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We investigated the prognostic significance and post-transcriptional acetylation-modification of cortactin
(CTTN) via the nucleus accumbens-associated 1 (NACC1)–histone deacetylase 6 (HDAC6) deacetylation system
in primary melanomas and melanoma cell lines. Overexpression of CTTN protein was observed in 56 (73%) of 77
stage I–IV melanomas, and was significantly correlated with tumor thickness, lymph node metastasis, distant
metastasis, and disease outcome. The patients whose tumors exhibited CTTN overexpression had a poorer
outcome than patients without this feature (P¼ 0.028, log-rank test). NACC1 and CTTN proteins, but not HDAC6,
were overexpressed in four melanoma cell lines in comparison with a primary culture of normal human
epidermal melanocytes. Knockdown of both NACC1 and HDAC6 markedly downregulated the migration activity
of all melanoma cell lines (Po0.05), and induced a gain of CTTN protein acetylation status. Confocal microscopy
showed that hyperacetylation of CTTN modulated by depletion of both NACC1 and HDAC6 induced
disappearance of CTTN protein at the leading edge of migrating cells, resulting in stabilization of the focal
adhesion structure and development of actin stress fibers. These data suggest that the acetylation status of
CTTN modulated by the NACC1–HDAC6 deacetylation system induces acceleration of melanoma cell migration
activity via an actin-dependent cellular process, possibly contributing to aggressive behavior (invasion/
metastasis) of the melanoma cells.
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INTRODUCTION
Cutaneous melanoma is one of the most aggressive solid
tumors, and its incidence and mortality rate are currently
increasing in most countries (Marks, 2000). The aggressive-
ness of malignant melanoma is characterized by high
metastatic ability and resistance to chemotherapy and
immunotherapy (Satyamoorthy and Herlyn, 2002; Soengas
and Lowe, 2003; Postovit et al., 2006; Gajewski, 2007).
Tumor cell motility and migration are intrinsic components of
tumor cell invasion and distant metastasis. Cell migration,

motility, and adhesion, as well as tumor invasion and
metastasis, are largely facilitated by remodeling of the actin
cytoskeleton (van Rossum et al., 2005).

Cortactin (official gene symbol, CTTN; and also as known
EMS1 and FLJ34459) is one of the most important protein
molecules involved in actin-crosslinking (Rothschild et al.,
2006), and its overexpression has been postulated to mediate
the increased invasive and metastatic activities of tumor cells
because of its effects on the organization and function of the
cytoskeleton and cell adhesion structures (Luo et al., 2006).
CTTN was originally identified as a protein substrate of Src
tyrosine kinase, and has an important role in the regulation of
cell motility (Wu and Parsons, 1993). It interacts with F-actin
to promote polymerization and branching. CTTN can be
found in areas of dynamic actin assembly, such as the leading
edge of migrating cells (e.g., in lamellipodia and membrane
ruffles; Wu and Parsons, 1993; Kaksonen et al., 2000; Uruno
et al., 2001; Weaver et al., 2001). Translocation of CTTN
protein to the cell periphery requires activation of the small
GTPase Rac1, and leads to activation of the actin-nucleating
complex Arp2/3 (Weed et al., 1998; Uruno et al., 2001;
Weaver et al., 2001; Head et al., 2003). Overexpression of
CTTN increases cell migration activity (Patel et al., 1998;
Kowalski et al., 2005), whereas depletion of CTTN impairs it
(Bryce et al., 2005).
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A (to our knowledge) previously unreported study has
demonstrated that CTTN is the substrate for a unique member
of the histone deacetylase family, HDAC6 (Zhang et al.,
2007), which is a cytoplasmic HDAC responsible for
deacetylation of a-tubulin, the molecule present in cytoske-
letal microbules. CTTN deacetylation by HDAC6 also
enhances the ability of CTTN to bind with F-actin by
modulating a ‘‘charge patch’’ in its repeat region, whereas
acetylation of CTTN ablates the interaction between CTTN
and F-actin, resulting in a decrease of cell migration.

