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1. Introduction

As iswell known [5], a Cauchymatrix (maybe even not square) is anm × nmatrix assigned tom + n

parameters x1, . . . , xm, y1, . . . , yn (one of them can be considered as superfluous) as follows:

C =
[

1

xi + yj

]
, i = 1, . . . ,m, j = 1, . . . , n.

For generalized Cauchy matrices, additional parameters u1, . . . , um, v1, . . . , vn, have to be considered

(one of which again superfluous):

Ĉ =
[

uivj

xi + yj

]
.

�
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If we restrict ourselves to the square case, it is well known that C is nonsingular if and only if, in

addition to thegeneral existence assumption that xi + yj /= 0 for all i and j, the xi’s aremutually distinct

aswell as the yj ’s aremutually distinct. In fact, there is a formula [1,4] for the determinant of C(m = n)

det C =
∏

i,k,i>k(xi − xk)(yi − yk)∏n
i,j=1(xi + yj)

. (1)

Clearly, such formula is easily established also for the generalized Cauchy matrix Ĉ.

Since every submatrix of a Cauchy matrix is also a Cauchy matrix, the formula (1) allows us to find

the inverse matrix to C. Thus C−1 = [γij], where

γij = (xj + yi)

∏
� /=i(xj + y�)

∏
k /=j(yi + xk)∏

� /=j(xj − x�)
∏

k /=i(yi − yk)
. (2)

In this note, we shall be interested in real symmetric Cauchy matrices, in particular in the positive

definite and totally positive case, and in the matrix C ◦ C−1, where ◦ means the Hadamard entrywise

product. Recall that a real matrix is totally positive if all its submatrices have positive determinant.

A simple corollary of Eq. (2) is

Theorem A. A symmetric Cauchy matrix (for which yi = xi for each i)

C =
[

1

xi + xj

]
is positive definite if and only if all the xi’s are positive and mutually distinct.

It is totally positive if and only if either 0 < x1 < · · · < xn, or 0 < xn < · · · < x1.

Corollary B. If C is a positive definite Cauchy matrix then there exists a permutation matrix P for which

PCP is totally positive.

Let us mention that the famous Hilbert matrix (e.g. [1]) (more precisely, the finite section thereof)

Hn =
[

1

i + j − 1

]
is clearly a Cauchy matrix.

In fact, the results for small Hilbert matrices were an inspiration for the author to present this note.

The second inspiration was the following notion.

If A is a nonsingular matrix, then it makes sense to define the Hadamard product A ◦ (AT )−1. We

shall call it the combined matrix of A.

Let us recall three well known properties of the combined matrices.

Theorem C. All row sums of every combined matrix are equal to one. The combined matrices of a non-

singular matrix A and (AT )−1 coincide. Multiplication of a nonsingular matrix by nonsingular diagonal

matrices from any side does not change the combined matrix.

A less known property was presented in [2]:

Theorem D. Let A = [aij] be a real symmetric positive definitematrix, let A−1 = [αij]. Then the combined

matrix M = A ◦ A−1 of A with entries mij has the following properties:
1. M − I is positive semidefinite, Me = e; here, I is the identity matrix and e is the vector of all ones.

2. 2max
i

(√
mii − 1

)
�

∑
i

(√
mii − 1

)
. (3)

Remark 1. It seems still an open problem to characterize the set of all combined matrices of n × n

positive definite matrices. For n� 3, 1. and 2. give a complete characterization [4].
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Remark 2. It is easy to see that the combinedmatrix of anM-matrix as well as of an inverseM-matrix

is anM-matrix. The possible diagonal entries of such matrices were characterized in [3].

The characterization is similar to that in 2, above: For each i,mii � 1, and

2max
i

(mii − 1) �
∑
i

(mii − 1).

In the sequel, we shall use the following two identities:

Lemma E. Let for n� 2, x1, . . . , xn be indeterminates. Then the following holds:
1. If n is even, then

n∑
k=1

∏
j /=k

xk + xj

xk − xj
= 0 (4)

identically.
2. If n is odd, then

n∑
k=1

∏
j /=k

xk + xj

xk − xj
= 1 (5)

identically.

