Banach spaces which are somewhat uniformly noncreasy

Helga Fetter, a,*,1 Berta Gamboa de Buen, a,1 and Jesús García-Falset b,2

a Centro de Investigación en Matemáticas (CIMAT), Apdo. Postal 402, 36000 Guanajuato, Gto., Mexico
b Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Valencia, Dr. Moliner, 46100 Burjassot, Valencia, Spain

Received 21 January 2003
Submitted by W.A. Kirk

Abstract

We consider a family of spaces wider than r-UNC spaces and we give some fixed point results in the setting of these spaces.

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let \((X, \| \cdot \|)\) be a Banach space. Let \(C\) be a nonempty subset of \(X\). A mapping \(T : C \to C\) is said to be nonexpansive whenever \(\|Tx - Ty\| \leq \|x - y\|\) for all \(x, y \in C\).

We say that a Banach space \(X\) has the fixed point property (FPP in short) if every nonexpansive self mapping \(T\) on any nonempty bounded, closed, convex subset \(C \subset X\) has a fixed point. Since 1965, Browder [1], Göhde [5], Kirk [9], and other authors have established that, under various conditions of a geometric kind on the norm of \(X\), the FPP is guaranteed.

* Corresponding author.
E-mail addresses: letter@cimat.mx (H. Fetter), gamboa@cimat.mx (B. Gamboa de Buen), garciaf@uv.es (J. García-Falset).
1 Partially supported by CONACYT 32152-E.
2 Partially supported by BFM 2000-0344-C02-02.

0022-247X/5 – see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00410-4
A classical result by Turett [14] states that if the characteristic of convexity of X is less than 1 (i.e., $\epsilon_0(X) < 1$), then both X and X^* are super-reflexive and have the FPP. In this sense, in [2,7] the classical coefficient $\epsilon_0(X)$ was generalized to $\tilde{\epsilon}_0^k(X)$ (see definition below), where $\tilde{\epsilon}_0^k(X)$ is an extension to higher finite dimensions of that coefficient and it was shown that if $\tilde{\epsilon}_0^k(X) < 1$, then X has the FPP. However, it remains unknown whether the FPP holds for super-reflexive Banach spaces, in particular for every uniformly nonsquare Banach space (i.e., $\epsilon_0(X) < 2$).

On the other hand, in 1996 Prus [12,13] introduced the uniformly noncreasy (UNC) Banach spaces, and showed that they are super-reflexive and they have the FPP. The property UNC is an ingenious three-dimensional generalization of uniform convexity and uniform smoothness properties, which does not imply normal structure.

Recently, in [3] the authors introduced the class of r-UNC Banach spaces (see definition below) and they showed that these Banach spaces are super-reflexive and moreover, when $r \leq 1$, they also enjoy the FPP. r-UNC Banach spaces include uniformly nonsquare Banach spaces and also Banach spaces with $\epsilon_0(X) < 1$; uniformly noncreasy Banach spaces are r-UNC Banach spaces with $r \leq 2$.

In this paper we study a class of Banach spaces which is larger than both r-UNC and $\tilde{\epsilon}_0^k(X) < 2$ and we establish some fixed point results for this class of spaces.

2. Preliminaries

Let X be a Banach space. By X^*, B_X, and S_X we denote the dual space, the unit ball, and the unit sphere of X, respectively, and diam A denotes the diameter of a bounded set $A \subset X$.

In [2] the authors gave the following definition: Let $(X, \| \cdot \|)$ be a Banach space and $k \in \mathbb{N}$. Denote by $s_k(X)$ the supremum of the set of numbers $\epsilon \in [0, 2]$ for which there exist points x_1, \ldots, x_{k+1} in B_X with $\min\{\|x_i - x_j\| : i \neq j\} \geq \epsilon$.

Define the function $\tilde{\delta}^k : [0, s_k(X)) \to [0, 1]$ by

$$\tilde{\delta}^k(\epsilon) = \inf\left\{ 1 - \frac{k+1}{\sum_{i=1}^{k+1} x_i} : x_i \in B_X, i = 1, \ldots, k+1, \min_{i \neq j} \|x_i - x_j\| \geq \epsilon \right\}$$

and let $\tilde{\epsilon}_0^k(X)$ be the number $\tilde{\epsilon}_0^k(X) = \sup\{\epsilon \in [0, s_k(X)) : \tilde{\delta}^k(\epsilon) = 0\}$.