On the other hand, nucleus accumbens-associated 1
(official gene symbol, NACC1; also as known NAC1; BEND8,
NAC-1, BTBD14B, and FLJ37383) is a member of the BTB/
POZ family and a transcriptional repressor associated with
tumor cell growth, survival, and chemosensitivity. Nakayama
et al. (2006) have demonstrated that NACC1 is significantly
overexpressed in several types of human carcinoma, and that
intense NACC1 immunoreactivity is significantly correlated
with tumor recurrence in ovarian cancer. They have also
reported that NACC1 controls cell growth and the GADD45-
gip1 gene (Nakayama et al., 2007). NACC1 gene knockdown
inhibits cell growth and induces apoptosis in uterine cervical
cancer cell lines (Yeasmin et al., 2008), and, moreover,
NACC1 overexpression is well correlated with resistance to
taxane derivatives (Ishibashi et al., 2008), which are
chemotherapeutic agents that act by binding to microtubules.
NACC1 is not only an important prognostic biomarker in
human cancers but also an attractive target for designing
modulators of taxane sensitivity (Jinawath et al., 2009).

Our group has recently found that NACC1 binds to
HDAC6 directly and modulates the function of the latter. This
interaction is necessary for microtubule deacetylation, with
implications for tumor cell biology in the context of
cytoskeleton-dependent cellular processes such as cell
motility (unpublished data). We have hypothesized that the
NACC1–HDAC6 system might also contribute to the deace-
tylation of CTTN at the leading edge.

In the present study, we show that CTTN overexpression is
significantly associated with human melanoma progression
and disease outcome. Also, we demonstrate biochemically
that direct interaction between NACC1 and CTTN, and
disruption of the NACC1–HDAC6 deacetylation system,
affect the acetylation status of CTTN. Moreover, we
demonstrate that the hyperacetylation status of CTTN
induced by disruption of the NACC1–HDAC6 system
prevents the translocation of CTTN protein to the cell
periphery, blocks its association with F-actin, and impairs
the motility of melanoma cells. In addition, it affects the
turnover of the focal adhesion (FA). Our findings demonstrate
a pathway by which actin-dependent cell motility can be
modulated by the NACC1–HDAC6 deacetylation system in
human melanoma cells.

RESULTS
Immunohistochemistry of CTTN protein

We immunohistochemically examined the expression of
CTTN protein in 92 patients (including 15 patients at stage 0)
with malignant melanoma. Immunoreactivity for CTTN

protein was negative in epidermal melanocytes (Supplemen-
tary Figure S1a online), and varied among the primary
malignant melanomas (Supplementary Figure S1b–d online).
CTTN protein was expressed in the cytoplasm (Supplemen-
tary Figure S1d online). The tumors in the 15 patients at stage
0 all showed negative/faint. Positive immunoreactivity
(medium, 21; strong, 35) was observed in 56 (73%) of the
77 melanomas at stage I–IV.

To evaluate whether CTTN expression in human primary
melanomas correlates with patient outcome, we analyzed the
relationship between CTTN protein expression and clinico-
pathological variables. We excluded 15 patients at stage 0.

Overexpression of CTTN was significantly correlated with
tumor thickness, lymph node metastasis, distant metastasis,
and disease outcome (Supplementary Table S1 online). We
then carried out univariate analyses of clinicopathological
variables (including CTTN expression) affecting the overall
survival of patients (stage I–IV, Supplementary Table S2
online). There were significant relationships between some of
the clinicopathological variables examined (tumor thickness,
lymph node status, distant metastasis, tumor stage, and CTTN
expression) and patient outcome (Supplementary Table S2
online).

