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We define cut-and-paste, a construction which, given a quadricu-

lated disk obtains a disjoint union of quadriculated disks of smaller

total area. We provide two examples of the use of this procedure as

a recursive step. Tilings of a disk Δ receive a parity: we construct a

perfect or near-perfect matching of tilings of opposite parities. Let

B� be the black-to-white adjacency matrix: we factor BΔ = LD̃U,

whereL andU are lowerandupper triangularmatrices, D̃ is obtained

from a larger identity matrix by removing rows and columns and

all entries of L, D̃ and U are equal to 0, 1 or −1.
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1. Introduction

In this paper, a square is a topological disk with four privileged boundary points, the vertices; the

boundary of the square consists of four edges. A quadriculated diskΔ is a closed topological disk formed

by the juxtaposition along edges of finitelymany squares such that interior vertices belong to precisely

four squares: it may be considered as a closed subset of the plane R2 tiled by quadrilaterals. A simple

example is the n × m rectangle divided into unit squares, another is shown in Fig. 1.
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Fig. 1. A quadriculated disk, its dual graph and its black-to-white matrix.

Given Δ, we define the planar dual graph GΔ: vertices of GΔ correspond to squares in Δ and two

vertices of GΔ are adjacent if their corresponding squares share an edge. Quadriculated disks are bi-

colored: the squares are black and white in a way that squares with a common edge have opposite

colors (equivalently, GΔ is bipartite). Label the black (resp. white) squares of a quadriculated diskΔ by

1, 2, . . . , b (resp. 1, 2, . . . ,w). The b × w black-to-white (adjacency) matrix BΔ has (i, j) entry bij = 1 if

the ith black and jth white squares share an edge and bij = 0 otherwise. Fig. 1 is an example of black-

to-whitematrix; black andwhite squares are labeled by numbers and letters, respectively. Throughout

the paper, blankmatrix entries equal 0. For a labeling in which black vertices come first, the adjacency

matrix of GΔ is(
0 BΔ

BTΔ 0

)
.

The following result [1] indicates an unexpected spectral rigidity of BΔ.

Theorem 1. LetΔ be a quadriculated diskwith b = w and black-to-whitematrix BΔ. Thendet(BΔ) equals
0, 1 or −1.

This result admits a combinatorial interpretation. A domino tiling τ of Δ is a decomposition of Δ as

a union of dominos (i.e., 2 × 1 rectangles) with disjoint interior. Let TΔ be the set of domino tilings of

Δ. There is a natural parity function on TΔ (see Section 4) and the determinant det(BΔ) counts tilings
with a sign given by parity. The theorem above thus says that there exists a quasi-perfect matching in

TΔ, i.e., a correspondence between even and odd tilings leaving out at most one element of TΔ, the

loner.Weprovide a new, (quasi-) bijective proof of Theorem1by constructing a quasi-perfectmatching

in the bipartite set TΔ.

We extend Theorem 1 in a different, more algebraic, direction. A rectangular matrix D̃ is a defective

identity if it can be obtained from the identity matrix by adding rows and columns of zeros. For a

n × mmatrix A, an LD̃U decomposition of A is a factorization A = LD̃U where L (resp.U) is n × n (resp.

m × m) lower (resp. upper) triangular invertible and D̃ is a defective identity.

Theorem 2. Let Δ be a quadriculated disk with at least two squares. For an appropriate labeling of its

squares, the black-to-white matrix BΔ admits an LD̃U decomposition whose factors have all entries equal

to 0, 1 or −1.

Thus, for example, the matrix BΔ in Fig. 1 admits the decomposition

⎛
⎜⎜⎜⎜⎝
1

1
1

1 −1
1

1 −1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1

1
1

1
1 0

1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1 1

1 1
1 −1

1 1
1

1

⎞
⎟⎟⎟⎟⎟⎠ .

Both the construction of the quasi-perfect matching and the proof of Theorem 2 use cut-and-paste,

a recursive operation on quadriculated disks. A quadriculated disk Δ is cut along diagonals and pasted
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Fig. 2. A quadriculated disk and its six diagonals.

to obtain a disjoint union of smaller disks Δ′
1, . . . ,Δ

′
d, often with d = 1 (Lemma 3.1). Every nontrivial

quadriculated disk admits cut-and-paste (Proposition 2.3).

The proof of Theorem 2 relies on a procedure to convert LD̃U decompositions of BΔ′
1
, . . . , BΔ′

d
into a

similar decomposition of BΔ (Lemma 5.2). The proof yields a fast algorithm to obtain the appropriate

labeling of vertices, the matrices in the factorization, det(BΔ) and rank(BΔ).
In Section2wepresent the facts aboutdiagonalsof quadriculateddiskswhichwill beused in Section

3 to describe cut-and-paste. In Section 4 we construct the quasi-perfect matching. The inductive step

in the proof of Theorem 2, the algebraic counterpart of cut-and-paste, is the main topic of Section 5.

