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Since the publication of Jack Hale’s work [1], there have been a lot of
monographs and research articles published on functional differential
equations. Most of them paid attention to the case in which the deviating
arguments depend only on the time itself. But another case, in which the
deviating arguments depend on both the state variable x and the time ¢, is
of importance in theory and practice. Several papers have appeared
recently that are concerned with iterative differential equations of the
form

x'(t) = H(x®(¢), xM(z), ..., xI"(1)),
where x°(¢) = ¢, xM(¢) = x(), x¥(¢) = x(x*=H()), k = 2,3,..., m. More
specifically, Eder [2] considers the functional differential equation
x'(t) =x(1)
and proves that every solution either vanishes identically or is strictly
monotonic. Feckan [3] studies the equation

x'(t) = f(xP(1)),
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where f € C(R), and obtains an existence theorem for solutions satisfying
x(0) = 0. Wang [4] studies the same equation, but f: R — R is continuous,
monotone, f(0) = 0, and |f(z)| > Alz| for some A > 0. Stanék [5] studies
the equation

x'(t) =x(t) + xP(1)

and shows that every solution either vanishes identically or is strictly
monotonic. In [6], the authors consider the equation

x'(t) = x")(¢1)

and establish sufficient conditions for the existence of analytic solutions.

In this paper, we will be concerned with a class of nonhomogeneous
iterative functional differential equations with variable coefficients of the
form

Y (1) = La a0 + F0), ®

where a;(¢) and F(¢) are known real functions. When m = 1, Eq. (1) has
the unique solution

x(t) = e/éoal(s) ds

t s
b+ [ F(s)e a0 gs),
&o

which satisfies the side condition

x(€) = &, & & €ER.

Thus when the coefficient functions a,(¢) and the forcing function F(z) are
smooth, (1) has a unique smooth solution. We will show that certain
features of this statement remain true when m is an arbitrary positive
integer. In particular, we will show that a smooth local solution exists that
depends continuously on the smooth functions aj(t) and F(¢). The case in
which the a;’s are constant was considered in [7].

In this note, a smooth function is taken to mean one that has a number
of continuous derivatives and for which the highest continuous derivative
is also Lipschitz. As usual, we write f C" if f,f',..., f" are continu-
ous. The set of all C" functions, each of which maps a closed interval I
into I, will be denoted by C"(I, I). Explicitly, C"(I, I) is a Banach space
with the norm || - ||,,, where

n
lxll, = 2 Ix®I, llxll = max {lx(2)]}.
k=0 tel
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For given constants M, >0(G =1,2,...,n + 1), let

QMy,.... M, ;1) ={feC"(1,I): |f) <M, i=12,..n;

1f(t) = FO) < Moty — 68,8, 1, € I}-

For convenience, we take the following notations:

x;(1) = xO(x(1)),
and

(k)

X e(1) = (xV)(1))

where i, j, and k are nonnegative integers. Let I C R be a closed interval.
By induction, we may prove that

Xy () = ij(xlo(t)""!xl,j—l(t);"';xko(t)' o "xk,j—l(t))' (2)

where P, is a uniquely defined multivariate polynomial with nonnegative
coefficients. The proof can also be found in [7]. .
It is obvious that there are positive constants N/* for 1 <u < k and

0 <v <j — 1, such that the polynomials P, satisfy the condition that

‘ij(xloi""xk,j—l) - ij(XlO""'Xk,j—l)‘
< ¥ Y NFR, - T 3)

u=1v=0

on compact sets A = [0,1F X [0, M, X --- x [0, M} ]

To seek a solution x(¢) of (1) in C"(I, I) such that ¢ is a fixed point of
the function x(z), i.e., x(&¢) = &, it is natural to seek an interval I of the
form [¢é— &, &+ 8] with 8 > 0, and in view of (1), it is also natural to
require that a,(#), F(z) € C" Y1, I). There are other natural require-
ments also. More precisely, let a (1) € Q(Lj,,..., L;,; Dforj=12,...,m
and F(¢) € Q(N,, ..., N,; D. If x(¢) is a solution of (1) on I, then we must
have

¥(€) = £X a(€) +F(£).
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and

m k-1

xX®(g) =Y X Caf Tt 0(¢)

j=1s=0
j terms Jj terms

XPAx'(£),.,x'(E);.. . xP(&), ..., xP(&)

+ FED(g)
for k = 2,3,..., n. For this reason, we define
V(&g M1 Nowo oo NS T
={feQ(N,....N;I): fO(¢)=m,i=0,1,....n — 1}
and

X(f, Eorenns Enl My, ..., Mn+l;1)
={(xe QU M,,... .M, ;1) x(&) =& =&,
xXO(g)=¢,i=1,2,...,n}.

