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a b s t r a c t

This study examines the effects of sleep on learning in a face identification task. Five groups of subjects
performed a 1-of-10 face identification task in two sessions separated by 3, 12, and 24 h. Session 1 con-
sisted of four blocks of 105 trials each; Session 2 consisted of eight blocks of trials. All groups exhibited
significant improvement in response accuracy within each session. Furthermore, between-session learn-
ing – defined as the difference in proportion correct between sessions 1 and 2 – was significant for all
groups. Between-session learning was greater in groups that slept between sessions, but the effect was
small and affected performance only in the first block of trials in Session 2. Overall, we find that sleep’s
contribution is a small proportion of the total amount learned in face identification, with improvements
continuing to accrue in its absence.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Perceptual and motor skills typically improve with practice over
a time-course that consists of at least two components: a fast com-
ponent in which performance improves during a practice session
(Fiorentini & Berardi, 1981; Fahle, Edelman, & Poggio, 1995; Fahle,
1994; Karni et al., 1998; Karni & Sagi, 1993; Poggio, Fahle, & Edel-
man, 1992), and a slow component in which the benefits of prac-
tice accumulate across sessions (Brashers-Krug, Shadmehr, &
Bizzi, 1996; Fahle, 1994; Karni et al., 1998; Karni & Sagi, 1993;
McKee & Westheimer, 1978; Press, Casement, Pascual-Leone, &
Robertson, 2005). This second, slow component, sometimes re-
ferred to as latent, or offline learning, is affected by sleep (Atienza,
Cantero, & Stickgold, 2004; Fenn, Nusbaum, & Margoliash, 2003;
Fischer, Hallschmid, Elsner, & Born, 2002; Gottselig et al., 2004;
Karni, Tanne, Rubenstein, Askenasy, & Sagi, 1994; Stickgold, James,
& Hobson, 2000a; Stickgold, Whidbee, Schirmer, Patel, & Hobson,
2000b; Walker et al., 2003). Results from Siegel (2001) and Walker
and Stickgold (2004), for example, suggest that the REM and SWS
stages of sleep are important for consolidating newly-acquired
information into long-term memory (but see Song, Howard, &
Howard, 2007; Vertes & Eastman, 2000; Vertes, 2004). Sleep is
thought to be important for establishing the stimulus-specific ben-
efits of perceptual learning (Karni & Bertini, 1997; Karni et al.,
1998; Karni & Sagi, 1993), rather than general benefits that pre-
ll rights reserved.
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sumably can transfer across experimental conditions (but see Fenn
et al., 2003). Sleep’s distinct contribution to latent learning is sup-
ported by a study of motor learning, which found that the substan-
tial improvement in performance that is observed across days of
testing – i.e., after a night’s sleep – is uncorrelated with within-ses-
sion effects (Walker et al., 2003). However, sleep is not necessary
for latent learning, which can occur in the absence of sleep if the
gap between testing sessions exceeds 4–6 h (Fischer et al., 2002;
Gottselig et al., 2004; Robertson, Pascual-Leone, & Press, 2004;
Roth, Kishon-Rabin, Hildesheimer, & Karni, 2005).

In the visual domain, most demonstrations of sleep-related ben-
efits have used a particular kind of texture discrimination task. For
example, Karni and Sagi (1991) measured thresholds for discrimi-
nating peripherally-viewed horizontal and vertical textured tar-
gets, which were embedded in an array of short line segments,
by varying the SOA between the offset of the target array and the
onset of a mask. Using this task, Karni and Sagi (1993) found that
sensitivity in a texture discrimination task increased only after at
least 8 h elapsed after the initial training session. Subsequently,
it was shown that the effects of practice were abolished by the
interruption of sleep, with both REM and SWS contributing to
the overall amount learned (Karni et al., 1994; Stickgold et al.,
2000a; Stickgold et al., 2000b). Finally, a nap taken in-between suc-
cessive practice sessions reverses the deterioration that otherwise
occurs with repeated testing during the same day (Mednick,
Nakayama, & Stickgold, 2003; Mednick et al., 2002; Mednick, Ar-
man, & Boynton, 2005). Using a different task, Schoups, Vogels,
and Orban (1995) reported that practice lowered orientation dis-
crimination thresholds measured with circular noise fields rotated
about the oblique axis, but only when subjects slept between
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sessions. Learning in both the texture discrimination task and the
orientation discrimination task was specific to the trained location
in the visual field and, in the orientation discrimination task, to the
orientations used during training. For both tasks, within-session
gains were only observed early within the first session, after which
performance saturated. Further improvements in performance
only occurred across sessions, i.e., the improvements were latent.