Finally, in Section 6, we study boards, quadriculated diskswhich are subsets of the quadriculated plane

Z2 ⊂ R2; Theorem 3 states that cut-and-paste can be performed within this smaller class.

Counting tilings with sign given by parity (as in Theorem 1) corresponds to the case q = −1 of the

q-counting of domino tilings with respect to height or volume as in [7,2,6]. In a similar vein, [5] extends

Theorem 1 to quadriculated annuli by introducing a polynomial which counts tilings with respect to

yet another integral parameter, the flux. It is not clear whether the cut-and-paste procedure can be

extended to take such parameters into account.

2. Diagonals

A corner of a quadriculated disk Δ is a boundary point which is a vertex of a single square. A

pre-diagonal of length k > 0 of Δ is a sequence of vertices v0v1 · · · vk such that

(i) v0 is a corner, v1, v2, . . . , vk−1 are interior vertices;

(ii) consecutive vertices vi and vi+1, i = 0, . . . , k − 1, are opposite vertices of a square si+1/2;

(iii) consecutive squares si−1/2 and si+1/2, i = 1, . . . , k − 1, have a single vertex in common (which

is vi);

(iv) the vertices vi and the squares si+1/2, i = 0, . . . , k − 1, are distinct.

A diagonal is a maximal pre-diagonal (under inclusion). More geometrically, we may think of a

diagonal as a line � = �(v0, s1/2, v1, . . . , sk−1/2, vk) connecting v0, the center of s1/2, v1, the center

of s3/2 and so on up to vk . The squares s1/2, . . . , sk−1/2 are the squares of the diagonal. Usually, the

vertices s1/2, . . . , sk−1/2 form a cut set of the dual graph GΔ. Diagonals, being sequences of vertices,

are naturally oriented. Fig. 2 shows examples of diagonals; vertices and squares of δ1 are indicated.

Proposition 2.1. Given a corner v0 ofΔ there is a unique diagonal starting at v0. Furthermore, all diagonals

end at boundary points.

Proof. In principle, there are three types of diagonals: the vertex vk may coincide with some vi, i < k

(Fig. 3a), the square sk+1/2 may coincide with some si+1/2, i < k (Fig. 3b) or vk may be a boundary

vertex of Δ. Existence and uniqueness of a diagonal δ starting at the corner v0 follows from finiteness.
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Fig. 3. Impossible diagonals.

The reader may check that self-intersection would happen at right angles, as in the figure. Bicoloring

of squares and vertices of Δ, as in Fig. 3, yields a contradiction in either case. �

Let δ be a diagonal of a quadriculated disk Δ associated to the line � = �(v0, s1/2, . . . , vk) ⊂ Δ.

Given a vertex v of Δ��, draw a smooth curve γ : [0, 1] → Δ, γ (0) = v, γ (1) ∈ �, γ (t) ∈ Δ�� for

t < 1 and γ ′(1) transversal to �. We say that v is to the left (resp. right) of δ if det(v1 − v0, γ
′(1)) is

negative (resp. positive). The existence of the curve γ follows from the fact that Δ is path-connected.

A vertex v is not simultaneously to the left and right of δ: indeed, if γl , γr : [0, 1] → Δ satisfy the

hypothesis above and det(v1 − v0, γ
′
l (1)) < 0 < det(v1 − v0, γ

′
r (1)) then juxtaposition of γl and

time-reversal of γr obtains a loop which crosses � exactly once, a contradiction.

In the next section we will use diagonals to cut-and-paste. Not all diagonals are suitable for this

construction. Call the two edges of sk−1/2 ending at vk terminal edges. A diagonal v0 · · · vk is a good

diagonal if at least one terminal edge is contained in the boundary of Δ. In Fig. 2, δ6 is the only bad

diagonal. A square has four diagonals, all good.

To prove the existence of good diagonals, we use a quadriculated version of the Gauss–Bonnet

theorem. Let V be the number of vertices of Δ and write V = VI + V1 + V2 + · · · + Vr where VI

counts interior vertices and Vr is the number of boundary vertices belonging to exactly r squares.

Notice that V1 is the number of corners of Δ.

Lemma 2.2. V1 − V3 − 2V4 − · · · − (r − 2)Vr = 4.

Proof. Let E and F be the number of edges and faces (i.e., squares) of Δ. Write E = EI + EB, where EI
(resp.EB) counts interior (resp. boundary) edges. Clearly, 4F = 2EI + EB = 2E − EB and therefore4E =
8F + 2EB. Also,4F = 4VI + V1 + 2V2 + · · · + rVr = 4V − (3V1 + 2V2 + · · · + (4 − r)Vr)and4V =
4F + (3V1 + 2V2 + · · · + (4 − r)Vr). By Euler, 4V − 4E + 4F = 4. Substituting the above formulas

and using EB = V1 + V2 + · · · + Vr we have the desired identity. �

Proposition 2.3. Any quadriculated disk Δ admits at least four good diagonals.