After a median follow-up of 40 months (range, 2–147
months), 26 patients (34%) had died because of disease
relapse. Kaplan–Meier curves showed a trend toward worse
outcome in patients whose tumors showed CTTN immunor-
eactivity compared with patients whose tumors lacked it
(P¼0.028, log-rank test, Figure 1). We then examined
whether CTTN expression was an independent prognostic
factor in patients with melanomas. We performed multi-
variate analysis focusing on the presence of ulceration, tumor
thickness, lymph node metastasis, distant metastasis, and
expression of CTTN. Lymph node metastasis was the only
variable that was independently associated with patient
survival; immunoreactivity for CTTN showed no such
association (Supplementary Table S3 online). This indicated
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Figure 1. Survival curves of 77 melanoma patients according to cortactin

(CTTN) immunoreactivity. Kaplan–Meier estimates of survival among 77

patients with malignant melanomas with (n¼ 56) and without (n¼ 21) CTTN

immunoreactivity (stage I–IV). Outcome shows a tendency to be worse for

patients whose tumors had CTTN immunoreactivity than for those whose

tumors lacked it (P¼ 0.028, log-rank test).
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that CTTN overexpression is not an independent indicator of
overall patient survival.

Expression of CTTN, NACC1, and HDAC6 in melanoma
cell lines

We investigated the expression of CTTN, NACC1, and
HDAC6 protein in four melanoma cell lines (HMV II, SK-
MEL-28, CRL1579, and G-361) and primary-cultured normal
human epidermal melanocytes (NHEM-M; Supplementary
Figure S2a online). The four malignant melanoma cell lines
strongly expressed NACC1 and CTTN proteins, whereas the
expression of these proteins in NHEM-M was weak (Supple-
mentary Figure S2b and d online). The expression of HDAC6
protein showed no differences between the malignant
melanoma cell lines and epidermal melanocytes (Supple-
mentary Figure S2c online). Expression of CTTN and NACC1
protein was increased in malignant melanoma cells in
comparison with NHEM-M.

Migration activity induced by treatment with NACC1-small
interfering RNAs in melanoma cell lines

We first evaluated the knockdown efficiency of NACC1-small
interfering RNAs (siRNAs; #1, #2, and #3; 10 nM) in a
malignant melanoma cell line (CRL1579). In comparison
with negative control-siRNA, all the siRNAs caused 75–90%
downregulation of NACC1 mRNA expression (Figure 2a).
NACC1 protein expression was analyzed by western blotting
at 48 hours after siRNA treatment. All the siRNAs caused
60–80% downregulation of NACC1 protein expression. One
siRNA (#1) was able to downregulate NACC1 protein by 80%
in comparison with the negative control (Figure 2b). We then
examined phenotypic changes in the migration activities of
the four melanoma cell lines (HMV II, SK-MEL-28, CRL1579,
and G-361) using #1 NACC1-siRNA. NACC1 knockdown
significantly decreased melanoma cell migration activities in
comparison with the negative control at 24 and 48 hours
(Po0.05, Mann–Whitney U-test; Figure 2d). Expression of
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Figure 2. Nucleus accumbens-associated 1 (NACC1) knockdown and its effects on migration activity of melanoma cell lines. (a) NACC1 mRNA expression

was evaluated by real-time quantitative PCR. A decrease of relative NACC1 mRNA expression of over 75% was observed at 48 hours after transfection of

all three NACC1-siRNAs (10 nM; information on siRNA sequences #1, #2, and #3 is available on the ABI website) in comparison with control (Ctrl.) siRNA.

(b) Immunoblotting for NACC1 protein (top) and its quantification (bottom) at 48 hours after siRNA transfection. (c) Photographs of scratch assays for CRL1579

(bars¼ 100mm) and (d) quantification four melanoma cell lines at 24 and 48 hours after transfection with NACC1- or control-siRNAs (10 nM). Cell migration

activity (inversely correlated with the wound area ratio) was significantly decreased in cells treated with NACC1-siRNA at 24 and 48 hours. GAPDH,

glyceraldehyde-3-phosphate dehydrogenase; siRNA, small interfering RNA.
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HDAC6 and CTTN was not altered by the NACC1-siRNA
treatment (Supplementary Figure S3 online).