Moreover, we take the notations

j terms J terms

BfkZﬂk(X'(f):---'X’(f);---;x(k)(f):---'x(k)(é))

and

j terms j terms j terms

ij=ij(1,...,1;MZ,...,MZ;...;Mk,...,Mk).

THEOREM 1. Let I =[£&— 68, £+ 8], where & and 8 satisfy

vi+4m — 1

|§|ST’ (4)

and

Vi+4m — 1 —2m|é&|

2m

0<é6<

(5)



ITERATIVE FUNCTIONAL DIFFERENTIAL EQUATION 381

Suppose that
FeV(&mg,....n, s Ny, ..., N T)
and
a, € V(& Lo biw v iy Ly T)
forj=1,2,...,m. Then (1) has a solution in
X(&&,....6:1LM,,.... M, ; 1),

provided the following conditions hold.:

(@
§1=§Z§jo+no’ (6)
j=1
m k-1
& = Z Zcﬁ—lé},k—l—sﬁjs*'nk—ln k=2,..,n, (7)
j=1s=0
(i)
m k—1
)y CioiLlj k1 Hijg + Neoy < My, k=2,...n, (8)
j=1s5=0
(iii)
m (V14 dm -1
X + L,
; 2m mn n
j=1
m n—1 s J—1 .
+ Z C;:fl Lj,nfsl_ljs + Z Z Lj,nflfsNL{vaqul
j=1s=1 u=10v=0
+N, <M, (9)

Proof. We will employ Schauder’s fixed point theorem to accomplish

the proof.
First of all, we assert that for all x(¢), y(¢) in X, the inequalities in
(10)—(12) hold:

lxU(1) —xUN 1) < e, — 1,1, 1,8, €1, j=0,1,...,m, (10)

Il =y <jllx —yll,  j=1,...,m, (11)
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and
llx = yll < 8"[lx™ — y™]. (12)
In fact, note first that (10) follows from
|xI(2) — xUN( 1) < [xV- 1) —xU= (1) < - <ty — 1,l.

Next, it is clear that the inequality in (11) holds for j = 1. Assume by
induction that the inequality holds for j = 2,...,s. Then
||x[s+l] _y[5+ l]”

= max|xl* (1) — yl ()]
tel

< max {lx(1(2)) = x(YUI(O)) + () =y ()]}

< [l —yB + lx = yll < (s + D)llx = yll,

as required. Finally, (12) follows from

lx(2) —y(O)l=1(x(2) —y(2)) = (x(&) —y(£))I
=lx"(7y) —y'(r)llt — €]
=1(x"(m) =y (1)) = (x"(§) =y'(E))Ile = &l
=|x"(7) = y" (7 )l lry — Ellt = &l = -+
=[x"(7,) =y (r)m,_y — €l Iy — €Nt — €
< 8"lx™ —y™,
where the equalities are obtained from the mean value theorem and the

inequality from |t — &1, 17, — €I,...,IT,_; — €l < 6.
Define an operator T from X into C"(I, I) by

(Tx)(t) = &+ fjl f;aj(s)x“](s) ds + f;F(s)ds, xeX. (13)

We will prove that for any x € X, Tx € X.
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To see this, note that

(Tx) (1) = &l <

Y Ltlaj(s)llx[”(s)lds + [gtIF(s)Ids

A

< Y (1el+8) Ut — &l + (1€l + 8)le — ¢
j=1

(m(1€1+ 8)* + (1€ + 8))le — £] < 3,

where the second inequality is from x(I) c I, a,(I) c I(j = 1,...,m) and
F(I) c I, and the third is from (5). Thus (Tx)(1) C I.
From (13), it is easy to see that

m

(Tx)'(t) = X a;()xV)(t) + F(1),

j=1

and fork=2,...,n

(Tx) (1) = 5 (a,(£)x7(0)) ™ + FoD(1)
j=1
- f i Fa% () (A1) + FE (1),
jo1s—
Next, note that (Tx)(&) = £. Furthermore, by (6) and (7), we have
(Tx)' (&) = L a;(E)xXVI(E) + F(&) = €Y Go+ my = &4,
j=1 j=1
and
m k-1
(T)(&) = ¥ X Cioa 1 70(8)x, (€) + FED(¢8)
j=1s=0
= Z Z i1 Bs T =& k=2,....n