Given two functionals $x^*, y^* \in S_X^*$, and a scalar $\delta \in [0, 1]$, we put $S(x^*, \delta) := \{x \in B_X : x^*(x) \geq 1 - \delta\}$ and

$$S(x^*, y^*, \delta) := S(x^*, \delta) \cap S(y^*, \delta).$$

Let $r \in (0, 2]$. Following [3], we say that a Banach space X is r-uniformly noncreasy (r-UNC in short) provided that there exist $\epsilon \in (0, r)$ and $\delta > 0$ such that if $x^*, y^* \in S_X^*$ and $\|x^* - y^*\| \geq \epsilon$, then diam $S(x^*, y^*, \delta) \leq \epsilon$.

Let \mathcal{U} be a free ultrafilter on the set of natural numbers.

Consider the closed linear subspace of $\ell_\infty(X)$,

$$\mathcal{N} = \left\{ (x_n) \in \ell_\infty(X) : \lim_{n \to \mathcal{U}} \|x_n\| = 0 \right\}.$$
The ultrapower \(\tilde{X} \) of the space \(X \) is defined as the quotient space \(\ell_\infty(X)/N \). Given an element \(x = (x_n) \in \ell_\infty(X) \), \(\tilde{x} \) stands for the equivalence class of \(x \). The quotient norm in \(\tilde{X} \) verifies \(\|\tilde{x}\| = \lim_{n \to U} \|x_n\| \).

If \(f = (x_n^*) \) is a bounded sequence of functionals in \(X^* \), the expression \(\tilde{f}(\tilde{x}) = \lim_{n \to U} x_n^*(x_n) \) for \(x = (x_n) \in \ell_\infty(X) \) defines an element in the dual space of \(\tilde{X} \) with \(\|\tilde{f}\| = \lim_{n \to U} \|x_n^*\| \). (For more details about the construction of an ultrapower of a Banach space \(X \) see, for example, [10].)

Suppose that \(C \) is a weakly compact convex subset of a Banach space \(X \), and \(T : C \to C \) is a nonexpansive mapping. The set \(C \) contains a weakly compact convex subset \(K \) which is minimal for \(T \). That means that \(T(K) \) is contained in \(K \) and no strictly smaller weakly compact convex subset of \(K \) is invariant under \(T \). If \(K \) contains only one point then \(T \) has a fixed point. Otherwise we can assume that \(\text{diam}(K) > 0 \). It is easy to see that \(K \) contains a sequence \((x_n) \) with \(\lim_{n \to \infty} \|x_n - Tx_n\| = 0 \) (such a sequence is called an approximate fixed point sequence (afps) for \(T \)).

A well-known property of minimal sets is the following Goebel–Karlovitz lemma (see [4,8]).

Lemma 1 (GK). Let \(K \) be a minimal weakly compact convex subset for a nonexpansive mapping \(T \) and let \((x_n) \) be an afps sequence for \(T \) in \(K \). Then for all \(x \in K \)
\[
\lim_{n \to \infty} \|x_n - x\| = \text{diam}(K).
\]

The following result was proved by Maurey in [11].

Theorem 2 (Maurey). Let \(\delta \in (0, 1) \). Let \(K \) be a minimal weakly compact convex set for a nonexpansive mapping \(T \) which does not have a fixed point. If \(x = (x_n), y = (y_n) \) are afps for \(T \) in \(K \), then there exists an afps \(w = (w_n) \) in \(K \) such that
\[
\|\tilde{w} - \tilde{x}\| = \delta \|\tilde{x} - \tilde{y}\| \text{ and } \|\tilde{w} - \tilde{y}\| = (1 - \delta) \|\tilde{x} - \tilde{y}\|.
\]

3. SUNC Banach spaces. Examples

In order to be able to define the concept we are interested in, we need the following generalization of the diameter of a set.

Definition 3. Let \(X \) be a Banach space. Let \(A \) be a bounded subset of \(X \). For every \(k \in \mathbb{N} \) we define
\[
\beta^k(A) := \sup \{ r : \exists x_1, x_2, \ldots, x_{k+1} \in A \text{ with } \|x_i - x_j\| \geq r \text{ for } i \neq j \}.
\]

We propose the following weakening of the notion \(r \)-UNC.

