-cube of degree A, the deletion of less than [½AJ - 1  vertices or edges does not increase 
the diameter of the graph, and the deletion of up to d - 1 vertices or edges increases it by at 
most one. This last property means that interconnection networks modelled by folded n-cubes 
are extremely robust. 

I. Introduction 

The designer o f  interconnection networks must allow for the fact that machines 

and/or  communication links may malfunction or cease to function. In this event, it is 

important that communication can still be achieved with reasonable efficiency. It may 

be required, for instance, that between any two nodes of  the remaining network there 

still exists a path o f  length not exceeding some fixed value, see [7]. 

The modell isation in terms o f  graphs leads to the search for large graphs such that 

the deletion o f  some vertices or edges moderately increases the diameter o f  the graph. 

In the literature this is called the (A,D, Dt,s)-problem. It consists o f  finding large 

graphs with maximum degree A and diameter D, such that the subgraphs obtained by 

deleting any set of  up to s vertices or edges have diameter ~<D I, see, for instance, [1] 

or [3]. The main interest is in families of  graphs such that D t - D is small. Families 
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of graphs that have been studied in this context are the odd graphs, see [5] or [8], and 
the n-cubes, see [6]. 

In this paper we concentrate on folded n-cubes. This is a much interesting family 
because: (i) like the n-cubes, their order is a power of 2, (ii) their diameter is half the 
diameter of the n-cube of the same order, while their degree only increases by one, and 

(iii) as we show, in a folded n-cube of degree A, the deletion of  less than L½AJ - 1 
vertices or edges does not increase the diameter of  the graph, and the deletion of  up 
to A - 1 vertices or edges increases it by at most one. This last property means that 
interconnection networks modelled by folded n-cubes are extremely robust. We begin 
by defining the folded n-cubes in the next section. Afterwards, in Section 3 we prove 
the main results of the paper. 

2. The folded n-cubes 

We recall that the n-cube, Q., also called n-dimensional hypercube, is the graph 
of order 2" whose vertices can be labelled as the n-length sequences of O's and l 's, 
two vertices being adjacent whenever their labels differ in just one digit. By defining 
the Hamming distance between two sequences as the number of  digits in which they 
differ, we can alternatively say that two vertices of the n-cube are adjacent when the 
Hamming distance between the corresponding sequences is one. It follows that the 
Hamming distance measures the distance between vertices in the n-cube. 

The folded (n + 1 )-cube, denoted by El,+1, is the graph obtained from the hypercube 
in either one of the two following equivalent ways (where as usual we write 8 = 1 

and i = 0): 
1. consider the (n + 1)-cube and identify opposite vertices 

A = ( a 0 a l . . . a , ) -  (~0~1""~,)  =A;  

2. consider the n-cube and add an edge between any two opposite vertices 

A = ( a l a 2 ' '  "an) "~ (a la2""  "an) = A. 

Fig. 1 illustrates how the folded 4-cube is obtained in these two ways. The resulting 
graph has 2" vertices, is regular of degree n +  1 and has diameter [½(n + 1)], since for 
any vertex A of  the (n+l)-cube,  all other vertices are at distance ~< [½(n + 1)J of either 
A or A. It is well known that the folded n-cube is distance transitive, see, for instance, 
[2, p. 178] or [4, Ch. 4.1.F]. We shall only use the fact that it is vertex transitive. 

In what follows we use the second presentation, that is 

V([]n+l) = { ( a l a 2 ' '  "an), ai E {0, 1}}, 

and each vertex A = (ala2...a,) is adjacent to the n + 1 vertices 

1. (ala2 " .ai-l-aiai+l " "an) : Bi, 1 <~i<~n; 

2. ( ~ a 2 . . . a . ) =  2. 
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A = 0000 

G 

U 
A = 0 ~ f ~ - - ~ A = 0 0 0  C=001 

B = 010 ~ = 0 t l  

E ~ F=  101 

(3= 110 - * =111 

Fig. 1. 

The adjacency rule readily leads to a proper edge-colouring of the graph by colouring 
0 the edges A ~ A and colouring i the edges A ~ B;. This in turn leads to a colouring 
of  the paths in 7qn+l. 

3. Deletion of vertices or edges 

We study in this section the vulnerability of the diameter of the folded (n + 1)-cube 
7qn+l under deletion of s, 1 <<.s<<.n vertices or edges. Our first result is 

Proposition 1. For n >t 2 there exist n + 1 independent paths of lenoth ~< [ 1 (n + 1 )J + 1 
between any pair of vertices of U]n+l. 

Proof. Let A and B be two vertices of[Sn+l at Hamming distance d~,(A,B)=k. Without 
loss of generality we may set 

.-4 ~ ( a l a 2 ' '  "akak+l'" "an), 

B = (ala2"""-dkak+l' '" an), 

and distinguish three types of neighbours of A: 

V~ =_ (alaE'..-di.'.akak+l...an), l<~i<~k, 

Wi =- (a la z ' "akak+l  "" -a~ ' "an) ,  k +  l <~i<~n, 

~ (ala2 "" .an). 

