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In this article, we classify the finite affine planes admitting doubly transitive
collineation groups. � 1998 Academic Press

1. INTRODUCTION

In the late 1950s and early 1960s, Ostrom and Wagner studied projective
and affine planes which admit collineation groups acting either doubly
transitively or flag transitively. The most successful classification result during
this period is the celebrated Ostrom�Wagner Theorem [7] which states
that if a finite projective plane admits a collineation group which acts
doubly transitively on the points then the plane is Desarguesian. Attempts
at proving the affine version of this result have not been entirely sucessful
although it follows from arguments of Ostrom�Wagner that a finite affine
plane admitting a collineation group acting doubly transitively on points is
a translation plane. More generally, Wagner [8] showed that a finite affine
plane admitting a collineation group which acts transitively on the affine
points and transitively on the infinite points is a translation plane. Further-
more, this latter condition is equivalent to having a group acting transitively
on the flags of the affine plane.
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However, it has been an open question whether a finite affine plane
admitting a doubly transitive group acting on the points is necessarily
Desarguesian. In fact, it is not as the Hall plane of order 9 was seen to
admit such collineation groups.

Let ? be a finite affine plane admitting a collineation group G which acts
doubly transitive on the affine points. We shall call such a plane a doubly
transitive affine plane. When the group G is solvable, there is a complete
classification due to Foulser.

Theorem 1.1 [2] If ? is a solvable doubly transitive affine plane then ?
is either Desarguesian or the Hall plane of order 9.

The only known nonsolvable doubly transitive non-Desarguesian affine
planes are the Hering plane of order 33 which admits SL(2, 13) and the
Hall plane of order 9. We note that the full collineation group induced on
the line at infinity of the Hall plane of order 9 is S5 (see e.g. [6] p. 36).

In this article, we show that the only doubly transitive affine planes are
the known ones. That is, our main result is

Theorem 1.2. Let ? be a finite doubly transitive affine plane. Then ? is
one of the following types of planes:

(1) Desarguesian,
(2) Hall of order 9 or
(3) Hering of order 27.

2. THE MAIN THEOREM

Recently, with a few exceptions, the authors classified all finite transla-
tion planes that admit a collineation group inducing a nonsolvable doubly
transitive group on a set of line size. It turns out that the line size set is
either a line or a Baer subplane or the translation plane is a generalized
twisted field plane for which the group is actually solvable and is hence
eliminated from consideration (see Jha, Johnson [4]). The above mentioned
results depend upon the fundamental results of Hering [3] on transitive linear
groups.

Theorem 2.1 [3]. Let (V, +) be a GF( p)-vector space of order pn for
p a prime. Let G be a subgroup of GL(V, +) which acts transitively on the
non-zero vectors of V and let K be a maximal field among all the subrings
of End(V, +) that are closed with respect to inversion and conjugation by G
so that G is a subgroup of 1L(V, K). Let the dimension of V over K be n*
and K isomorphic to GF(q) for q= pt so that the cardinality of the vector
space is qn*= ptn*= pn and tn*=n.

If G is non-solvable then one of the following occur:
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(1) G(�) is isomorphic to SL(2, 5) (the last term of the derived series),
n*=2 and the order of K is 9, 11, 19, 29 or 59,

(2) G contains a perfect normal subgroup H which acts transitively on
V&[0] and one of the following possibilities occur:

(a) H is isomorphic to SL(n*, q),

(b) V as a K-Space contains a symplectic form * such that H is the
corresponding symplectic group Sp(n*, q),

(c) K&GF(2m), n*=6 and H is the Chevalley group G2(2m),

(d) K&GF(2), n*=4 and H=G&A6 or A7 .

(e) K&GF(2), n*=6 and H=G&PSU(3, 32),

(f ) K&GF(3), n*=6 and H=G&SL(2, 13).

Assumption. G is a collineation group of a translation plane of order pr

in the translation complement 1L(2r, p) which acts transitively on the
nonzero vectors of the underlying vector space V. We note that the semi-
direct product of the translation group T with G acts doubly transitively
and conversely any doubly transitive group acting on the vectors is a group
of this type. Hence, we are considering a nonsolvable collineation group
which fixes the zero vector and which acts transitively on the nonzero vectors
of a 2r-dimensional GF( p)-vector space. Hence, in the above theorem
n=2r, n*=n�t=2r�t where K&GF(q= pt) and qn*= p2r.

We may apply the theorem of Hering to realize the possible groups that
can act on translation planes. The key to establishing that most of the
groups do not act in this way is a result due to Jha and Kallaher who
provide a bound on the order of a planar p-group.

Theorem 2.2. [5, result 4]. If P is a planar p-group of a translation
plane of order pr then |P|� pr&1, and equality occurs only when r=2 or
p*=16.

We consider the various cases in turn.

2.1. Case 1. G(�) is isomorphic to SL(2, 5) (the last term of the derived
series), n*=2 and the order of K is 9, 11, 19, 29 or 59. Note that n*=2r�t=2
which implies that r=t so that the order of the plane is 9, 11, 19, 29, or 59 so
the plane is either Desarguesian or Hall of order 9.

2.2. Case 2. (a) SL(n*, q). The Sylow p-subgroups of H are of order
qn*(n*&1)�2= pr(2r�t&1) acting on a translation plane of order pr. Since there
are pr+1 components, a Sylow p-subgroup S must leave a component
invariant. The stabilizer of a second component has order divisible by
pr(2r�t&1)�pr. Any planar p-group has order <pr by Jha and Kallaher [5].
Since any p-group which fixes two components must fix a third, it follows
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that there is a planar p-group of order at least pr(2r�t&1)�pr< pr. It follows
that we must have 2r�t&1<2 or equivalently that r�t. Hence, t=r and
the group is SL(2, q) acting on a translation plane of order q which forces
the plane to be Desarguesian by Lu� neburg [6].

2.3. Case 2. (b) V as a K-space contains a symplectic form * such that H
is the corresponding symplectic group Sp(n*, q). In this situation, n*=2r�t and
n* must be even so that t divides r and the order of a Sylow p-subgroup is
q(r�t)2

= pt(r�t) 2
= pr2�t< p2r by the proof of case (2) (a). Hence, r�t<2 so that it

can only be that r=t. But, Sp(2, q) is SL(2, q), the order of the plane is q so that
the previous note shows that the plane is Desarguesian.

2.4. Case 2. (c) K&GF(2m), n*=6 and H is the Chevalley group G2(2
m).

The order of a Sylow 2-subgroup is q6 where q=2m and the order of the plane
is q3. The previous argument provides the contradiction that q6<q2.3=6.

We now consider the sporadic cases:

2.5. Case 2. (d) K&GF(2), n*=4 and H=G&A6 or A7 . Here the
plane is of order 4 so the plane is Desarguesian.

2.6. Case 2. (e) K&GF(2), n*=6 and H=G&PSU(3, 32). In this
case, the plane is of order 23 so is also Desarguesian which is a contradiction
as the group indicated does not act on a Desarguesian plane.

2.7. Case 2. (f) K&GF(3), n*=6 and H=G&SL(2, 13). Since the order
of the plane is 33, we may apply the results in Barriga and Pomareda [1].
Hence, it follows that the only possibility is the Hering plane of order 33.

This completes the proof of the main result stated in the Introduction.

Note added in proof. A more general proof (for 1-designs) using the classification theorem
of finite simple groups is given in W. M. Kantor, Homogeneous designs and geometric
lattices, J. Comb. Theory Ser. A 38 (1985), 66�74.
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