The role of sleep in consolidation is yet to be demonstrated for
the remaining variety of visual tasks amenable to learning. We
have previously shown that performance on a 1-of-10 forced
choice face-identification task improves substantially across days
(Gold, Bennett, & Sekuler, 1999b), and that the improvements are
specific to the trained face exemplars and orientations (Hussain,
Bennett, & Sekuler, 2005, 2006). Here we assess the contribution
and sleep-dependence of latent learning to the overall improve-
ment found with this task, and examine whether the amount of la-
tent learning is associated with within-session learning.

2. Methods

2.1. Subjects

One hundred and three McMaster University undergraduate
students participated in this experiment. All subjects had normal
or corrected-to-normal Snellen visual acuity. The mean age and
years of education were, respectively, 20.9 (SD = 3.31) and 16.9
(SD = 2.30). All subjects received a small fee ($10/h) or partial
course credit for participating in the experiment, and were naive
with respect to the task. All subjects provided informed consent
prior to the start of the experiment. Seventy-four of the subjects
were female; the remaining 29 were male.

2.2. Apparatus and stimuli

Stimuli were generated in Matlab (The Mathworks, v. 5.2) using
the Psychophysics and Video Toolboxes (Brainard, 1997; Pelli,
1997). Stimuli were displayed on a 21” Sony Trinitron monitor at
a resolution of 1024 � 768 pixels, which at the viewing distance
of 114 cm translated to 26.7 pixels per cm. Frame rate was
Fig. 1. Illustration of the experimental design. Placeholders indicate
85 Hz. Average luminance was 62.51 cd/m2. The monitor calibra-
tion data were used to build a 1779-element lookup table (Tyler,
Liu, McBride, & Kontsevich, 1992) and customized computer soft-
ware constructed the stimuli on each trial by selecting the appro-
priate luminance values from the calibrated lookup table and
storing them in the display’s eight-bit lookup table.

The stimuli were faces of five males and five female faces
cropped to show only internal features and equated for spatial fre-
quency content. The methods used to create the stimuli have been
described previously (Gold, Bennett, & Sekuler, 1999a; Gold et al.,
1999b). Stimulus size was 256 � 256 pixels, subtending
4.8 � 4.8� of visual angle from the viewing distance of 114 cm.
During the experiment, stimulus contrast was varied across trials
using the method of constant stimuli. The seven levels of contrast
were spaced equally on a logarithmic scale, and spanned a range
that was sufficient to produce significant changes in performance
in virtually all subjects. The images were shown in three levels
(low, medium and high) of static two-dimensional Gaussian noise,
created by sampling from distributions with variances of 0.001,
0.01, and 0.1. Hence, there were a total of 21 stimulus conditions
(seven contrast levels � three external noise levels) that allowed
subjects to view each face at a variety of signal-to-noise ratios.