Furthermore, we also treated melanoma cell lines with
siRNAs for HDAC6 and CTTN. Both siRNAs significantly
decreased cell migration activities (Supplementary Figure S4
online).

Modulation of CTTN acetylation status by NACC1

We examined whether endogenous CTTN protein was
acetylated by NACC1-siRNA knockdown using immunopre-
cipitation (IP) and subsequent western blotting. Experiments
were performed to examine the acetylation status of
CTTN protein according to those for HDAC6-siRNA, as
described previously (Zhang et al., 2007). First, we treated
CRL1579 cells with the class I and II HDAC inhibitor,
trichostatin A (TSA), followed by IP with anti-acetylated-
lysine antibody, and probing with anti-CTTN antibody
(Figure 3a). This clearly demonstrated an increase in the
acetylation status of CTTN protein (Figure 3a). On other
hand, the hyperacetylation status of cortatin resulting from
the TSA treatment was also confirmed by IP with anti-CTTN
antibody followed by anti-acetyl-lysine antibody (Figure 3a,
right). Similar results were obtained in CRL1579 cells with
HDAC6-siRNA treatment, as described previously (Figure 3b;
Zhang et al., 2007).

We then examined the effects of NACC1-siRNA treatment
in CRL1579 cells. Endogenous CTTN protein was found to be
hyperacetylated by IP of a whole cell extract with NACC1-
knockdown either with an anti-acetylated-lysine antibody
followed by western blotting with an anti-CTTN antibody
(Figure 3c) or anti-CTTN followed by anti-acetyl-lysine
antibody (Figure 3c).

In vitro and in vivo interactions between NACC1 and CTTN
proteins

We then examined the physical association between NACC1
and CTTN using pulldown assays. We synthesized the full-
length Flag-NACC1 (prey) and Halo-CTTN (bait) proteins
using the wheat germ protein system. As shown in
Supplementary Figure S5 online, full-length CTTN interacted
with full-length NACC1 in vitro.

Next, we examined the in vivo interaction between CTTN
and NACC1, and determined the interaction domains by
using IP and subsequent western blotting. A schematic
representation of the NACC1 construct is shown in
Figure 4a. The NACC1 gene has a BTB/POZ domain at the
N-terminus, and a recently assigned domain, BEN, at the
C-terminus (Abhiman et al., 2008). The biological signi-
ficance of the BEN domain remains unclear. A previous
report showed that either the BTB/POZ or the non-BTB/POZ
domain was able to bind to HDAC3 and HDAC4 (Korutla
et al., 2005). Constructs of CTTN are shown in Figure 4b.
CTTN contains an N-terminal acidic domain, six and a half
tandem repeats of a unique 37-amino-acid sequence (repeat),
and a Src homology 3 domain at the C-terminal (Wu and
Parsons, 1993). The repeat region of CTTN is both necessary
and sufficient for F-actin binding.

In vivo interaction between full-length NACC1 and CTTN
was confirmed by IP–western blot (lane 1 in each Figure 4c
and d), similarly to the in vitro data (Supplementary Figure S5
online). To determine the NACC1 domain that binds CTTN,
we carried out co-transfection of deleted NACC1 and full-
length CTTN constructs in CRL1579. Full-length Flag-CTTN
interacted with only the BTB/POZ domain (NACC1/1–133)
and the N-terminal two-thirds of NACC1 (NACC1/1–360
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including the BTB/POZ domain; Figure 4c). The C-terminal
two-thirds of NACC1 (NACC1/127–527) was unable to bind
to full-length CTTN. Our data thus confirmed that CTTN
interacts specifically with the BTB/POZ domain of NACC1.