The next step is to construct shortest paths between each of these vertices and vertex B, 
thus assuring that the length of the paths between A and B is ~< 1 + D  = 1 + L½(n + 1 )]. 
Each path will be identified by its colouring. We will consider separately the three 
cases: 

n - 1  n - 1  n + 3  n + 3  
k ~ < - - ,  < k <  - -  and k~> 

2 2 2 2 
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1. k < ~ l ( n -  1). The n + 1 paths between A and B are k paths o f  length k through 

vertices Vii 

path 1 1 2 3 . . .  k -  1 k 

path 2 2 3 4 . . .  k 1 

p a t h k  k 1 2 . . .  k - 2  k - 1  

n - k paths of  length k + 2 through vertices 

p a t h k + l  k ÷ l  1 2 . . .  k - 1  k k + l  

p a t h k + 2  k ÷ 2  1 2 . . -  k - 1  k k ÷ 2  

: : : k + 2  

p ~ h n  n 1 2 . . .  k - 1  k n 

and 1 path o f  length k + 2 through vertex 

p a t h n + l  0 1 2 . . .  k - 1  k 0 

Note that k + 2 ~ < ½ ( n -  1 ) + 2  = ½(n+ 1 ) +  1, so that k + 2 ~ < D +  1. 

2. ½ ( n - l )  < k < ½ ( n + 3 ) .  The n +  I paths between A and B are k paths o f  

length k through vertices V~ as in the preceding case, n - k  paths through vertices Wi 

o f  length n - k + 1 

p a t h k ÷ l  k + l  k + 2  k + 3  - . .  n - 1  n 0 

p a t h k + 2  k + 2  k ÷ 3  k + 4  . - .  n 0 k + l  

• , • 

p a t h n  n 0 k ÷ l  - . .  n - 3  n - 2  n - 1  

and 1 path o f  length n - k + 1 through vertex 

p a t h n + l  0 k + l  k + 2  . . -  n - 2  n - 1  n 

Again we have k ~<D + 1 and n - k + 1 ~<D + 1. This case corresponds to k = ½n or 

k = i n  + 1 when n is even and to k : l (n  + 1) when k is odd. When k = ½n the 

shortest paths are those through vertices Vi, when k = ½n + 1 the shortest paths are 

those through vertices ~ and A, and when k = ½(n + 1) all paths are shortest paths 
between .4 and B. 

3. k>~l(n + 3). The n + 1 paths between A and B are k paths o f  length n -  k + 3 
through vertices V/ 

p a t h i  i k + l  k + 2  . . -  n 0 i, l~<i~<k 

and the n - k + 1 paths o f  length n + k - 1 through vertices W/and A of  the preceding 
case. 
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P~ 

L2 ~ L3 

P2 

Fig. 2. 

A g a i n n - k + 3 < < , n - l ( n + 3 ) + 3 = ½ ( n + l ) + l ,  so t h a t n - k + 3 < ~ D + l .  

It remains to show that in each case the n + 1 paths are independent. Suppose on 

the contrary that two paths P1 and P2 between A and B have a common vertex X as 

shown in Fig. 2. 
Let L1 and L3 be the sections A - X and X - B of PI and L2 and L4 the sections 

A - X and X - B of P2. Let U L denote the union of the colours of  path L and let 

l - -  ILl denote its length. I f  the colour 0 does not appear in both paths P1 and P2 we 
must have UL1 = UL2 and/or UL3 --- UL4 which is imposible by construction. The 
same conclusion is reached if the colour 0 appears in the same section of both P1 and 

P2. Finally, if  the colour 0 appears in different sections of  both Pl and P2, it must be 

ll+12>~n+l and 13+14>~n+1 

since n + 1 is the shortest length of any cycle which contains just one 0-coloured edge. 

Therefore 

2n+2<~ll+12+13+14=lPl[+lP21<~21~-)- 1 + 2 ,  

a contradiction. [] 

A first consequence of this result is that the deletion of up to n vertices of [21~+1 

cannot increase the diameter of  the graph by more than one. More precisely we have: 

Theorem 1. Let D~s be the maximum value of the diameter of the subgraphs obtained 
from Dn+l when s vertices are deleted Then 

D ,f0 s < k½( ' -  1)J, 
= D +  1 /f L l (n-  1)J 

Proof. From Proposition 1 we know that D'  s ~<D + 1, and from its proof it follows that 
the deletion of s < [ ½ ( n -  1)J vertices does not increase the diameter of  the graph. 
On the other hand, for s = [ l (n  - 1)J, that is for s = in  - 1 when n is even and for 
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s = ½ ( n -  1) when n is odd, the diameter could increase by one. We next show that 

this indeed happens. 

When n is even, consider vertices A and B such that dH(A,B) = k = i n  - 1 which 

corresponds to case 1 in Proposition 1. I f  all vertices Vi are deleted from [~n+l, the 
1 remaining shortest paths through vertices ~ or A have length k + 2 = 5n + 1 = 

[½(n+ 1)J + 1 =D+ 1. 

Analogously, when n is odd, consider vertices A and B such that dH(A,B) = k = 

½(n + 3) which corresponds to case 3 in Proposition 1. I f  all vertices Wi and A are 

deleted from U~,+I, the remaining shortest paths through the vertices V,. have length 

n - k + 3 = ½ ( n + l ) + l = D + l .  [] 

Clearly, the same result can be obtained when instead of  vertices we delete edges, 

since the upper bounds are attained when the edges joining A to its selected neighbours 

are deleted from ffl~+l. Therefore, we now have 

Theorem 2. Let D~' be the maximum value of  the diameter of  the suboraphs obtained 

from ~n+l when s edoes are deleted Then 

{ D  D / f 0 ~ < s <  [ ½ ( n - 1 ) J ,  

o~' - -  + 1 / f  [½(n - 1)J <~s<~n. 
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