Definition 4. Let \(k \in \mathbb{N} \) and \(r \in (0, 2] \). A Banach space \(X \) is \((r, k) \)-SUNC in short, if there exist \(\epsilon \in (0, r) \) and \(\delta > 0 \) such that if \(x^*, y^* \in S_{X^*} \) and \(\|x^* - y^*\| \geq \epsilon \), then \(\beta^k(S(x^*, y^*, \delta)) \leq \epsilon \).
Definition 5. A Banach space X is said to be somewhat uniformly noncreasy (SUNC in short), if there exist $k \in \mathbb{N}$ and $r \in (0, 2]$ such that X is (r, k)-SUNC.

Clearly, if A is a bounded subset of a Banach space X, then $\beta^k(A) \leq \text{diam}(A)$ and thus if a Banach space X is r-UNC, then the space also is (r, k)-SUNC. In fact, we may notice that $(r, 1)$-SUNC is exactly the same as r-UNC. Also, if A is a bounded convex subset of X, then $\text{diam}(A) \leq k \beta^k(A)$; so if X is (r, k)-SUNC, we have that X is rk-UNC.

It is also clear from the definition that, if X is (r, k)-SUNC and $s \geq r$, then X is (s, k)-SUNC.

In order to measure the degree of SUNC-ness of X, we define the following modulus (see [3] to find a similar modulus concerning r-UNC Banach spaces).

Definition 6. Given $k \in \mathbb{N}$, for any $\epsilon \in [0, S_k(X))$ we define

$$\delta^k(X, \epsilon) := \inf \left\{ 1 - \frac{(x^* + y^*)}{2} \left(\sum_{i=1}^{k+1} \frac{x_i}{k+1} \right) : x_i \in B_X, \quad i = 1, \ldots, k+1, \quad \min_{i \neq j} \|x_i - x_j\| \geq \epsilon, \quad x^*, y^* \in S_X^*, \quad \|x^* - y^*\| \geq \epsilon \right\}$$

and

$$\epsilon_{k,SUNC}(X) := \sup \{ \epsilon \in [0, S_k(X)) : \delta^k(X, \epsilon) = 0 \}.$$

Theorem 7. Let X be a Banach space, $k \in \mathbb{N}$, and $r \in (0, 2]$. X is (r, k)-SUNC if and only if $\epsilon_{k,SUNC}(X) < r$.

Proof. Observe first that $\epsilon_{k,SUNC}(X) < r$ if and only if there exists $\epsilon < r$ such that $\delta^k(X, \epsilon) > 0$.

Suppose there is $\epsilon_0 \in (0, r)$ with $\delta_0 = \delta^k(X, \epsilon_0) > 0$ and let $\delta \in (0, \delta_0)$. Let $x^*, y^* \in S_X^*$ with $\|x^* - y^*\| \geq \epsilon_0$ and $x_1, \ldots, x_{k+1} \in S(x^*, y^*, \delta)$. Then

$$\frac{x^* + y^*}{2} \left(\sum_{i=1}^{k+1} \frac{x_i}{k+1} \right) = \frac{1}{2(k+1)} \sum_{i=1}^{k+1} \left(x^*(x_i) + y^*(x_i) \right) \geq 1 - \delta > 1 - \delta_0,$$

that is,

$$1 - \frac{x^* + y^*}{2} \left(\sum_{i=1}^{k+1} \frac{x_i}{k+1} \right) < \delta_0,$$

and hence there exist i and j with $i \neq j$ so that $\|x_i - x_j\| < \epsilon_0$.

Consequently $\beta^k(S(x^*, y^*, \delta)) \leq \epsilon_0$ and X is (r, k)-SUNC.

Suppose now that X is (r, k)-SUNC. Then there exist $\epsilon_0 \in (0, r)$ and $\delta_0 > 0$ so that for every $x^*, y^* \in S_X^*$ with $\|x^* - y^*\| \geq \epsilon_0$, we have

$$\beta^k(S(x^*, y^*, \delta_0)) \leq \epsilon_0.$$
Let $\epsilon \in (\epsilon_0, r)$, $x_1, \ldots, x_k \in B_X$ with $\|x_i - x_j\| \geq \epsilon$ for $i \neq j$ and $x^*, y^* \in S_X^*$ with $\|x^* - y^*\| \geq \epsilon$. Since $\beta^k((x_1, \ldots, x_{k+1})) \geq \epsilon$, we obtain that $\{x_1, \ldots, x_{k+1}\}$ is not contained in $S(x^*, y^*, \delta_0)$ and this means that there exists some $i \in \{1, \ldots, k + 1\}$ such that $x_i \notin S(x^*, y^*, \delta_0)$. Then either $x^*(x_i) \leq 1 - \delta_0$ or $y^*(x_i) \leq 1 - \delta_0$. In both cases we have

$$\frac{x^* + y^*}{2} \left(\sum_{i=1}^{k+1} x_i \right) \leq \frac{2k + 1 + 1 - \delta_0}{2(k + 1)} = 1 - \frac{\delta_0}{2(k + 1)},$$

and thus

$$1 - \frac{x^* + y^*}{2} \left(\sum_{i=1}^{k+1} x_i \right) \geq \frac{\delta_0}{2(k + 1)},$$

therefore we may conclude that $\delta_X^{k-SUNC}(\epsilon) \geq \delta_0/(2(k + 1)) > 0$.