We next examined the regions of CTTN binding to full-
length NACC1. Full-length Flag-NACC1 and full-length
CTTN-V5/His, the N-terminal acidic domain (CTTN/1–84),
and the repeat (CTTN/80–330) or the C-terminal (CTTN/
331–550) were co-transfected into CRL1579 cells. Full-length
Flag-NACC1 interacted with the repeat region of CTTN
(Figure 4d). The N-terminal acidic domain and C-terminal of
CTTN were unable to bind to full-length NACC1. Our data
thus showed that NACC1 interacts specifically with the
repeat region of CTTN.

Change in subcellular localization of CTTN on NACC1
knockdown
CTTN interacts with F-actin to promote polymerization and
branching. CTTN can be found in areas of dynamic actin
assembly, such as the leading edge of cell migration (e.g., in
lamellipodia and membrane ruffles; Wu and Parsons, 1993;
Kaksonen et al., 2000; Uruno et al., 2001; Weaver et al.,
2001). Using immunofluorescence, we investigated whether
knockdown of NACC1 affects its subcellular location
(Figure 5). We first examined the localization of CTTN and
actin filaments treated with control-siRNA (Figure 5). In
melanoma cells, CTTN became localized at the cell
periphery and was colocalized with phalloidin-stained actin
filaments (Figure 5). Treatment with CTTN-siRNA induced
the development of actin stress fibers (Figure 5). Next, we
examined the localization of CTTN and actin filaments after
treatment with HDAC6- or NACC1-siRNA. Diffuse punctate

CTTN staining and development of actin stress fibers were
detected (Figure 5). A previous study has described that
acetylated CTTN is unable to effectively interact with CTTN
(Zhang et al., 2007). Our results showed that knockdown of
HDAC6 and NACC1 increased the acetylation level of CTTN.
The acetylation of CTTN resulting from disruption of the
NACC1–HDAC6 deacetylation system decreased actin-
binding activity at the cell periphery. Disappearance of
CTTN was evident at the cell periphery, but the protein was
visualized in the cytoplasm (Figure 5).

Involvement of focal adhesion formation resulting from NACC1
knockdown

We were interested in FA formation in cells treated with
NACC1-siRNA. First, we examined the expression of CTTN,
HDAC6, and vinculin proteins at 48 hours after NACC1-
siRNA treatment (Supplementary Figure S3 online). No
marked changes in the expression of any of the proteins
were observed under NACC1 knockdown. Thus, NACC1
knockdown did not appear to affect the transcriptional
regulation of CTTN, HDAC6, and vinculin.

Next, we investigated whether NACC1 and HDAC6
knockdown affected FA formation and actin fibers. FA was
visualized by vinculin immunostaining (Figure 6a). We first
examined the status of FA and actin fibers under treatment
with CTTN-siRNA in CRL1579. The area and the number of
FA were significantly increased in CTTN knockdown cells in
comparison with cells treated with control-siRNA (Figure 6a).
Actin stress fibers were observed in CTTN knockdown cells
(Figure 6a). Treatment with an HDAC inhibitor, TSA, also
increased the number (Supplementary Figure S6 online and
Figure 6b) and the area (Supplementary Figure S6 online and
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Figure 6c) of FA in CRL1579 cells. Actin stress fibers were
observed in CRL1579 cells treated with TSA, as well as in
those treated with CTTN-siRNA (Supplementary Figure S6
online).

Furthermore, we examined the status of FA and actin
dynamicity after treatment with HDAC6- and NACC1-siRNA.
NACC1- and HDAC6-knockdown cells also showed a
significant increase in the number (Figure 6b) and area
(Figure 6c) of FA. Thus, NACC1 appears to regulate actin-
dependent cell motility through modulation of the acetylation
status of CTTN, and moreover, promotes the formation of FA.