Proof. One can use the Lagrange identities, but we shall apply a direct proof.

Multiply the left-hand side of (4) by
∏

i>j(xi − xj). We obtain a homogeneous polynomial of degree(
n

2

)
. It is easily seen that this polynomial is divisible by each xi − xj , i /= j, thus by

∏
i>j(xi − xj), of

degree
(
n

2

)
again. The left-hand side of (4) is thus an integral constant. To determine it, consider the

term xn−1
n x

n−2
n−1 · · · x2 of the highestweight of indices. For n even,we get zero, for n odd,we get one. �

2. Results

We first introduce a new notion which seems to be rather artificial.

Let G = [gik] be an n × n square matrix with nonnegative diagonal entries. We say that G has the

alternate trace property, shortly AT-property, if

n∑
k=1

(−1)k−1√gkk =
{
1 for n odd,

0 for n even.

Observe that the identity matrix as well as any combined matrix of a nonsingular diagonal matrix

have the AT-property. Our main task will be the following result:

Theorem 2.1. The combinedmatrix of every symmetric totally positive Cauchymatrix has the AT-property.

Proof. Suppose first that the Cauchymatrix C corresponds to the n-tuple xk satisfying 0 < x1 < · · · <
xn according to Theorem A. Then the formulae (2) yield for the diagonal entriesmii of C ◦ C−1, due to

positivity,

√
mii = (−1)n−i

∏
k /=i

xi + xk

xi − xk
.
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The AT-property then follows immediately from Lemma E.

If C corresponds to positive xi’s in reverse order than in Theorem A, the result follows from the fact

that the matrix JCJ, where J is the skew identity matrix, has the same AT-property as C. �

Remark 3. By Corollary B, the assumption that C is totally positive can be removed; of course, the

corresponding property would be more complicated.

Remark 4. By Theorem C, the same assertion as in Theorem 2.1 holds for totally positive generalized

Cauchy matrices.

Theorem 2.2. The combinedmatrix of every principal submatrix of the Hilbert matrix has the AT-property.
In addition, if a square submatrix of the Hilbert matrix has consecutive rows and consecutive columns,

then its inverse as well as its combined matrix have integral entries. The diagonal entries of the combined

matrix are squares of integers.

Proof. The first part is a corollary to Theorem 2.1 since any principal submatrix of the Hilbert matrix

is a totally positive Cauchy matrix. To prove the second part, observe that by (2), it suffices to show

that in the case of consecutive rows and columns and the substitution of the corresponding integers,

the ratio∏
� /=i(xj + y�)

∏
k /=j(yi + xk)∏

� /=j(xj − x�)
∏

k /=i(yi − yk)

is an integer.

Change in the denominator the summation index � to k and k to �. Then the whole ratio can be

written as the product of four ratios∏
k<j

yi + xk

xj − xk

∏
k>j

yi + xk

xj − xk

∏
�<i

xj + y�

yi − y�

∏
�>i

xj + y�

yi − y�

.

Each of the ratios is an integer since the numerators are consecutive integers. In the case that i = j and

xk = yk for each k, two and two of the above ratios coincide. �

Let us add an alternative proof of Theorem 2.1 whichmakes the AT-property more understandable.

Observation 1. Let C be a nonsingular Cauchy matrix. Then there exist diagonal nonsingular matrices

D1 and D2, such that

C−1 = D1C
TD2. (6)

Proof. In the notation of (2), we can rewrite (2) in the form

γij = (xj + yi)

∏
� /=i(xj + y�)

∏
k /=j(yi + xk)∏

� /=j(xj − x�)
∏

k /=i(yi − yk)

= 1

xj + yi
UjVi,

where

Uj = (xj + yj)
∏
k /=j

xj + yk

xj − xk
,

Vi = (xi + yi)
∏
k /=i

yi + xk

yi − yk
.

The nonsingular matrices D1 = diag(V1, . . . , Vn), D2 = diag(U1, . . . ,Un) fulfil then (6). �
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Observation 2. Amatrix Q satisfying diag Q = diagQ−1 has the AT-property if and only if the matrix

QS has the trace property, i.e.

trQS =
{
1 for n odd,

0 for n even,

where S = diag(1,−1, 1, . . . , (−1)n−1).