As a trivial consequence of Theorem 7 we obtain the following relationship between Banach spaces with $\tilde{\delta}_0^\beta(X) \leq r$ and the (r, k)-SUNC property.

Corollary 8. If $\tilde{\delta}_0^\beta(X) < r \leq 2$, then X is a (r, k)-SUNC Banach space.

Now we will give an example of a space which is $(2, k - 1)$-SUNC but is not 2-UNC.

Theorem 9. For $k > 2$, let X_k be \mathbb{R}^k endowed with the norm

$$\|x_1, \ldots, x_k\| = \max_j \sum_{i \in \{1, \ldots, k\}, i \neq j} |x_i|.$$

Then there exists $\phi < 2$ such that $\tilde{\delta}_X^{k-1}(\phi) > 0$.

Proof. Assume that $k > 2$ and take x, y such that $\|x\| \leq 1$, $\|y\| \leq 1$, $\|x - y\| \geq 2 - \epsilon$ and $\|x + y\| \geq 2 - \epsilon$, where $0 < \epsilon < 1/(4(k - 1)^2)$. Then $\min\{\|x\|, \|y\|\} \geq 1 - \epsilon$. Let $x = (a_1, \ldots, a_k)$ and $y = (b_1, \ldots, b_k)$. We will show that $\min\{|a_i|, |b_i|\} \leq 2\epsilon$ for every $i = 1, \ldots, k$.

Let $|a_p + b_p| = \min\{|a_i + b_i|, P = \{1, \ldots, k\} \setminus \{p\}, |a_m - b_m| = \min\{|a_i - b_i|, M = \{1, \ldots, k\} \setminus \{m\}$. Since $k > 2$, the set $A = P \cap M$ is nonempty.

Observe now that

$$|a + (-1)^s b| = |a| + |b| - 2\min\{|a|, |b|\}$$

for all real numbers a, b with $(-1)^s ab \leq 0$, where $s = 1, 2$. It follows that

$$2 - \epsilon \leq \|x + y\| = \sum_{j \in P} |a_j| + \sum_{j \in P} |b_j| = 2 \sum_{j \in P} \min\{|a_j|, |b_j|\}$$

$$\leq 2 - 2 \sum_{j \in P} \min\{|a_j|, |b_j|\}.$$
where \(P_1 = \{ j \in P: a_j b_j \leq 0 \} \). Hence \(\min(\{a_j, b_j\}) \leq \epsilon/2 \) for every \(j \in P_1 \). Similarly, \(\min(\{a_j, b_j\}) \leq \epsilon/2 \) for every \(j \in M_1 \), where \(M_1 = \{ j \in M: a_j b_j \geq 0 \} \). Consequently,
\[
\min(\{a_j, b_j\}) \leq \epsilon/2
\]
for every \(j \in A \).

It remains to show that \(\min(\{a_j, b_j\}) \leq 2\epsilon \) for \(j = p, m \). Suppose that \(\min(\{a_p, b_p\}) > 2\epsilon \). Fix \(i \in A \) and put \(P_2 = P \setminus \{ i \} \). We have \(\min(\{a_i, b_i\}) \leq \epsilon/2 \). If \(|a_i| \leq \epsilon/2 \), then
\[
2 - \epsilon \leq \|x + y\| \leq \sum_{j \in P} |a_j| + 1 \leq \sum_{j \in P_2} |a_j| + \frac{\epsilon}{2} + 1.
\]

Hence
\[
\sum_{j \in P_2} |a_j| \geq 1 - \frac{3\epsilon}{2}.
\]
But
\[
\sum_{j \in P_2} |a_j| + 2\epsilon < \sum_{j \in P_2} |a_j| + |a_p| \leq 1,
\]
which is a contradiction. The remaining cases are similar.