DISCUSSION
Accumulated evidence supports the notion that CTTN is
involved in tumor metastasis (Buday and Downward, 2007).
The human homolog of CTTN is amplified at chromosome
11q13 in several types of tumors (Schuuring et al., 1993;
Bringuier et al., 1996; Patel et al., 1996; Yuan et al., 2003).
Rodrigo et al. (2000) identified CTTN amplification in 20%
(21/104) of patients with head and neck squamous cell
carcinomas, and found that these tumors exhibited aggressive
behavior such as an advanced T stage, lymph node
metastasis, poor histological differentiation, and recurrence.
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Figure 5. Confocal microscopy observations of cortactin (CTTN, green) and F-actin (red) in CRL1579 cells treated with small interfering RNAs (siRNAs) for
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protein at the leading edge was observed in cells treated with NACC1- and HDAC6-siRNA. In these cells, development of actin stress fibers was observed,

as was the case with CTTN-siRNA treatment. Bars¼ 20 mm.
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Although coamplification of CTTN and cyclin D1 (official
gene symbol, CCND1) was observed, CTTN amplification
was an independent predictor of disease outcome. Further-
more, overexpression of CTTN is correlated with lymph
node metastasis and poor prognosis (Gibcus et al., 2008;
Wang et al., 2009, 2010; Yamada et al., 2010). In cultured
fibroblasts, CTTN is distributed mainly along the leading
edges of cells, e.g., in lamellipodia and punctate-like struc-
tures (Bowden et al., 1999). Overexpression of CTTN in
NIH3T3 cells leads to enhanced cell motility and invasion
(Patel et al., 1998). In MDA-MB-231, an invasive breast
cancer cell line, CTTN is associated with the invadopodium,
a cortical structure that penetrates into the extracellular
matrix during invasion, and overexpression of CTTN in this
cell line promotes cell migration (Bowden et al., 1999).
Moreover, CTTN potentiates bone metastasis of breast cancer
cells in nude mice (Li et al., 2001).

Our data also provided evidence that post-transcriptional
modification of CTTN via the NACC1–HDAC6 deacetylation
system has an important role in melanoma cell migration.
Zhang et al. (2007) have demonstrated that CTTN is
acetylated in vivo and is a genuine substrate of HDAC6,
which interacts directly with the repeat region of CTTN
through its two catalytic domains. CTTN deacetylation
enhances the ability of CTTN to bind F-actin by modulating
a ‘‘charge patch’’ in its repeat region, whereas acetylation of
CTTN ablates the interaction between CTTN and F-actin,
resulting in decreased cell migration. Using IP followed by
western blotting, in vitro pulldown assay and use of a yeast
two-hybrid system, we have found that NACC1 protein binds
directly to HDAC6 (unpublished data). Also, using a cell-free
system, we have also confirmed that NACC1 protein itself has
no deacetylase activity in vitro. In fact, the amino-acid
sequence of NACC1 includes no deacetylase catalytic
domain. However, the NACC1 protein complex pulled down
by epitope-tagged NACC1 from cultured cells has been
shown to exhibit deacetylation activity on porcine brain
acetylated tubulin (unpublished data). The microtubule-
acetylation is a substrate for the NACC1–HDAC6 interaction
system, indicating that the NACC1–HDAC deacetylation
system is also involved in modification of CTTN protein
acetylation. NACC1 might also contribute to deacetylation of
CTTN at the leading edge, and both microtubule- and actin-
dependent processes involved in cell motility might be
modulated by this deacetylation system. A previous study
has demonstrated that CTTN is also the substrate of SIRT1
(Zhang et al., 2009). In a future study, we will need to
examine the association between SIRT1 and NACC1.

NACC1 has recently been highlighted not only as a key
player in neurogenesis and cancer biology (Nakayama et al.,
2006, 2007; Shen et al., 2007), but also as a transcription
factor for the maintenance of pluripotency of ES and other