J

respectively. Thus (Tx)®(&) = & for k=0,1,...,n
Next, we have

I(Tx)' (1)l < f‘, la; () xVI(e)| + |F (1)l

<m(1€l+8)  + (1&€l+8) <1=M,,
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where the last inequality follows from (5). In view of (8), we also have

m k-1
1 : s) _
()P0l < ¥ L Ciilal = =2()lI(x12(1))"| + [F<=2(1)]
j=1s=0
<y Z foalj g Hy+ Ny <M, k=2,...,n
fl
Finally,
(Tx)"(2,) — (Tx)™(1,)]
m n—1
< ¥ ¥ i la () ()(11)) ) = a0 (1) (60(1,)) )
j=1s5=0

+|F(n71)(l‘l) _ F("*l)(t2)|

m
<) {|a§n_1)(t1) - a§n_1)(t2)| |x(2,)]

+la" D (1) x(2y) — XV (1,)1)

m n—1

+ X X Cflar () = a )
j=1s=

XI(xi(£)) a1,
X”)js(xlo(tl)’ cenn xs,j—l(tl))

_Pjs(xlo(tz)v X xs,j—l(tz))l} + N,lt; — 1,

< Y (Li(1E1+8) +L;, o)ty —t,]

m 1
+ Z Z Crsz—l Lj,n—sHjs|t1 - t2|
j=1s=1

N

+Lj,nflfs Z Nuv|xul,(tl) _xuz:(t2)|}

u=10v=0
+N,|t; — 1.
Since

1,0 (11) = X, ()1 < M, XN (2y) = xW(e,) < M, |ty — 1,
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holds by means of the mean value theorem and (10), we see that

(Z) ™ (1) = (Tx) (1)

m o (V1+4m —1 m n-1
<|Y|l———~L,+L , |+ Y YC_
2m n jin—1 n—1

j=1 j=1s=1

X

s Jj-1
Lj,n—sPIj.r + Z Z Lj,n—l vNu ML¢+1
u=10v=0

<M, lt; —t,l.

+ N, |lt; — 1l

Therefore, T is an operator from X into itself.
Now we will show that 7 is continuous. Let x, y € X; then

HTX - TyHn

1Tx — ol + (T — (Tl + 3 IT0® — (1)@

max
tel

L [a()(a) =) ds

+ max
tel

¥ /() (1) —y[ﬂ(t))‘

m

+ Y max f {a}kl)(t)(x[”(f) —yU(1))

k—2 t€l |;

k7

+ ch 1a(k t b)(t)[ (xlo(t) "xs,j—l(t))

_ij(ylo(t),...,ys,j—l(t))]}‘

< 8(1£1+ 8) Xl =yl + (1€ + &) X lal? =yl
j=1 j=1

e

>

k=2j

L o ollxli? =yl
1

k-1 s J—
+ Z Cli—le,k—l—s Z Z ]\]L{f max"qu(t) _yuv(t)|}
s=1

u=10v=0
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< o6(l&l+9) Zjllx —yll+ (1€] + 6) Z,a [x — |

j=1

n m
+ ) Zij,kflux =yl
k=2j=1

m m k-1 s j—1
+ Z Z Z Z Z Ck 1 Jok—1— bN maX"xuz(t) _yuv(t)|'
k=2 j=1s=1u=10v=0

where we have made use of (11) and (12) in obtaining the last inequality.
Since the mean value theorem and (11) imply