Take now vectors \(x_1, \ldots, x_k \) such that \(\|x_i\| \leq 1 \) for every \(i = 1, \ldots, k \) and \(\|x_i - x_j\| \geq 2 - \epsilon \) whenever \(i \neq j \). If \(\|x_i + x_j\| < 2 - \epsilon \) for some \(i \neq j \), then
\[
\frac{1}{k} \left\| \sum_{n=1}^{k} x_n \right\| \leq \frac{1}{k} \left(k - 2 + \|x_i + x_j\| \right) < 1 - \frac{\epsilon}{k}.
\]

Assume now that \(\|x_i + x_j\| \geq 2 - \epsilon \) whenever \(i \neq j \). Let \(x_i = (x_i^1, \ldots, x_i^k) \). For each \(j \) there is at most one \(i \) such that \(|x_i^j| > 2\epsilon \). Therefore
\[
\left| \sum_{i=1}^{k} x_i^j \right| \leq 1 + 2(k - 1)\epsilon.
\]

Consequently,
\[
\frac{1}{k} \left\| \sum_{i=1}^{k} x_i \right\| \leq \frac{1}{k} (k - 1)(1 + 2(k - 1)\epsilon) = 1 - \frac{1}{k} (1 - 2(k - 1)^2\epsilon) < 1 - \frac{1}{2k}
\]
and thus we may conclude that \(\delta^{k-1}(2 - \epsilon) > \epsilon/k > 0 \). \(\square \)

If \(k = 2 \), then the space \(X_k \) is just \(\mathbb{R}^2 \) with the maximum norm, so it is UNC in a trivial way. From this, Theorem 9 and Corollary 8, we deduce the following corollary immediately.

Corollary 10. For \(k \geq 2 \), the Banach space \(X_k \) is \((2, k - 1)\)-UNC.

Next we characterize the dual space of \(X_k \).
Theorem 11. $X^*_k = \mathbb{R}^k$ equipped with the norm

$$
\| (y_1, \ldots, y_k) \| = \max \left\{ \max_{1 \leq i \leq k} |y_i|, \frac{|y_1| + \cdots + |y_k|}{k - 1} \right\}.
$$

Proof. Let $f = (y_1, \ldots, y_k) \in X^*_k$ and $x = (x_1, \ldots, x_k) \in S_{X^*_k}$. If we take $\text{sgn} x_i = \text{sgn} y_i$, we have that

$$
f(x_1, \ldots, x_k) = \sum_{i=1}^{k} |x_i| |y_i|,
$$

thus in order to calculate $\| f \|$ we will assume that $x_i \geq 0$ and $y_i \geq 0$ for $i = 1, 2, \ldots, k$.

Further we will suppose that $x_1 \geq \cdots \geq x_k$. Then $1 = \| x \| = \sum_{i=1}^{k-1} x_i$.

Let

$$
A = \{ x = (x_1, \ldots, x_k) \in X : x_1 \geq \cdots \geq x_k, \| x \| = 1 \}
$$

and

$$
z_1 = (1, 0, \ldots, 0), \quad z_2 = \left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0 \right), \quad \ldots,
$$

$$
z_{k-1} = \left(\frac{1}{k-1}, \frac{1}{k-1}, \ldots, \frac{1}{k-1}, 0 \right), \quad z_k = \left(\frac{1}{k-1}, \frac{1}{k-1}, \ldots, \frac{1}{k-1}, \frac{1}{k-1} \right).
$$

Then $x \in A$ if and only if x is a convex combination of z_1, \ldots, z_k. In fact, if $x = \sum_{i=1}^{k} \mu_i z_i$ with $\sum_{i=1}^{k} \mu_i = 1$ and $\mu_i \geq 0$ for $i = 1, \ldots, k$, we have that

$$
x_i = \sum_{j=i}^{k-1} \frac{1}{k-1} \mu_j + \frac{1}{k-1} \mu_k \quad \text{for } i = 1, \ldots, k-1, \quad x_k = \frac{1}{k-1} \mu_k.
$$

Thus $x_1 \geq \cdots \geq x_k$ and

$$
\| x \| = \mu_k + \sum_{j=1}^{k-1} \frac{1}{k-1} \mu_j = \mu_k + \sum_{j=1}^{k-1} \frac{1}{k} \mu_j = \sum_{i=1}^{k} \mu_i = 1.
$$

Consequently $x \in A$.