types of stem cells (Kim et al., 2008). NACC1 binds with
HDAC3 and HDAC4 (Korutla et al., 2005), and acts mainly as
a transcriptional repressor. HDAC3 belongs to the class I
HDACs, being localized mainly within the nucleus, and
forms complexes with other transcriptional repressor proteins
such as MeCP2 (Kim et al., 2007). The class II HDACs can be
further subdivided into class IIa (HDAC4, 5, 7, and 9) and IIb
HDACs (HDAC6 and 10). Similar to class I HDACs, class IIa
HDACs act as transcriptional repressors, mainly in the
nucleus (Yang and Gregoire, 2005). Therefore, they may
lack the deacetylation activity on CTTN protein. In fact,
Zhang et al. (2007) have already demonstrated that HDAC6
modulates cell motility by altering the acetylation level of
CTTN, and that no other ectopically expressed class II
HDACs have any effect on CTTN acetylation. The functions
of the BTB/POZ family have been investigated almost entirely
in the context of gene expression and chromatin dynamics,
whereas our present study has provided a new perspective on
the function of NACC1, indicating that it can regulate actin-
related protein-dependent cellular processes by its interaction
with HDAC6 protein.

CTTN-knockdown cells have a selective defect in the rate
of formation of new adhesions in lamellipodial protraction
(Bryce et al., 2005). Several proteins are found at both the
lamellipodium and in FA. Adhesion regulates Mena/VASP
phosphorylation (Howe et al., 2002), which affects the ability
of Mena/VASP proteins to bind to actin, Src homology 3
domains (Lambrechts et al., 2000), and the tyrosine kinase,
Abl. (Howe et al., 2002). CTTN is localized at lamellipodia
and FA, and CTTN phosphorylation regulates FA dynamics
and lamellipodial protrusion. The action of tyrosine-
phosphorylated CTTN on FA stability and turnover could
have profound effects on actin stress fiber dynamics, and
thereby markedly retard or accelerate cell migration
(Kruchten et al., 2008). Our results indicate that hyper-
acetylation of CTTN protein modulated by the NACC1–
HDAC6 system has a dramatic effect on the development of
actin stress fibers and FA formation. We found that the size
and number of FA in cells were increased when CTTN was
hyperacetylated because of disruption of NACC1–HDAC6
deacetylation activity as well as TSA treatment. As well as
yielding hyperacetylated CTTN, treatment with TSA induced
an equivalent increase in cellular adhesions. These data
suggest that hyperacetylation of CTTN appears to be both
necessary and sufficient for increasing the degree of cellular
adhesion, possibly participating in control of the FA turnover
rate. The post-transcriptional modification (acetylation and
phosphorylation) of NACC1 and other proteins (FA kinase,
paxillin, talin, etc.) and its association with FA turnover is an
issue that clearly warrants further study.

A, to our knowledge, previously unreported study has
shown that, in malignant melanoma with metastatic spread, a

Figure 6. Confocal microscopy observations of focal adhesion (FA, vinculin, green) and F-actin (red), and quantification of the number and area of FA, in

CRL1579 cells treated with small interfering RNAs (siRNAs) for CTTN, histone deacetylase 6 (HDAC6), and nucleus accumbens-associated 1 (NACC1).

An increase of FA formation, in terms of both number (a, b) and area (a, c) visualized by vinculin immunostaining (a), was observed. One hundred cells were

examined for each treatment. Along with the increase of FA formation, development of actin stress fibers was observed. Bars¼ 20 mm.
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high level of CTTN expression is correlated with poor
outcome (Xu et al., 2010). Indeed, in our present study,
CTTN overexpression was also associated with tumor
thickness, lymph node metastasis, and distant metastasis.
Furthermore, patients with CTTN-positive tumors had worse
survival than patients whose tumors showed negative/weak
CTTN expression. Thus, CTTN overexpression has signifi-
cance as a prognostic biomarker in patients with malignant
melanomas. On the basis of our present results and previous
studies (Zhang et al., 2007, 2009), we think that it will be
necessary to evaluate the acetylation status of CTTN in
samples from patients. The next issue will be to clarify
whether less invasive (N0, M0) tumors have lower CTTN
expression than invasive (N1–3, M1) ones. For this purpose, it
will be necessary to generate a monoclonal antibody specific
to acetylated CTTN, as currently no such specific antibody is
commercially available. We are currently attempting to
determine the deacetylation lysine(s) of CTTN using mass
spectrometry, and hope to generate an antibody specific to
acetylated CTTN in the near future.