Proof. Indeed, if q11, q22, . . . , qnn are the common diagonal entries of Q and Q−1, then q11,−q22, . . . ,
(−1)n−1qnn are the diagonal entries of QS.

We complete the proof that C has the AT-property. Let C be a symmetric totally positive Cauchy

matrix. ByObservation1and the symmetryofC, thereexists anonsingulardiagonalmatrixD0 such that

C−1 = D0CD0. It iswell known that the inverse of a nonsingular totally positivematrix has the checker-

board sign-pattern. Therefore, there exists a diagonalmatrixDwith positive diagonal entries, such that

C−1 = DSCSD.

The matrix Q = D
1
2 CD

1
2 has thus the property that

(QS)−1 = QS,

i.e.,QS is involutory. Therefore, the eigenvalues ofQS are 1 and−1 only. On the other hand,Q is positive

definite, so that the matrix Q
1
2 SQ

1
2 which has the same eigenvalues as QS is congruent to S. Thus the

eigenvalues of QS are 1 and −1 with the same multiplicity if n is even, the multiplicity of 1 being

greater by one if n is odd. Also, the diagonal entries of Q and its inverse coincide. By Observation 2,

Q has the AT-property. The fact that Q ◦ Q−1 = C ◦ C−1 now completes the proof. It also shows the

relationship with the involutory property of QS. �
Example. The submatrix

G =

⎡⎢⎢⎢⎣
1
3

1
4

1
5

1
4

1
5

1
6

1
5

1
6

1
7

⎤⎥⎥⎥⎦
of the Hilbert matrix has the inverse⎡⎣ 300 −900 630

−900 2880 −2100

630 −2100 1575

⎤⎦ .

Thus

G ◦ G−1 =
⎡⎣ 100 −225 126

−225 576 −350

126 −350 225

⎤⎦
is an integral matrix. It clearly has the AT-property. The condition (6) also holds with U1 = V1 =
30, U2 = V2 = −120, U3 = V3 = 105. The involutory matrix QS is then diag(

√
30,

√
120,√

105Gdiag
(√

30,−√
120,

√
105

)
, i.e.⎡⎢⎣ 10 −15 3

√
14

15 −24 5
√

14

3
√

14 −5
√

14 15

⎤⎥⎦ .

The trace condition is fulfilled. Observe that the Hadamard power of QS is the modulus of G ◦ G−1.

Remark 5. It seems of interest that the real positive definite matrices A for which equality in (3)

is attained [2, Theorem 3.3] have the property that (up to multiplication by a nonsingular diagonal
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matrix from both sides and simultaneous permutation of rows and columns) AS is involutory, S being

a diagonal matrix diag(±1,±1, . . . ,±1), satisfying trS = n − 2. Indeed, it was proved in [2] that

such matrix has the form (up to multiplication by a nonsingular diagonal matrix from both sides and

simultaneous permutation of rows and columns)

A =
[
B b

bT β

]
,

where β � 1 is a number, B an (n − 1) × (n − 1) matrix of the form I + (β − 1)uuT , u a unit real

vector, and b the
√

β2 − 1-multiple of u. If S is the diagonal matrix diag(1, . . . , 1,−1), then

AS =
[
B −b

bT −β

]
is involutory since

A−1 =
[

B −b

−bT β

]
.

Addendum. An amusing corollary of Lemma E is the following property of the tableaux of the numbers

tij = i+j

|i−j| for i /= j, tii = 1, i, j = 0, 1, . . .:⎡⎢⎢⎢⎢⎢⎢⎣
1 1

1
2
2

3
3

4
4

· · ·
1
1

1 3
1

4
2

5
3

· · ·
2
2

3
1

1 5
1

6
2

· · ·
· · ·

⎤⎥⎥⎥⎥⎥⎥⎦ .

Choose any “principal minor" of even order; then the sum of all the products in odd rows is equal to

the sum of all the products in even rows. If the minor has odd order, the first sum exceeds the second

by one.
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