On the other hand, if $x \in A$, let

$$
\mu_i = \begin{cases}
 i (x_i - x_{i+1}) & \text{if } i \leq k - 1, \\
 (k-1)x_k & \text{if } i = k.
\end{cases}
$$

Then $\mu_i \geq 0$,

$$
\sum_{i=1}^{k} \mu_i = \sum_{i=1}^{k-1} i (x_i - x_{i+1}) + (k-1)x_k = \sum_{i=1}^{k-1} x_i + x_k = 1
$$

and

$$
\sum_{i=1}^{k} \mu_i z_i = \sum_{i=1}^{k-1} i (x_i - x_{i+1}) z_i + (k-1)x_k z_k = x.
$$
Hence, if \(f(x) = \sum_{i=1}^{k} x_i y_i \), \(f \) attains its maximum in \(A \) at one of the extreme points \(z_1, \ldots, z_k \). But

\[
f(z_i) = \begin{cases}
\frac{y_i + \cdots + y_i}{y_i y_{k-1}} & \text{if } 1 \leq i \leq k-1, \\
\frac{y_i - \cdots - y_i}{y_i} & \text{if } i = k.
\end{cases}
\]

Suppose \(\max_{1 \leq i \leq k} y_i = y_r \). Then \(f(0, 0, \ldots, y_r, \ldots, 0) = y_r \). Thus

\[
\|f\| = \max \left\{ \max_{1 \leq i \leq k} |y_i|, \frac{|y_1| + \cdots + |y_k|}{k - 1} \right\}.
\]

From above we derive that being \((2, k-1)\)-SUNC is not the same as being \((2, k-3)\)-SUNC.

Theorem 12. Let \(k \geq 4 \). The space \(X_k \) is not \((2, k-3)\)-SUNC.

Proof. Let \(x^* = e_1 + e_2 + \cdots + e_{k-1} \) and \(y^* = e_1 + e_2 + \cdots - e_{k-1} \). By Theorem 11, \(\|x^*\| = \|y^*\| = 1 \) and \(\|x^* - y^*\| = 2 \). On the other hand, \(x^*(e_i) = y^*(e_i) = 1 \) for \(i = 1, 2, \ldots, k - 2 \) and \(\|e_i - e_j\| = 2 \) for \(i \neq j \). Then \(e_1, \ldots, e_k \in S(x^*, y^*, 0) \) and \(\beta^{k-3}(S(x^*, y^*, 0)) = 2 \).

Finally, by the previous theorems, we may conclude that there exists a Banach space which is \((2, 3)\)-SUNC but is not \(2\)-UNC.

Corollary 13. Let \(k = 4 \). The space \(X_4 \) is not \(2\)-UNC but is \((2, 3)\)-SUNC.

4. Super-reflexivity

To study super-reflexivity in SUNC Banach spaces, we recall the following result due to James [6].

Lemma 14. Let \(X \) be a Banach space. \(X \) is super-reflexive if and only if \(X \) does not satisfy the following condition: For every \(n \in \mathbb{N} \) and for every \(\rho \in (0, 1) \) there exist \(x_1, \ldots, x_n \in B_X \) such that

\[
\left| \sum_{i=1}^{j} x_k + \sum_{i=j+1}^{n} x_k \right| > \rho n
\]

for every \(j = 1, \ldots, n \).

We can now state the following result.

Theorem 15. Let \(X \) be a Banach space. If \(X \) is SUNC, then \(X \) is super-reflexive.

Proof. Since \(X \) is SUNC, there exists \(k \in \mathbb{N} \) such that \(X \) is \((2, k)\)-SUNC.
Let \(\epsilon_0 \in (0, 2) \) and \(\delta_0 > 0 \) so that for every \(x^*, y^* \in S_{X^*} \) with \(\|x^* - y^*\| \geq \epsilon_0 \), we have \(\beta^k(S(x^*, y^*, \delta_0)) \leq \epsilon_0 \) and suppose that \(X \) is not super-reflexive. Let
\[
0 < \delta < \min \left(\frac{\delta_0}{k + 2}, \frac{2 - \epsilon_0}{2(k + 2)} \right).
\]
By Lemma 14, there exist \(x_1, \ldots, x_k+2 \in B_X \) such that
\[
\|x_1 + \cdots + x_k+2\| > (1 - \delta)(k + 2),
\]
\[
\|x_1 + \cdots + x_{k+1} - x_{k+2}\| > (1 - \delta)(k + 2),
\]
\[
\vdots
\]
\[
\|x_1 - x_2 - \cdots - x_{k+2}\| > (1 - \delta)(k + 2).
\]
Let \(x^*, y^* \in S_{X^*} \) such that \(x^*(x_1 + \cdots + x_{k+2}) = \|x_1 + \cdots + x_{k+2}\| \) and \(y^*(x_1 - x_2 - \cdots - x_{k+2}) = \|x_1 - x_2 - \cdots - x_{k+2}\| \). Then
\[
(k + 1) + \min_{1 < i, j \leq k+2} x^*(x_i) > x^*(x_1) + \cdots + x^*(x_{k+2}) > 1 - \delta)(k + 2)
\]
and thus
\[
\min_{1 \leq i \leq k+2} x^*(x_i) \geq 1 - (k + 2)\delta > 1 - \delta_0.
\]
Similarly we obtain that
\[
\min_{2 \leq i, j \leq k+2} \{y^*(x_1), -y^*(x_j)\} > 1 - \delta_0.
\]
Hence \(x_i \in S(x^*, -y^*, \delta_0) \) for every \(i = 2, \ldots, k + 2 \).