Proof. Each vertex counted in V1 is a starting corner for a diagonal: we have to prove that at least

four of these V1 diagonals are good. Each vertex counted in V3, for example, is the endpoint of at

most three diagonals of which only one is declared bad. More generally, we have at most V1 − 4 =
V3 + 2V4 + · · · + (r − 2)Vr bad ends and we are done. �

3. Geometric cut-and-paste

We are ready to perform cut-and-paste along a good diagonal. A good diagonal v0 · · · vk is balanced
if exactly one terminal edge is contained in the boundary of Δ. Diagonals δ1, δ2 and δ4 in Fig. 2 are

balanced; δ3 and δ5 are unbalanced.

In Fig. 4 we illustrate the cut-and-paste procedure ∂δ on a quadriculated disk Δ and its dual graph

GΔ, where δ is an unbalanced diagonal. The operation removes the shaded squares and identifies edges
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Fig. 4. Cut-and-paste along the unbalanced diagonal δ of length k = 3.

Fig. 5. Cut-and-paste along a balanced diagonal, k = 3.

to obtain a new quadriculated disk Δ′ = ∂δ(Δ). Another choice of shaded squares for the same good

diagonal δ is indicated in the right and obtains the same quadriculated diskΔ′. In the left (resp. right),

squares C and D (resp. A and B) take over the space vacated by A and B (resp. C and D).

The balanced case shown in Fig. 5 is a little different. It turns out that a similar construction with

another choice of zig-zag is not appropriate for future purposes.

In the dual graph GΔ, cut-and-paste removes the cut set of vertices (of the graph) associated with

squares of the diagonal δ and identifies vertices on both sides: vertices left without partners at the

end of an unbalanced diagonal are also deleted. This point of view is more symmetric and does not

require the specification of zig-zags.

Notice that the extreme vertex vk of a balanced diagonal may belong to more than two squares, as

in Fig. 1. This is innocuous, as we shall see.

Fig. 6. Cut-and-paste may produce a disjoint union of disks.

Fig. 7. Cut-and-paste in extreme situations.
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Fig. 8. Notation for cut-and-paste; unbalanced and balanced cases.

Cut-and-paste allows for recursive proofs and constructions in the class of finite disjoint unions

of quadriculated disks. As we shall prove in Lemma 3.1, given a quadriculated square Δ and a good

diagonal δ, cut-and-paste obtains a quadriculated region Δ̃′ which consists of quadriculated disks

Δ′
1, . . . ,Δ

′
d, possibly joined by points. The process of passing from Δ̃′ toΔ′ = Δ′

1 � · · · � Δ′
d is called

detaching. Clearly, Δ′ has fewer squares than Δ. In the two previous examples, d = 1; in Fig. 6, d = 3.

In a somewhat degenerate case, Δ′ = ∅ if and only if Δ consists of one or two squares. Also, if δ
is an unbalanced diagonal of length k = 1, the quadriculated disk Δ′ is obtained from Δ by deleting

two squares (see Fig. 7).

Lemma 3.1. LetΔ be a quadriculated disk with a good diagonal δ of length k > 1. LetΔ′ be obtained from

Δ by cut-and-paste along δ (and detaching) : Δ′ is a disjoint union of quadriculated disks.

We use a notation for vertices and squares near a good diagonal, illustrated in Fig. 8. Squares

immediately to the left (resp. right) of the diagonal are labelled sl1, s
l
2, . . . (resp. s

r
1, s

r
2, . . .). Similarly,

vertices to the left (resp. right) are labelled vl1/2, v
l
3/2, . . . (resp. v

r
1/2, v

r
3/2, . . .). Thus, in Fig. 4, sl1 = A,

sl2 = B, sr1 = C, sr2 = D; in Fig. 5, sl1 = A, sl2 = B, sl3 = C, sr1 = D, sr2 = E. The squares deleted in the cut-

and-paste construction (dashed in the figures) are s1/2, s
x
1, s3/2, . . . , s

x
k−1, sk−1/2 and, in the balanced

case, sxk; here x = l or x = r. LetΔr (resp.Δl) be the closed regions to the right (resp. left) of the deleted

squares. Attach Δl to Δr by identifying edges in order to obtain a quadriculated region Δ̃′.

Proof. Assume without loss that cut-and-paste along δ deletes the squares s1/2, s
l
1, . . . , s

l
k−1, sk−1/2

and, if δ is unbalanced, slk . We claim that Δr is non-empty, path-connected and simply connected.

Indeed, the squares sr1, . . . , s
r
k−1 exist (since v1, . . . , vk−1 are interior points, k > 1). To show thatΔr is

path-connected, it suffices to join by a path inΔr any point x ∈ Δr to the line �r = (vr1/2, s
r
1, . . . , s

r
k−1,

vrk−1/2). Notice that theedgesv0v
r
1/2 andvkv

r
k−1/2 are in theboundaryofΔ. If x ∈ Δr lies between�and

�r then x belongs to one of the squares sr1, . . . , s
r
k−1 and the path is easy to construct. Otherwise, take

γ : [0, 1] → Δ as in the definition of left and right of δ in Section 2; γ must cross �r and a restriction

of γ yields the required path. As to simple connectivity, take a simple closed curve α contained in Δr

and therefore in Δ. By Jordan’s Theorem, α encloses a disk A. Since Δ is simply connected, A ⊂ Δ.