2.3. Procedure

All subjects performed a face identification task in two sessions
(Fig. 1). Subjects in the 12HR-Sleep group (n = 24) performed Ses-
sion 1 at 9pm and Session 2 at 9am the next day. Subjects in the
12HR-No-Sleep group (n = 24) performed Session 1 at 9am and
Session 2 at 9pm on the same day. Thus, there was a 12-hour inter-
val between sessions in both the 12HR-Sleep and 12HR-No-Sleep
groups. In the 9AM-Sleep group (n = 24), subjects performed Ses-
sions 1 and 2 at 9am on Days 1 and 2. In the 9PM-Sleep group
(n = 24), subjects performed Sessions 1 and 2 at 9pm on Days 1
and 2. Therefore, there was a 24-hour interval between sessions
in both the 9am-Sleep and 9pm-Sleep groups. Subjects in the sleep
groups were instructed to sleep normally overnight (between ses-
sions), whereas subjects in the 12HR-No-Sleep group were in-
structed to not sleep or nap between sessions. An additional
the time of testing for each group across two consecutive days.
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group of seven subjects in the 3HR-No-Sleep was tested with a
three-hour interval between sessions (Session 1 at 9am and Ses-
sion 2 at noon on the same day), with instructions not to nap be-
tween sessions.

During each session, subjects were seated in a darkened room
114 cm away from the monitor. Viewing was binocular, and view-
ing position and distance were stabilized with an adjustable chin/
forehead rest. The experiment started after a 60 s period during
which the subject adapted to the average luminance of the dis-
play. A trial began with the presentation of a fixation point – a
black high-contrast spot (0.15 � 0.15 deg) – in the center of the
screen for 100 ms, followed by a randomly selected face presented
for approximately 200 ms at the center of the screen. After the
face disappeared, the entire set of 10 faces was presented as
two rows of five noiseless, high-contrast thumbnail images, each
subtending approximately 1.7 � 1.7�. The subject’s task was to de-
cide which one of the 10 faces had been presented during the trial
by selecting one of the thumbnail images with a computer mouse.
The location of each face in the response window was constant
across subjects, trials, and sessions. Auditory feedback in the form
of high-pitched (correct) and low-pitched (incorrect) tones in-
formed the subject about the accuracy of each response, and the
next trial began one second after presentation of the feedback.
Session 1 comprised 20 trials per stimulus condition for a total
of 420 trials. Session 2 comprised 40 trials per stimulus condition
for a total of 840 trials. Sessions 1 and 2 lasted approximately 30
and 60 min, respectively.
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Fig. 2. (a) Proportion correct during Session 1. Performance did not vary significantly
significantly across groups. (c) A scatter plot showing the association between proportio
sessions. Note that all points are above the line, indicating that all subjects showed som
amount learned, defined as the difference between response accuracy in Sessions 1 and
Subjects completed the Morningness-Eveningness question-
naire (Horne & Ostberg, 1976), which assesses the time of day at
which the subjects perform optimally. The questionnaire was com-
pleted prior to the start of the experiment in Session 1.

3. Results

Statistical analyses were done with R (R Development Core
Team, 2007). All t-tests were two-tailed and assumed unequal
group variances. Where appropriate, we report 95% confidence
intervals (95%CI) for estimated parameters and Cohen’s f as a mea-
sure of effect size (Cohen, 1988).

Due to experimenter error, seven subjects did not complete the
Morning–Eveningness questionnaire. Analysis of the completed
questionnaires showed that subjects were unbiased as to their pre-
ferred time of day (M = 46, SD = 9.18), and that the preferred time
of day did not vary across the five groups, F(5,90) = 0.8275,
p = 0.53. Preliminary analyses also indicated that questionnaire
scores were not associated with task performance, and therefore
we did not include them in subsequent analyses.

Fig. 2a and b show proportion correct (collapsed across stimulus
contrast and noise levels) in each session. In Session 1, the average
proportion correct was 0.44 and did not vary significantly across
groups, f = 0.11, F(4,98) = 1.32, p = 0.267, indicating that the time
of day did not affect initial performance. In Session 2, the average
proportion correct was 0.59, and also did not vary significantly
across groups, f = 0.18, F(4,98) = 1.85, p = 0.13. Response accuracy
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across groups. (b) Proportion correct during Session 2. Performance did not vary
n correct in Sessions 1 and 2. The diagonal line indicates equal performance in both
e improvement across sessions. The correlation between sessions was 0.89. (d) The
2, for each group. There was a significant difference between groups.
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in Session 1 was highly correlated with accuracy in Session 2,
r = 0.89, t(101) = 19.82, ph0.0001, demonstrating that our measures
were reliable (Fig. 2c).