In relation to the management of patients with malignant
melanoma, our present results provide two important
insights into modification of CTTN by the NACC1–HDAC6
deacetylation system: (i) CTTN expression appears to be
significantly correlated with lymph node metastasis and
prognosis, whereas the only independent indicator of patient
survival is lymph node metastasis, and (ii) CTTN hyperace-
tylation modulated by the NACC1–HDAC6 deacetylation
system enhances the migration activity of melanoma
cells, and may be a possible target for treatment of melanoma
patients.

MATERIALS AND METHODS
Antibodies, reagents, and plasmids

Trichostatin A (Sigma Chemical, Saint Louis, MO) was prepared at a

stock concentration of 6.6 mM in ethanol. For immunohistochemistry

of surgical specimens, mouse monoclonal clone 30/cortactin

(diluted 1:100; BD Transduction Laboratories, San Diego, CA) was

used. For immunofluorescence, monoclonal anti-cortactin antibody

clone 4F11 (diluted 1:200; Millipore Corporation, Bedford, MA) and

monoclonal anti-vinculin clone hVIN-1 (1:400; Sigma Chemical)

were used. The secondary antibody was Alexa Fluor 488 anti-mouse

IgG (1:250; Invitrogen, Carlsbad, CA). For IP and/or immunoblotting

(IB) of CTTN and vinculin, we used the same primary antibody as

that used for immunofluoresence (CTTN; IP, 20 mg; IB, 1:1,000,

vinculin; IB, 1:1,000). The other primary antibodies used were

polyclonal NACC1 antibody (IP, 20 mg; IB, 1:300; Abcam,

Cambridge, UK), polyclonal HDAC6 (H300) antibody (IB, 1:300;

Santa Cruz Biotechnology, Santa Cruz, CA), polyclonal acetylated-

lysine antibody (IP, 20 mg; Cell Signaling Technology, Danvers, MA),

monoclonal acetylated-lysine antibody clone 4G12 (IB, 1:1,000;

Millipore Corporation), monoclonal anti-glyceraldehyde-3-phos-

phate dehydrogenase, Clone 1D4 (IB, 1:1,000; Covance, Princeton,

NJ), monoclonal Flag M2 antibody (IP, 20 mg; IB, 1:5,000; Sigma

Chemical), monoclonal V5 antibody (IB, 1:5,000; Invitrogen),

monoclonal His antibody (IP, 5mg; Invitrogen) and polyclonal

Anti-HaloTag antibody (IB, 1:1,000; Promega, Madison, WI).

Complementary DNAs encoding full-length and partial sequences

of NACC1 or CTTN were amplified by PCR, and inserted into

mammalian expression vectors. Plasmids expressing FLAG

(F)-NACC1 and CTTN, NACC1 and CTTN-V5-His (V5/His) were

made using p3XFLAG-CMV-10 (Sigma Chemical), and pcDNA-

DEST40 (Invitrogen), respectively. For the synthesis of recombinant

proteins by the wheat germ extract system, pF3K WG (BYDV) Flexi

Vector and pFN19A (HaloTag 7) T7 SP6 Flexi Vector (Promega) were

used for F-NACC1 and Halo (H)-CTTN proteins, respectively. For

immunofluorescence, Alexa Fluor 594 phalloidin (Invitrogen) and

40-6-diamino-2-phenylindole (diluted 1:1,000; Wako, Osaka, Japan)

solution were used.

Surgical specimens of malignant melanoma, immunohistochem-

istry, RNA isolation, reverse transcriptase quantitative PCR, siRNA

knockdown, cell culture, transfection, IP, western blotting, in vitro

transcription–translation, pulldown assay, tumor cell migration

assay, confocal microscopy, and statistical analysis methods are

described in Supplementary Materials online.
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