Also, a path in A from x ∈ A to α guarantees that x and α are on the same side of δ.
The region Δl may be disconnected or even empty. On the other hand, the argument above shows

that its connected components are simply connected. Thus, Δ̃′ is obtained by gluing the simply con-

nected pieces Δr and the components of Δl: we must now study the gluing process. Let ζ r and ζ l be

the zig-zag lines vr1/2v1v
r
3/2 · · · vk−1v

r
k−1/2 and vl1/2v

ll
1v

l
3/2 · · · vllk−1v

l
k−1/2, where vlli is the left-most

vertex of sli. Cut-and-paste obtains Δ̃′ by gluing Δr and Δl along ζ r and ζ l . Notice that ζ r is contained

in the boundary of Δr . It is possible, however, that parts of ζ l are part of the boundary of Δ and not

in Δl .
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Weclaim that, given a connected componentDofΔl , its intersectionwith ζ l is either emptyor path-

connected. In other words, for any two points x0, x1 ∈ D ∩ ζ l , the segment [x0, x1] ⊂ ζ l between x0
and x1 is contained inD. Indeed, there is a curveα inD joining x0 and x1. Juxtaposition ofα and [x0, x1]
obtains a closed curve in Δ. As before, simple connectivity of Δ implies that the region surrounded by

this closed curve is contained in Δ and therefore in Δl and D, completing the proof of the claim.

The claims and Seifert–Van Kampen’s Theorem ([3]) imply that each connected component of Δ̃′ is
simply connected. Detaching guarantees that each connected component of Δ′ is a simply connected

surface with boundary — a disk. �

4. A bijective proof of Theorem 1

A nonzero entry bij of the black-to-white matrix BΔ corresponds to a domino contained in Δ:

the indices i and j indicate the black and white squares in the domino and bij /= 0 when these two

squares are adjacent. A domino tiling of Δ is a decomposition of Δ as a union of dominos with disjoint

interiors; let TΔ be the set of all domino tilings of Δ. A nonzero monomial of the black-to-white

matrix BΔ corresponds to some τ ∈ TΔ. Indeed, the dominos associated with the entries cover Δ and

their interiors are disjoint. Equivalently, for a labeling of black and white squares by {1, 2, . . . , b} and
{1, 2, . . . ,w}, we may consider a tiling τ as a function π : {1, 2, . . . ,w} → {1, 2, . . . , b} with π(j) = i

if and only if the ith black square and the jth white square form a domino in τ . With b = w, this

provides an identification between TΔ and a subset of the symmetric group Sw .

Theabove identificationendowsa tilingwithparity (or sign). Tilingsdifferingbyaflip (i.e., by exactly

two dominos forming a 2 × 2 square) have opposite parities: if their corresponding permutations are

π1 and π2 then π−1
2 π1 is a cycle of length 2, interchanging the two white squares in the flip. The

combinatorial interpretation of Theorem 1 is that the number of even and odd tilings in TΔ differ by

at most 1. In this section we provide a bijective proof of this statement.

More precisely, we present an algorithm that, given a quadriculated disk Δ, obtains a quasi-perfect

matching in TΔ, i.e., a subset T ∗
Δ ⊆ TΔ whose complement has at most one element, the loner, and an

involution ρ : T ∗
Δ → T ∗

Δ (i.e., ρ2(τ ) = τ ) inverting parity. The argument proceeds by induction on

the number of squares of Δ. The construction of the quasi-perfect matching is trivial if Δ has fewer

than 4 squares.

In general, start with a quadriculated disk Δ with b = w and take a good diagonal δ as in Fig. 9.

Draw and number wedges along δ as in the figure; a tiling respects a wedge if no domino in the tiling

crosses a leg of the wedge. We define a partition TΔ = DΔ � RΔ: a tiling τ belongs to DΔ if and only

if τ disrespects at least one of the wedges along δ (see [4] for a similar construction with a different

purpose). The loner of the quasi-perfect matching, if it exists, will belong to RΔ; the sets DΔ and

R∗
Δ = RΔ ∩ T ∗

Δ will be invariant by ρ . Equivalently, deletion of the edges of GΔ crossing the wedges

obtains a subgraph GR
Δ : tilings in TΔ (resp. RΔ) correspond to matchings in GΔ (resp. GR

Δ ).

We first construct the restriction ρ|DΔ
. Given τ ∈ DΔ, assume that the first wedge to be dis-

respected is the kth wedge. This means that the first 2 × 2 square formed by dominos along δ is

positioned around that wedge: ρ(τ) differs from τ by a flip in that square.

Fig. 9. Wedges along a good diagonal and the subgraph GR
Δ .
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Fig. 10. The maps ∂ and ρ .