On the other hand,
\[
\|x^* - (-y^*)\| \geq (x^* + y^*)(x_1) \geq 2(1 - (k + 2)\delta) > \epsilon_0
\]
and for \(i, j > 1, i < j \), we have
\[
\|x_i - x_j\| \geq \|x_1 + \cdots + x_i - x_{i+1} - \cdots - x_j - \cdots - x_{k+2}\| - \sum_{r \neq i, j} \|x_r\|
\]
\[
\geq (1 - \delta)(k + 2) - k = 2 - (k + 2)\delta > \epsilon_0.
\]
Then \(\beta^k(S(x^*, -y^*, \delta_0)) \geq \beta^k(\{x_i\}_{i=2}^{k+2}) > \epsilon_0 \) and this contradiction proves the theorem. \(\square \)

Remark. In [7] the author asks whether a Banach space \(X \) with \(\tilde{c}_0^X(X) < 2 \) is reflexive. This question was fully answered in [3] since this condition implies even super-reflexivity. However, the proof given in [3] does not work when \(\tilde{c}_0^X(X) < 2 \) with \(k > 2 \). As a consequence of the above theorem and of Corollary 8 we have obtained that if \(X \) is a Banach space with \(\tilde{c}_0^X(X) < 2 \) for some \(k \in \mathbb{N} \), then \(X \) is SUNC and therefore super-reflexive.

Recall that a Banach space \(Y \) is said to be finitely representable in a Banach space \(X \) if for every \(\epsilon > 0 \) and every finite-dimensional subspace \(Z \) of \(Y \) there is a linear isomorphism \(T : Z \to X \) for which
\[
(1 - \epsilon)\|y\| \leq \|Ty\| \leq (1 + \epsilon)\|y\|
\]
for all $y \in Z$. Next we will see that “being (r,k)-SUNC” is a super-property. We will omit the proof of the following result since it is practically the same as the one of Theorem 2 in [3].

Theorem 16. Let $r \in (0,2]$ and $k \in \mathbb{N}$. If X is a (r,k)-SUNC Banach space and Y is another Banach space finitely representable in X, then Y is also (r,k)-SUNC.

Since an ultrapower \tilde{X} of a Banach space X is always finitely representable in X, the following result easily follows.

Proposition 17. A Banach space X is (r,k)-SUNC if and only if \tilde{X} is (r,k)-SUNC.

5. Fixed point results

In [3] the authors showed that 1-UNC Banach spaces have the FPP. The following theorem generalizes this result.

Theorem 18. If a Banach space X is $(1,k)$-SUNC, then it has the FPP.

Proof. Suppose that X is a $(1,k)$-SUNC space lacking FPP. Then there is a weakly compact convex subset K of X which is minimal for a nonexpansive fixed point free mapping $T : K \to K$. We can assume that $\text{diam}(K) = 1$ and that K contains an afps weakly null sequence (x_n) in K, with

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_n - x_m = 1 \quad \text{for each } m \in \mathbb{N}. \quad (1)$$

For each index n we choose a functional $x^*_n \in S_{X^*}$ such that $x^*_n(x_n) = \|x_n\|$. Since (x_n) is a weakly null sequence, we can suppose, passing to subsequences if necessary, that

$$\lim_{n \to \infty} x^*_n(x_{n+1}) = 0. \quad (2)$$

Let us consider $\tilde{x} = (\tilde{x}_n)$, $\tilde{y} = (\tilde{x}_{n+1})$ and \tilde{f} the functional on \tilde{X} corresponding to the sequence (x^*_n) in X^*.