Between-session learning – defined as the difference between
response accuracy in Sessions 1 and 2 – is plotted in Fig. 2d for
each group. The increase in response accuracy across sessions
was significant, (95%CI = (0.144, 0.170), t(102) = 23.2, p < 0.0001)
and was highly reliable across subjects. Indeed, every subject
showed an increase in response accuracy across sessions (see
Fig. 2c). There was a significant effect of Group, f = 0.25,
F(4,98) = 2.55, p = 0.044, indicating that some groups improved
more than others. t-tests were used to conduct orthogonal compar-
isons that evaluated the effects of sleep, interval between sessions,
and time of day on the amount learned. A t-test that compared the
groups that slept (9AM, 9PM, 12HR) to the groups that did not
sleep (12HR, 3HR) found a marginally significant effect of sleep:
the amount of learning was slightly greater in the Sleep groups
than in the No-sleep groups, 95%CI = (�0.002, 0.052),
t(101) = 1.97, p = 0.052. A second t-test found that more learning
occurred in the 12HR-Sleep group than in the two 24 h sleep
groups, 95%CI = (0.006, 0.071), t(70) = 2.375, p = 0.021. A third t-
test that compared the 9AM-Sleep group to the 9PM-Sleep group
found no effect of time-of-day on the amount learned,
95%CI = (�0.02, 0.058), t(46) = 1.093, p = 0.28. These analyses sug-
gest that learning was slightly greater in subjects that slept be-
tween experimental sessions, and that the benefits of sleep were
greater when the sessions were separated by 12 h instead of 24 h.

The time-course of within-session learning was examined by
measuring the proportion of correct responses that occurred in
separate bins of 105 trials. This procedure yielded four bins of trials
within Session 1 and eight bins within Session 2. Fig. 3 shows pro-
portion correct for all groups plotted as a function of bin number.
During Session 1, performance improved on average by 0.18 from
bin 1 to bin 4. An analysis of variance revealed a significant main
effect of Bin, f = 1.02, F(3, 294) = 143.43, p < 0.0001, but the main
effect of Group, f = 0.05, F(4,98) = 1.32, p = 0.27, and the Group -
Bin interaction, f = 0.04, F(12,294) = 1.05, p = 0.40, were not signif-
icant. Further analyses showed that the linear, F(1,98) = 256.98,
p < 0.0001, and quadratic, (F(1,98) = 22.90, p < 0.0001), trends
across bins were both significant, and that neither trend interacted
with Group (Group � Linear Trend: F(4,98) = 1.02, p = 0.4;
Group � Quadratic Trend: F(4,98) = 0.53, p = 0.71). During Session
2, proportion correct increased by 0.1 from bin 5 to bin 12. An anal-
ysis of variance revealed a significant main effect of Bin, f = 0.54,
F(7, 686) = 36.1, p < 0.0001, but the main effect of Group, f = 0.06,
F(4,98) = 1.85, p = 0.13, and the Bin � Group interaction, f = 0,
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Fig. 3. Time-course of learning across both sessions for all groups. The proportion of corr
from Session 1, whereas bins 5–12 are from Session 2. The filled and unfilled symbols re
standard error. For clarity, error bars are shown for four bins only. Error bars in other b
F(28, 686) = 0.89, p = 0.62, were not significant. Furthermore, the
linear, F(1,98) = 78.5, p < 0.0001, and quadratic, F(1,98) = 52.4,
p < 0.0001, trends were both significant, and neither trend differed
significantly across groups (Group � Linear Trend: F(4,98) = 1.48,
p = 0.21; Group � Quadratic Trend: F(4,98) = 0.74, p = 0.57). We
also conducted a more focussed test of the effect of sleep on Day
2 by combining all subjects in the three sleep groups into one
group, and all subjects in the two no-sleep groups into another
group. An ANOVA on these new groups (Sleep vs. No-sleep) found
the same, significant main effect of Bin that was found in the pre-
vious ANOVA, a non-significant main effect of Sleep, f = 0,
F(1,101) = 0.2, p = 0.65, and a non-significant Sleep � Bin interac-
tion, f = 0, F(28,686) = 0.89, p = 0.62. Hence, the overall trends were
similar in Sessions 1 and 2: performance improved significantly
within each session, the time-course of within-session learning
did not vary across groups, and there was no indication that perfor-
mance differed significantly between sleep and no-sleep groups.