There is a natural bijection ∂ : RΔ → TΔ′ , where Δ′ is the disjoint union of quadriculated disks

obtained from Δ by cut-and-paste along δ. Indeed, for τ ∈ RΔ, define ∂(τ ) ∈ TΔ′ by removing the

dominos covering one of the squares si+1/2 along δ and gluing the remaining parts. Given a quasi-

perfect matching ρ′ : T ∗
Δ′ → T ∗

Δ′ , define R∗
Δ = ∂−1(T ∗

Δ′) and ρ(τ) = ∂−1(ρ′(∂(τ ))).

If Δ′ is a quadriculated disk, a quasi-perfect matching is obtained by recursion. Otherwise, for the

detached collection

Δ′ = Δ′
1 � · · · � Δ′

d, d > 1,

assume (again by recursion) that quasi-perfectmatchingsρ′
i : T ∗

Δ′
i
→ T ∗

Δ′
i
have been obtained for each

Δ′
i (possiblywith loners). For τ ′ ∈ TΔ′ , let τ ′

i be the restriction of τ ′ toΔ′
i . In order to findρ′(τ ′), search

for the smallest i for which τ ′
i ∈ T ∗

Δ′
i
(i.e., τ ′

i is not a loner); construct ρ
′(τ ′) by changing τ ′ in Δ′

i only:

ρ′(τ ′) = τ ′
1 � · · · � ρ′

i (τ
′
i ) � · · · � τ ′

d.

A tiling remains unmatched if and only if its restriction to each Δ′
i is a loner: since there is at most one

loner in each TΔ′
i
, there is at most one loner in TΔ′ and ρ′ is indeed a quasi-perfect matching.

If the diagonal δ is unbalanced then b′ /= w′ and Δ′ admits no domino tilings. Consistently, in this

case, RΔ is empty: this follows from the impossibility of respecting the last wedge. More generally, if

Δ′ = Δ′
1 � · · · � Δ′

d and (at least) one of the disksΔ′
i admits no domino tilings then RΔ is empty and

we are done.

Wemust perform a final check: τ and ρ(τ) are supposed to have opposite parities. This is clear for

τ ∈ DΔ; before we address the issue for τ ∈ RΔ, we present a few examples.

We follow the construction above in order to compute ρ(τ) where τ ∈ TΔ sits at the upper left

hand corner of Fig. 10. Recall that the definition of ρ is dependent on a specific choice of good diagonal

not only for the original disk Δ but for every disk reached in the process. For δ as indicated, τ ∈ RΔ.

Fig. 11. A loner.
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Fig. 12. Matching tilings in a more degenerate situation.

Fig. 13. Compatibility is preserved by cut-and-paste.

Take τ ′ = ∂(τ ) ∈ TΔ′ and a good diagonal δ′ of Δ′. Again, τ ′ ∈ RΔ′ so we must go to Δ′′ where

τ ′′ = ∂(τ ′) ∈ DΔ′′ . We construct ρ′′(τ ′′) ∈ TΔ′′ (vertical arrow) and bring it back to obtain ρ′(τ ′) =
∂−1(ρ′′(τ ′′)) ∈ RΔ′ and finally ρ(τ) = ∂−1(ρ′(τ ′)) ∈ RΔ.

In Fig. 11, a loner is identified by a sequence of cut-and-paste operations leading to a disk with a

unique tiling. In Fig. 12 we again compute ρ(τ) (τ sits on the upper left corner); notice that there is a

large region where domino position is forced but the construction still applies.

We recall some well known constructions. The superposition [τ1 − τ2] of two tilings τ1 and τ2
consists of disjoint non-oriented simple closed curves of consecutive dominos (or edges) alternating

between τ1 and τ2; dominos which are common to τ1 and τ2 are discarded. Such curves are cycles

(in a different sense) in the dual graph GΔ but we reserve the word for permutation cycles. Consider

the bijections π1,π2 : {1, 2, . . . ,w} → {1, 2, . . . , b} associated with the tilings τ1, τ2 and decompose

the permutation π−1
2 π1 ∈ Sw as a product of disjoint cycles. These cycles correspond to the curves in

[τ1 − τ2] and the length of each curve (defined as the number of edges in GΔ) is twice the length of

the cycle. The discarded dominos correspond to trivial cycles of length 1 and are irrelevant for parity

checks.

If τ1 and τ2 differ by a flip then [τ1 − τ2] is a single curve of length 4 andπ−1
2 π1 is a cycle of length

2. More generally, two tilings τ1, τ2 ∈ TΔ are compatible if [τ1 − τ2] consists of a single curve whose

length is a multiple of 4; we denote compatibility by τ1 ↔ τ2. If τ1 ↔ τ2 then π−1
2 π1 is a cycle of

even length, an odd permutation, and τ1 and τ2 have opposite parities. We claim that, for τ1, τ2 ∈ RΔ,

τ1 ↔ τ2 ⇐⇒ ∂(τ1) ↔ ∂(τ2).