From (2) and (1) we obtain that $\tilde{x}, \tilde{y} \in S_{\tilde{X}}, \tilde{f}(\tilde{x}) = 1 = \|\tilde{f}\|, \tilde{f}(\tilde{y}) = 0$, and $\|\tilde{x} - \tilde{y}\| = 1$.

Let δ be a fixed real number of the interval $(0,1)$. Theorem 2 provides an afps (\tilde{w}_n) in K such that, if $\tilde{w} = (\tilde{w}_n)$, then

$$\|\tilde{w} - \tilde{x}\| = \delta \quad \text{and} \quad \|\tilde{w} - \tilde{y}\| = 1 - \delta.$$

We have that

$$\tilde{f}(\tilde{w}) = \tilde{f}(\tilde{x}) - \tilde{f}(\tilde{x} - \tilde{w}) \geq 1 - \|\tilde{w} - \tilde{x}\| = 1 - \delta,$$

and on the other hand

$$\tilde{f}(\tilde{w}) = \tilde{f}(\tilde{w} - \tilde{y}) \leq \|\tilde{w} - \tilde{y}\| = 1 - \delta,$$

that is

$$\tilde{f}(\tilde{w}) = 1 - \delta.$$
Consider now for each index n a functional $y^*_n \in S\mathcal{X}^*$ such that $y^*_n(\omega_n) = \|\omega_n\|$. Denote by \tilde{g} the functional of \tilde{X} corresponding to the sequence (y^*_n). Clearly $\|\tilde{g}\| = 1$. And, since (ω_n) is an afps, by Lemma 1 we have that $\tilde{g}(\tilde{w}) = \|\tilde{w}\| = 1$. Then

$$
\|\tilde{f} - \tilde{g}\| \geq (\tilde{f} - \tilde{g})\left(\frac{1}{\delta}(x - \tilde{w})\right) = 1 + \frac{1}{\delta}(1 - \tilde{g}(\tilde{x})) \geq 1.
$$

Since (ω_n) is a weakly null sequence, we know that $\lim_{n \to \infty} f_i(\omega_n) = 0$ and $\lim_{n \to \infty} g_i(\omega_n) = 0$ for every $i \in \mathbb{N}$. Hence we can construct a sequence

$$
\left\{ \left\{ m^k \right\}_{l=1}^{k+1} \right\}_{k=1}^\infty
$$

such that

$$
\max\left(|f_k(\omega_n)|, |g_k(\omega_n)| \right) < \frac{1}{k} \quad \text{for every } n \geq m^k_1
$$

and

$$
\|x_{m^k_j} - x_{m^k_i}\| > 1 - \frac{1}{k+1} \quad \text{for } i, j = 1, \ldots, k + 1, i \neq j.
$$

Let $u_m^k = x_{m+1}^{n+1}$ for $k = 1, \ldots, n - 1$, $u_m^k = x_{m}^{k}$ for $k \geq n$, and define $\bar{z}_n = (u_m^k)_{k=1}^\infty$. Clearly $\|\bar{z}_n - \bar{z}_x\| = \lim_{k \to \infty} \|u_m^k - u_m^1\| = 1$, $\tilde{f}(\bar{z}_n) = \tilde{g}(\bar{z}_n) = 0$, and $\|\tilde{w} - \bar{z}_n\| \leq \text{diam } K = 1$. Thus $\tilde{w}, \tilde{w} - \bar{z}_n \in S(\tilde{f}, \tilde{g}, \delta)$ for every $\delta > 0$ and for every n, and $\|(\tilde{w} - \bar{z}_n) - (\tilde{w} - \bar{z}_s)\| = \|\bar{z}_n - \bar{z}_s\| = 1$ for every $n \neq s$. Hence we have that

$$
\beta^k(S(\tilde{f}, \tilde{g}, \delta)) \geq 1
$$

for every $\delta > 0$ and for every k; thus \tilde{X} and hence X are not $(1, k)$-SUNC.

As a corollary of the last theorem and Theorem 16 we have

Corollary 19. If a Banach space X is $(1, k)$-SUNC, then it has the super-FPP.

Acknowledgments

We would like to thank the referee for his comments and specially for the simplified proof of Theorem 9. This work was carried out while J. Gacía-Falset was visiting the CIMAT. He would like to thank the members of the CIMAT for their hospitality.

References