X, () = Yo ()]
< 1O (1)) = yO (6 )]+ [y (6 (1)) = y (1))
< Ix@ =yl + M, llxt =yl

< [[x®@ —y®@) + M, wllx -yl

and since
n m k-1 s j—1 '
)y Z Z Y CiaLj 1 N
k=2 j= =10v=0
n—1n-1 n m j—1
J
J
ZZ Z chleklsNul’
u=1s=u k=s+1j=10v=0
we see that
||TX_TY||n
(1 +m)V1l+4m _18
<
= 4
n m k— s J—1
+ Y X JLj o1+ Y X chi—le,k—l NI M+1U) llx =yl
k=2 j=1 s=1u=10v=0

n—1 n m j—1
+ Z Z Z ZCk 1L koae Y]VL{[Y [[x® — y@]
u=1

s=u k=s+1j=10v=0

1+myVl+4m -1
¥ ; 5 {1 — yo|

< Illx =yl (14)
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where
1+m)Vl+4m -1
I' = max S
4
n m k-1 s j—1 A
+ Y X JL; -1t DD chile,klsNu]i’Mu+1U);
k=2 j=1 s=1lu=10v=0

n—1 n m j—1
max_l { )IEDY Z b Cli—le,k—l—sNuJi}}'
(15)

This completes the proof of the fact that T is continuous.
It is easy to see that X is closed and convex. We now show that X is a
relatively compact subset of C"(I,I). For any x = x(¢) in X,

n n
lxll, <llxll+ Y Ix®l<|él+8+1+ Y M,.
k=1 k=2

Hence X is bounded in C"(I, I). Next, for any x = x(¢) in X and any
t,t, € I, we have

1x(2;) —x(8)l <ty = 1,].

This shows that X is equicontinuous on I. By means of the Arzela—Ascoli
theorem, we see that X is relatively compact in C*(1, I).
By Schauder’s fixed point theorem, we conclude that

g(t) = €+ ¥ [a(5)g)(s) ds + [F(s) ds
j=1"¢ 3
for some g(¢) in X. By differentiating both sides of the above equality, we

see that g is the desired solution of (1). This completes the proof.

THEOREM 2. Let I =[€&— 6, £+ 8], where € and & satisfy (4) and (5),
respectively. Let

FevY(é&ng,...om_1; Ny, ... N, I)
and
a, € V(& Lo G uens Ligy s Ly 1)
forj=1,2,...,m. Then (1) has a unique solution in
X(& &, 6L My, ... M, 13 T),
provided the conditions (7)—(10) hold and T' < 1 in (15).
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Proof. Since T <1, we see that T defined by (13) is contraction
mapping on the close subset X of C"([, I). Thus the fixed point g in the
proof of Theorem 1 must be unique. This completes the proof.

THEOREM 3.  The unique solution obtained in Theorem 2 depends contin-
uously on the given functions F and a; (j = 1,2,..., m).

Proof.  Under the assumptions of Theorem 2, if G = G(¢)and H = H(¢)
are any two functions in W(&; ng, ..., m,_q; Ny,..., N,; 1); ai¢) and by(¢)
are any functions in W(¢; g, .. -, Gn-vLjp o, L,;Dforj=12..., m,
then there are two unique corresponding functions g = g(¢) and & = h(z)
in X(&;&,...,¢6;1L,M,,..., M, ;) such that

g(1) = £+ i [l (9)e(s) ds + [(G(s) ds
and

h(t) = £+ é fg’b,(s)h[ﬂ(s) ds + fgtH(s) ds.
We have

lg = hll, =llg — Al +llg" = 'l + X lIg® —h®l
k=2

f la,(5)gV)(s) = by(s)h(s)lds

|

+max{z (1)gl(1) —b(t)h“](t)l}

+ f‘, max{ E‘, [Ia}"l)(t)g[”(t) — b* V(1) A1)
J

thE

k-1

+ Z C,ﬁf1|a§k’1’”(t)Pjs(g10(t), cee gs,j—l(t))

+ max
tel

/;IG(S) ~ H(s)l ds| + max|G(r) — H(1)|

+ ), max|G*Y(¢) — (1)

k=2 tel
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tel

m
< max{z
j=1

;[la,«(s) — b(s)l1gV(s)]

+1b,(s)1 gV (s) — BU(s)I] ds

|

¥ Tea}{ Y [lay(r) = b,(1)lIg()|

j=1

+1b;(1)11gV(1) — h[”(f)l]}

n

+ Y max{i [Iagk—l)(t) — b}.(k—l)(t)||g[f](t))|

kzlE

+|b§k—1)(z)| 1gl(t) — h[”(t)l]

\|D15

i Ci_y[la=1-(t) = bE=19(1))

i
X|Pyg(810(1) .- 85, j-1(1))