By the inductive construction of ρ , the claim implies that τ1 ↔ ρ(τ1), completing the parity check.

Fig. 13 provides two examples of [τ1 − τ2] and [∂(τ1) − ∂(τ2)] for tilings τi ∈ RΔ. The reader

should check that in the first example, τ1 ↔ τ2 and ∂(τ1) ↔ ∂(τ2); in the second, τ1�τ2 and

∂(τ1)�∂(τ2). Some vertices of the dual graphs GΔ and GΔ′ are indicated for clarity.

In general, decompose the curves forming [τ1 − τ2] into dashed segments through corridors be-

tween wedges and solid segments on each side of the good diagonal. Cut-and-paste deletes dashed
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segments and acts on solid segments by translation. Thus, following solid segments yields a natural

one-to-one correspondence between curves in [τ1 − τ2] and curves in [∂(τ1) − ∂(τ2)]. Furthermore,

corresponding curves differ by the deletion of dashed segments of length 2, the passages of the curve

through corridors. Since at each such passage the curve goes from one side of the diagonal to the other,

the number of passages for each curve is even. Thus, lengths of corresponding curves are congruent

mod 4, proving the claim and completing the proof.

5. Algebraic cut-and-paste

The bulk of this section is dedicated to relating the black-to-white matrices BΔ and BΔ′ where Δ′
is obtained from Δ by cut-and-paste (there is no difficulty in defining black-to-white matrices for

bicolored disjoint union of quadriculated disks). More precisely, assume that Δ (resp. Δ′) has b (resp.

b′) black squares and w (resp. w′) white squares. Let In be the n × n identity matrix and In,m be the

n × mdefective identitymatrixwith (i, j) entry equal to 1 if i = j and0 otherwise.Weobtain in Lemma

5.2 a factorization

BΔ = LΔ

(
Ib−b′ ,w−w′ 0

0 BΔ′

)
UΔ,

where LΔ and UΔ are very special square triangular matrices. This factorization is the inductive step

in the proof of Theorem 2. We first present an example.

The quadriculated disks shown in Fig. 14 have black-to-white matrices

BΔ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, BΔ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Rows and columns are indexed by numbers and letters respectively in Fig. 14. The first four rows and

columns of BΔ correspond to the eight squares removed by cut-and-paste. Partition BΔ in four blocks

so that B11 = Bδ is the black-to-white matrix of the disk around the diagonal δ consisting of squares

1, 2, 3, 4, A, B, C,D and B22 is the bottom6 × 6 principalminor. Notice that B22 and BΔ′ are very similar:

the difference lies in the top 3 × 3principalminor of eachmatrix. These positions describe adjacencies

between squares 5, 6, 7 and E, F , G.

Fig. 14. Disks Δ and Δ′ .
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Elementary operations in rows and columns specified by

X̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ , Ỹ =

⎛
⎜⎜⎝
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎠

can be applied to BΔ to obtain a block diagonal matrix

BΔ =
(
I4 0

X̃ I6

) (
Bδ 0

0 B̃Δ′

) (
I4 Ỹ

0 I6

)
,

where

B̃Δ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 −1 1

−1 −1 1 1

−1 1

1 1 1

1 1 1

1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

is surprisingly similar to BΔ′ . More precisely, B̃Δ′ = Sb′BΔSw′ where Sb′ = diag(−1,−1,−1, 1, 1,−1)
and Sw′ = diag(1, 1, 1,−1,−1, 1). It is this “coincidence” that allows for this construction to be used

as the inductive step in the proof of Theorem 2.

Before discussing the relationship between BΔ and BΔ′ we present a lemma in linear algebra. The

proof is a straightforward computation left to the reader.

Lemma 5.1. Decompose an (n + m) × (n′ + m′) matrix M as

M =
(
M11 M12

M21 M22

)
,

where M11 is n × n′. If n′ � n and N is a n′ × m′ matrix with M11N = M12 then

M =
(
M11In′ ,n 0

M21In′ ,n Im

) (
In,n′ 0

0 M22 − M21N

) (
In′ N

0 Im′

)
.

Similarly, if n′ � n and N is a m × n matrix with NM11 = M21 then

M =
(
In 0

N Im

) (
In,n′ 0

0 M22 − NM12

) (
In′ ,nM11 In′ ,nM12

0 Im′

)
.

The next lemma is the inductive step in the proof of Theorem 2.

Lemma 5.2. Let Δ be a quadriculated disk with b black and w white squares, b + w > 1. Let Δ′ = Δ′
1 �

· · · � Δ′
d (with b′ = b′

1 + · · · + b′
d black and w′ = w′

1 + · · · + w′
d white squares) be obtained from Δ

by cut-and-paste along a good diagonal δ. Label black and white squares in Δ so that removed squares

come first, in the order prescribed by the good diagonal; label squares in Δ′ next. Then the black-to-white

matrices BΔ and BΔ′ satisfy

BΔ =
(
L 0

X Sb′

) (
Ib−b′ ,w−w′ 0

0 BΔ′

) (
U Y

0 Sw′

)
,

where L (resp. U) is an invertible lower (resp. upper) square matrix of order b − b′ (resp. w − w′) and Sb′
and Sw′ are square diagonal matrices. Furthermore, all entries of Sb′ , Sw′ , L,U, X and Y equal 0, 1 or −1.