A close examination of Fig. 3 suggests that the presence or ab-
sence of sleep affected performance at the start of Session 2. Spe-
cifically, performance in the No-Sleep groups was less accurate in
bin 5 than bin 4 (bin5 � bin4 = �0.03), and then increased in bin
6 (bin6 � bin5 = 0.07). In the sleep groups, on the other hand, per-
formance increased monotonically across bins 4 through 6
(bin5 � bin4 = 0.01; bin6 � bin5 = 0.05). A trend analysis con-
firmed that the quadratic trend in performance across bins 4–6 dif-
fered significantly across groups, F(1,98) = 5.52, p = 0.02. The origin
of this effect is shown in Fig. 4, which plots difference scores calcu-
lated for response accuracy in bins 4 and 5. The boxplots indicate
that response accuracy was not higher in bin 5 than bin 4 in a sub-
stantial proportion of subjects in each group, and that the median
difference scores were close to zero for all groups. However, the
difference scores were slightly lower in the No-Sleep groups.
Hence, the data suggest that sleep, rather than boosting perfor-
mance, prevented a slight deterioration in performance at the start
of Session 2.

A global measure of within-session learning was defined as the
difference between proportion correct measured in the first and last
bins: for example, learning during Session 1 was the difference be-
tween proportion correct in bins 4 and 1. Surprisingly, estimates of
within-session learning from Sessions 1 and 2 were not correlated,
but each measure of within-session learning was correlated with
between-session learning (Fig. 5). To determine if the association
of within- and between-session learning varied across groups, we
evaluated the interaction term in linear models of the form

b ¼ wþ GþwG ð1Þ
7 8 9 10 11 12

l Bin

   9AM
   9PM
 12HR
 12HR
   3HR

Session 2

ect responses, averaged across subjects, is plotted for bins of 105 trials. Bins 1–4 are
present data from Sleep and No Sleep groups, respectively. Error bars represent ±1
ins were similar to the ones shown in the figure.
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where b is between-session learning (see Fig. 2d), w is within-ses-
sion learning, G is a factor representing Group, and wG is the
w � G interaction. The analyses indicated that the association
between learning during Session 1 and between-session learning
did not vary across groups, f = 0, F(4,93) = 0.62, p = 0.69. Likewise,
the association between learning during Session 2 and between-
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session learning did not differ across groups, f = 0.04, F(4,93) = 1.40,
p = 0.24. Hence, the analyses show that the magnitudes of within-
and between-session learning were correlated, and that the correla-
tion was similar across groups.

Hauptmann, Reinhart, Brandt, and Karni (2005) reported that
between-session learning in a letter enumeration task was larger
in subjects whose performance had reached an asymptotic value
during the first session. To determine whether a similar effect held
in the current experiment, we first examined how proportion cor-
rect varied across bins 1–4 in individual subjects. We identified 45
subjects whose proportion correct was approximately constant or
declined in bins 2–4; response accuracy in the remaining 58 sub-
jects increased in bins 2–4 and showed no signs of reaching an
upper asymptote. These two groups of subjects were represented
by a binary classification factor that indicated if a subject did or
did not reach an upper limit during Session 1. Finally, this classifi-
cation factor was added to a model that predicted between-session
learning from within-session learning during Session 1, Group
membership, and the interaction between those two predictor
variables (Eq. 1). Adding the binary classification factor did not im-
prove the model’s fit significantly, f = 0, F(1,92) = 0.38, p = 0.54.
Hence, there was no evidence that the predictability of between-
session learning from learning during Session 1 differed between
subjects whose performance did and did not reach an upper
asymptote during the first session.