B P(810(2) -1 &, j-a(1))
—P,(hy(1),. .., hs,jfl(t))”

n
+0IG —HI+IG - Hl+ Y IG* D — H&=D||
k=2

m m
< E:iﬂwnaj—'bﬂ|+ E:ZWMaj_'@“
j=1 j=1

n m
+ Y X | Nllafb - pn)|
k=2j=1
k—1
+ X G H a0 = bt
s=1

+ Y 8(1€l+ 8)jllg —al+ X (1€l + 8)j8"llg™ — h™)
j=1 j=1

M=

Y

k=2

jLLk—IHg — hll
1
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n m k-1 s j-1
+X L X X LGl
k=2 j=1s=1u=10v=0

XN (g™ = hll + M, wllg — All)
+(8+ DHIG - Hll,-1

m n—1 n
SO ING+HD)+ X X C;lHjs} la; — bl
j=1 s=1k=s+1
n—1 m n—1-—i n ) )
SR Elve s E g
i=1 \j=1 s=1 k=s+1

+llg = All, + (6 + DIIG — HIl,-1

IA

Y Tlla, = bll-r + Tlig = All, + (8 + DIG — Hllu-1,
j=1

where T is defined in (15) by means of the same reasoning used in
obtaining (14), and

n—1 n
I = max{Nj(cS +1)+ Y Y G, Hg;
s=1k=s+1

for j = 1,2,..., m. Thus we have

mo T o+1

—hl, < L . = b1+
I =l 5 ¥ 7=l bl + 7

IG — Hll, -1

We may now conclude that the solution of (1) depends continuously on the
functions F and aj(j =1,2,...,m). This completes the proof.

We now show that the conditions in Theorem 1 do not self-contradict,
by means of an example. Consider the following equation:

x'(1) = ay()x(1) + ay (1) x(x(2)) + F(1), (16)

where F(1) =(t — )2 + &, at) =(t — £)° + &, a,(t) = (t — £)P/°
+ &, and | €] < 1/2. Obviously, (4) is satisfied. We pick & such that

0<8<;—I&l;
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then (5) is also satisfied. The numbers ¢ and & now define the interval
I=[&— 6,8+ 6] Note that

Fi(0) = (= € () = )

1332 6160
FW([) =7(t_§)5/3l F(4)(t) =W(t_§)2/3l

ay(t) =5(t = £)", aj(r) = 20(1 = £)°,
aj (1) = 60(t — £)°, af(r) = 120(1 = §),

24 456
ay(t) = 5 (1= &) dy(n) = 5 (e - 6,

6384 9 57456
" /5 4) 4/5
t) = —(t , t) = t ,
az (1) 125( £) ay’(1) 625 ( &)

thus

FeWY(é mg,....nss Nyyo.. Ny I
154 1332 6160

:"I' g;gloaolo;ﬁéll/?’!_ég/aa 85/31 62/311
3 9 27 81

ay € W( & Lyor-o o fagi Lyyyooy Lygi T)
— W(£;£,0,0,0;55%,208°% 6052,1208; 1)

and

a, €V(E Lpr v ogs Logsevvy Logs I)

24 456 6384
=W(&;£,0,0,0; —8%/°, ——8°, 5

o5 ST46 s
5 25 ’

125 625 ’

Now take &, = ¢,

& =(26+1)¢,
&= (& + 1),
&= (& + & +1)&,,
&= (& + &E +3E7E + £6,)¢E.
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Then (6) and (7) are satisfied. Furthermore, if we take
My=1 M,=1+3(Ly+Ly)+N,
My =2Ly, + 3Ly, + 2L, + 3L, + 3M, + N,,
M4 = 3LlZ + %L13 + 3L22 + %LZS + 3(Lll + 2LZl)MZ
+3MZ + M, + N;,

then M,,..., M, are positive, and (8) is satisfied. Finally, if we take

2 (1
My = X 5L+ L)
j=1

s j—1

Lj,4—sf1jx + Z Lj,S— NL{ZMM+1 + N4'
0

N
u=1v=

2 3
+2 XG
j=1s=1

then M, > 0 and (9) is satisfied.

We have thus shown that when &,,..., ¢, and M,,..., My are defined
as above, then there will be a solution of (1) in X(¢&;&,,...,&;
L M,,..., M.
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