The statement above requires clarification in some degenerate cases. If Δ′ is empty, BΔ′ collapses
and BΔ = LIb,wU. If instead Δ′ is a disjoint union of unit squares, all of the same color, then either

w′ = 0 or b′ = 0 and
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BΔ =
(
L 0

X Sb′

) (
Ib−b′ ,w
0

)
U or BΔ = L

(
Ib,w−w′ 0

) (
U Y

0 Sw′

)
.

Proof. Assume that the deleted squares are s1/2, s
l
1, . . . and that the square s1/2 is black; thus k =

b − b′; if s1/2 were white all computations would be transposed. Let j1, . . . , jk−1 be the indices of the

white squares sr1, . . . , s
r
k−1; notice that ji > w − w′. Decompose the matrix BΔ in four blocks,

BΔ =
(
B11 B12
B21 B22

)
,

where B22 is a b′ × w′ matrix. By construction, B11 has one of the two forms below, the first case

corresponding to balanced good diagonals (i.e., to b − b′ = w − w′).

B11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0

1 1 0 · · · 0 0

0 1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

0 0 0 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, or B11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

1 1 0 · · · 0

0 1 1 · · · 0
...

...
...

...
0 0 0 · · · 1

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let Sb (resp. Sw) be a b × b (resp. w × w) diagonal matrix with diagonal entries equal to 1 or −1; the

ith entry of Sb (resp. Sw) is −1 if the ith black (resp. white) square is strictly to the right of δ. Write

Sb =
(
Ib−b′ 0

0 Sb′

)
, Sw =

(
Iw−w′ 0

0 Sw′

)
.

We have

SbBΔSw =
(
B11 −B12
B21 B22

)
.

The nonzero entries of B12 are (i, ji) and (i + 1, ji) for i = 1, . . . , k − 1. Thus, the nonzero columns

of B12 equal to the first k − 1 columns of B11. Let N be the (w − w′) × w′ matrix with entries 0 or

−1, with nonzero entries at (1, j1), (2, j2), . . . , (k − 1, jk−1). Clearly B11N = −B12 and we may apply

Lemma 5.1 to write

SbBΔSw =
(
B11Iw−w′ ,b−b′ 0

B21Iw−w′ ,b−b′ Ib′

) (
Ib−b′ ,w−w′ 0

0 B22 − B21N

) (
Iw−w′ N

0 Iw′

)
.

We claim that BΔ′ = B22 − B21N. The nonzero columns of the matrix −B21N are the columns of B21,

except that the first column ismoved to position j1, the second column ismoved to j2 and so on. The kth

columnofB21, if it exists, is discarded. Thesenonzero entries correspondprecisely to the identifications

which must be performed in order to obtain Δ′, i.e., to the ones which must be added to B22 in order

to obtain BΔ′ . Clearing up signs,

BΔ =
(

B11Iw−w′ ,b−b′ 0

Sb′B21Iw−w′ ,b−b′ Sb′

) (
Ib−b′ ,w−w′ 0

0 BΔ′

) (
Iw−w′ NSw′

0 Sw′

)
.

If the good diagonal is balanced, this finishes the proof. In the unbalanced case, L̃ = B11Iw−w′ ,b−b′ is
not invertible since its last column is zero. Replace the (k, k) entry of L̃ by 1 to obtain a new matrix L:

L is clearly invertible and L̃Ib−b′ ,w−w′ = LIb−b′ ,w−w′ . The proof is now complete. �

Proof of Theorem 2. The basis of the induction on the number of squares of Δ consists of checking

that the theorem holds for disks with at most two squares. Notice that if the disk consists of a single

square then b = 0 or w = 0 and the matrices are degenerate.

Let Δ be a quadriculated disk and Δ′ = Δ′
1 � · · · � Δ′

d be obtained from Δ by cut-and-paste. By

induction on the number of squares the theoremmay be assumed to hold for eachΔ′
k andwe therefore

write BΔ′ = LΔ′ D̃Δ′UΔ′ . From the induction step, Lemma 5.2, write
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Fig. 15. Determinant 1 does not imply LD̃U decomposition.

BΔ =
(
Lstep 0

Xstep Sb′

) (
Ib−b′ ,w−w′ 0

0 BΔ′

) (
Ustep Ystep
0 Sw′

)
= LΔD̃ΔUΔ.

where

LΔ =
(
Lstep 0

Xstep Sb′

) (
Ib−b′ 0

0 LΔ′

)
, UΔ =

(
Iw−w′ 0

0 UΔ′

) (
Ustep Ystep
0 Sw′

)
.