3.1. Face identification thresholds

Our experiment used a fixed set of contrasts for all subjects, and
therefore was not optimized to measure thresholds accurately in
individuals. Nevertheless, it was possible to fit psychometric func-
tions to all but eight of the 618 individual sets of data. The result-
ing thresholds, defined as the rms contrast that corresponded to
50% correct responses, exhibited significant positive skew and con-
tained several outliers in each condition. Therefore, we used an M-
estimator of central tendency, rather than the mean, to represent
the ‘‘typical” threshold in each condition (Wilcox, 2005). Fig. 6
shows the M-estimator of threshold (Huber’s W; Huber, 1981)
measured in each group at each noise level on both days of testing.

A percentile bootstrap procedure (Wilcox, 2005, page 310) was
used to assess group differences in the M-estimator of threshold at
each level of noise on each day of testing. The familywise probabil-
ity of a Type I error was set to a ¼ 0:05 for each session. None of
the bootstrap tests was significant on Session 1 or Session 2. To
compare thresholds in subjects who did and did not sleep between
sessions, we combined thresholds from each of the three Sleep
groups into a single Sleep group, and thresholds from the two
No-sleep groups into a single No-sleep group. M-estimators of
thresholds in the combined groups were then compared at each le-
vel of noise. Again, none of the comparisons was significant on
either day. In summary, we did not obtain clear evidence that
thresholds varied across the experimental groups, or between sub-
jects that did or did not sleep between sessions, in Session 1 or 2.

The log-difference between thresholds in Sessions 1 and 2 was
calculated for each subject in each condition. The M-estimator of
the log-difference between thresholds was �0.27, �0.62, and
�0.56 in the low, medium, and high external noise conditions,
respectively. All three of these M-estimators differed significantly
from zero (p < 0.05), which shows that thresholds decreased signif-
icantly at all levels of noise. To determine if the decrease in thresh-
old varied across groups, a percentile bootstrap was used to
compare the M-estimators measured for each group at each level
of noise. None of the bootstrap tests was significant (p > 0.05).
Next, the log-difference scores for subjects in the three Sleep
groups were combined into a single Sleep group, and the scores
from the remaining groups were combined into a single No-sleep
group. Again, a percentile bootstrap performed on the M-estima-
tors of the log-difference between thresholds found no significant
(p > 0.05) difference between the combined Sleep and No-sleep
groups at any level of external noise. These analyses indicate that
the difference between thresholds measured in the two sessions
did not vary significantly across groups or between subjects that
did or did not sleep.

In summary, we did not obtain clear evidence that thresholds in
Sessions 1 and 2, or the difference between thresholds in the two
sessions, varied across the experimental groups or was associated
with the presence or absence of sleep. In this regard, these analyses
of thresholds are consistent with the previous analyses on overall
proportion correct.
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4. Discussion

Using a 1-of-10 face identification task, we found that the pro-
portion of correct responses increased by 0.17 and 0.1 during the
first and second testing sessions, respectively. The difference be-
tween overall response accuracy in the two sessions was approxi-
mately 0.15, and therefore the magnitude of within-session and
between-session learning effects was nearly the same. Between-
session learning was significantly higher in groups that slept in-be-
tween sessions, but the effect of sleep on proportion correct was
small (i.e., �0.026) and was restricted to performance in the first
105 trials in Session 2.