The theoremnow follows from observing that each nonzero entry of LΔ (resp.UΔ) is, up to sign, copied

from either LΔ′ , Lstep or Xstep (resp. UΔ′ , Ustep or Ystep) and is therefore equal to 1 or −1. �
We present a direct consequence of Theorem 2.

Corollary 5.3. Let Δ be a quadriculated disk with black-to-white matrix BΔ. If v has integer entries and

the system BΔx = v admits a rational solution then the system admits an integer solution.

This corollary may be interpreted as saying that the co-kernel Zb/BΔ(Zw) of BΔ : Zw → Zb is a

free abelian group. From Theorem 2, the rank r of BΔ is the same in Q as in Zp for any prime number

p. Notice that the proof of Theorem 1 in [1] is based on this fact for p = 2.

The example in Fig. 15 is instructive: the BG matrix of this planar graph G has determinant 1 but

admits no LD̃U decomposition where the matrices have integer coefficients since the removal of any

two vertices of opposite colors from G yields a graph whose determinant has absolute value greater

than 1.

6. Boards

Topological subdisks of R2 consisting of unit squares with vertices in Z2 are boards. In other words,

a board is a topological subdisk of R2 whose boundary is a polygonal curve consisting of segments

of length 1 joining points in Z2. The quadriculated disk in Fig. 1 is not a board. The class of boards

is not closed under cut-and-paste: in Fig. 16, the two enhanced segments on the boundary would be

superimposed by cut-and-paste along the good diagonal on the left. Cut-and-paste along the good

diagonal indicated on the right, however, yields a smaller board. Themain result of this section is that,

given a board Δ, it is always possible to choose a good diagonal δ such that Δ′ = ∂δ(Δ) is a disjoint

union of boards.

Orient the boundary of a board Δ counterclockwise, so that Δ lies to the left of the boundary.

Consider boundary vertices which are local extrema for the restriction of x + y to the boundary: as

in Fig. 17, call such vertices positive if they are corners (equivalently, if they are local extrema for the

restriction of x + y to Δ) and negative otherwise. Let VB,+ (resp. VB,−) be the number of positive (resp.

negative) boundary vertices.

Lemma 6.1. VB,+ − VB,− = 2.

Proof. Define F , E, EI , EB and VI as in Lemma 2.2. The number of boundary vertices is VB = VB,+ +
VB,− + VB,0 where VB,0 is the number of boundary vertices which are neither positive nor negative.



2436 N.C. Saldanha, C. Tomei / Linear Algebra and its Applications 432 (2010) 2423–2437

Fig. 16. A board and two good diagonals, one excellent.

Fig. 17. Positive and negative boundary vertices.

For each square, consider its NW and SE vertices: interior vertices and negative vertices are counted

twice, positive vertices are not counted and other boundary vertices are counted once and therefore

2F = 2VI + 2VB,− + VB,0 = 2VI + VB − (VB,+ − VB,−). Recall that 4F = 2E − EB (Lemma 2.2) and

E = V + F − 1 (Euler) and therefore 2F = 2VI + VB − 2, completing the proof. �

Theorem 3. It is always possible to cut-and-paste a given boardΔ to obtain a disjoint union of boardsΔ′.

Proof. A diagonal is excellent if the x and y coordinates are both monotonic along one of the two

boundary arcs between v0 and vk; without loss, let this arc lie to the right of the diagonal. Excellent

diagonals are good: the vertex vrk−1/2 is on theboundary.We interpret cut-and-paste along anexcellent

diagonal as leaving Δl fixed and moving Δr . In this way, Δ′ becomes a subset of Δ and is therefore

a disjoint union of boards. We are left with proving that any board admits excellent diagonals. Each

diagonal defines two boundary arcs: order these arcs by inclusion. We claim that a diagonal defining

a minimal arc is excellent.

Let δm = (vm0 vm1 . . . vmk ) be a diagonal inducing a minimal arc α: assume without loss of generality

that vmi = (a + i, b + i) for integers a and b. Consider the set Δ̃ (dashed in Fig. 16) consisting of the

squares totally or partially surrounded by α and δm. It is easy to verify that Δ̃ is a legitimate board

with boundary consisting of α and ζ , where ζ is the zig-zag line next to δm. Thus, the last edge of ζ
can not overlap with α without contradicting the fact that the boundary point vmk of Δ is surrounded

by at most three squares in Δ.

By Lemma 6.1, the board Δ̃ has at least two positive boundary points. We claim that the existence

of a positive boundary point distinct from vm0 and vmk contradicts minimality. Notice that at this point

it is clear that vm0 is positive; the status of vmk as a positive boundary point will only follow from the

claim. Indeed, such a positive point v̂ can not belong to the zig-zag line ζ and must therefore belong

to α. Draw a diagonal δ̂ starting at v̂: being parallel to ζ , δ̂ must intersect the boundary of Δ̃ in α and

therefore defines a smaller arc α̂, contradicting minimality and proving the claim. Again by Lemma

6.1, there are no negative boundary vertices. In particular, there are no positive or negative boundary

vertices in α and we are done. �
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