The finding that sleep had very small effects on learning differs
from results obtained in several studies that used the texture dis-
crimination task (e.g., Karni & Sagi, 1991; Karni et al., 1994; Karni &
Sagi, 1993). Karni and Sagi (1991), for example, found that thresh-
olds declined by approximately 22% between the first and second
days of testing (see Fig. 2 in Karni & Sagi, 1991). Censor, Karni,
and Sagi (2006) found that the size of sleep-related improvement
in the texture discrimination task was a non-monotonic function
of the number of trials used in the first session, with 26 trials per
block (3–4 blocks per testing session) producing more overnight
learning than 50 and 12 trials per block. Based on Censor et al.’s
findings, it is tempting to attribute the small sleep effect found
in the current experiment to the relatively large number of trials
(i.e., 420) used in Session 1. However, using the same task and
methods as in the current experiment, Hussain, Bennett, and Sek-
uler (2003) found that reducing the number of practice trials in
Session 1 does not result in greater amounts of between-session
learning: during Session 2, subjects who received 420–840 trials
during Session 1 performed significantly better than subjects
who received 21–210 trials during Session 1. Therefore we think
it is unlikely that reducing the number of trials in Session 1 would
increase the effect of sleep.

Mednick et al. (2002) reported that repeated, within-day testing
on the texture discrimination task resulted in progressively higher
thresholds (also see Mednick et al., 2003, 2005; but see Fig. 2 in
Stickgold et al., 2000a for a different result obtained with similar
procedures). Between Sessions 1 and 2, for example, thresholds in-
creased by 17% in Mednick et al. (2002) and 15% in Mednick et al.
(2005). Some studies have also reported that performance deterio-
rates within a single session (Mednick et al., 2005; Ofen, Moran, &
Sagi, 2007). Ofen et al., for example, found that performance with a
single, above-threshold stimulus in the texture discrimination task
decreased from 90% correct to 70% during the course of eight
blocks in a single test session (see Fig. 4, in Ofen et al., 2007). In this
experiment, both No-Sleep groups did exhibit a drop in perfor-
mance at the start of Session 2, but the effect was small and was
restricted to the first bin of 105 trials. Instead of decreasing, overall
accuracy increased across sessions in both No-Sleep groups (see
Fig. 2d). Furthermore, we found no evidence of performance
decreasing within a session; in fact, response accuracy increased
within each session in all groups.

This experiment differs in several ways from previous studies
that found larger effects of sleep or within-day deterioration. One
potentially important difference concerns the psychophysical
methods used to assess performance. Previous studies that mea-
sured learning with the texture discrimination task have obtained
thresholds by adjusting the stimulus level using a variation of the
traditional descending method of limits. With this method,
increasing the number of trials per block, as was done by Censor
et al. (2006) and Ofen et al. (2007), would necessarily reduce the
variety of signal-to-noise ratios presented to the subject over the
course of several trials or minutes. In contrast, this experiment pre-
sented stimuli that varied significantly in terms of signal-to-noise
ratio in a random order. This randomization procedure may mini-
mize the adaptation that is thought to be important for generating
within-session deterioration (Ofen et al., 2007).

Another obvious difference between studies is that this experi-
ment used a face identification task rather than the texture dis-
crimination task. Face identification may depend on higher-level
mechanisms that differ significantly from the mechanisms tapped
by the texture discrimination task used in previous studies. It is
possible, therefore, that learning in a face identification task differs
qualitatively from the learning that is found with simpler perceptual
tasks. However, results from other experiments are inconsistent
with this hypothesis. For example, learning in a face identification
task is specific for both the orientation and identity of the trained
items (i.e., there is little generalization to new stimuli, Hussain
et al., 2005, Hussain, Bennett, & Sekuler, 2006). Furthermore, the
benefits of face identification learning are long lasting, persisting
for at least 9–18 months after the training sessions have ended
(Hussain, Bennett, & Sekuler, 2007). Finally, face identification learn-
ing exhibits a fast within-session component and a slow between-
session component (Fig. 3), as has been found with simpler tasks
(e.g., Karni & Sagi, 1993). Hence, the available evidence indicates
that learning the face identification task exhibits many of the char-
acteristics of learning found with simpler perceptual tasks.

Nevertheless, the relative complexity of the neural network
underlying face processing may alter the effects of sleep on learn-
ing. Sleep-dependent consolidation is thought to require the reac-
tivation, during sleep, of cells engaged during the task. For
example, consolidation of spatial learning has been linked to the
reactivation of cells in the hippocampus (Wilson & McNaughton,
1994), and consolidation of visual conditioning is contingent on
reactivation of visual cortex (Amzica, Neckelmann, & Steriade,
1997). Indeed, some suggest that cortical activity in V1 is required
during sleep for learning-related plasticity to be enabled (Jha et al.,
2005). For the texture task, an imaging study indicates that V1 is
the locus of practice effects (Schwartz, Maquet, & Frith, 2002),
and the consolidation of such learning may depend on the reactiva-
tion of V1 during sleep. The learning we find with more complex
stimuli may involve more than one cortical locus (such as IT), pos-
sibly diluting the effects of sleep if the entire network engaged dur-
ing training is not reactivated during sleep.

Our results are consistent with the sustained improvements
found in the absence of sleep for auditory and motor tasks, with
mere passage of time after training (Gottselig et al., 2004; Robert-
son et al., 2004; Roth et al., 2005). In Roth et al. (2005), improve-
ments on a verbal identification task emerged after at least 6 h
had elapsed. In Robertson et al. (2004), there was improvement
on a finger-tapping task 12 h after practice with no sleep between
sessions. In Gottselig et al. (2004), restful waking, but not busy
waking was equivalent to sleep in promoting learning of an audi-
tory pattern discrimination task, suggesting that the key to consol-
idation might be the absence of interference from other tasks
during the interim period (i.e., the interference hypothesis). How-
ever, performance on this auditory task also improved with no
break between sessions, suggesting that the benefits from consol-
idation may be superfluous to those gained from continuous task
performance. Likewise, face-identification requires little latent
processing, as is clear from the performance of the 3 h-No sleep
group, which improved despite the small time-window between
sessions. These results are also consistent with a recent study
showing negligible effects of sleep in face memory task (Sheth,
Nguyen, & Janvelyan, 2008).

We found that within- and between-session learning were cor-
related positively for all groups (Fig. 5). This finding is at odds with
the results of Walker et al. (2003), who reported that sleep-depen-
dent and within-session improvements on a motor task were
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uncorrelated. It should be pointed out, however, that although we
found that the correlation was significant, within-session learning
accounted for only a small proportion of the variance in between-
session learning (i.e. r2 = 0.342 = 0.11). It is unlikely that this rela-
tively weak association is due to low reliability of our dependent
measure, because the correlation between performance in Session
1 and 2 was 0.89 (Fig. 2c). Instead, it appears that between-session
learning depends substantially on factors that are not correlated
with within-session learning. Stated this way, these findings are
similar to those reported by Walker et al. but, in addition, suggest
that their conclusion that within- and between-session learning
are mediated by ‘‘distinct and independent processes” (page 281,
Walker et al., 2003) is too strong.

Overall, our results show that robust perceptual learning for a
face identification task can be obtained in the absence of sleep,
and that sleep has very little effect on between-session learning.
The time-course of learning within each session was also unaffected
by the presence or absence of sleep between sessions. These results
are inconsistent with the notion that the bulk of perceptual learning
is a latent, across-session phenomenon. It is commonly assumed
that the latent gains are the basis of stimulus-specificity typically
found in perceptual learning studies (Karni & Bertini, 1997; Karni
et al., 1998; Karni & Sagi, 1993). The present findings, combined
with other results from our lab indicating exemplar- and orienta-
tion- specificity of face learning (Hussain et al., 2005, 2006), suggest
that stimulus-specificity of learning could just as well emerge from
the improvements that occur within the training session.
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