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SUMMARY

During vertebrate gastrulation, an epithelial to
mesenchymal transition (EMT) is necessary for
migration of mesoderm from the primitive
streak. We demonstrate that p38 MAP kinase
and a p38-interacting protein (p38IP) are criti-
cally required for downregulation of E-cadherin
during gastrulation. In an ENU-mutagenesis
screen we identified the droopy eye (drey)
mutation, which affects splicing of p38IP.
p38IPdrey mutant embryos display incompletely
penetrant defects in neural tube closure, eye de-
velopment, and gastrulation. A stronger allele
(p38IPRRK) exhibits gastrulation defects in
which mesoderm migration is defective due to
deficiency in E-cadherin protein downregula-
tion in the primitive streak. We show that p38IP
binds directly to p38 and is required for p38 ac-
tivation in vivo. Moreover, both p38 and p38IP
are required for E-cadherin downregulation dur-
ing gastrulation. Finally, p38 regulates E-cad-
herin protein expression downstream from
NCK-interacting kinase (NIK) and independently
of the regulation of transcription by Fibroblast
Growth Factor (Fgf) signaling and Snail.

INTRODUCTION

Gastrulation in the mouse embryo begins at embryonic

day 6.25 (E6.25) and results in the formation of the three

definitive germ layers and establishment of the embryonic

body plan (reviewed in Tam and Behringer, 1997). During

gastrulation, the epiblast is a cup-like structure nestled
within the visceral endoderm (Figure 3I). Mesoderm cells

migrate through the primitive streak in the posterior region

of the epiblast and undergo an epithelial to mesenchymal

transition (EMT) and migrate away from the primitive

streak. These morphogenic movements are mediated by

regulated changes in cell adhesion (reviewed in Shook

and Keller, 2003).

Fibroblast Growth Factor (Fgf) signaling in the primitive

streak regulates EMT during mouse gastrulation. Fgf8

and Fgfr1 mutant embryos display gastrulation defects in

which mesoderm fails to migrate away from the streak

(Deng et al., 1994; Sun et al., 1999; Yamaguchi et al.,

1994). Significantly, Fgfr1 mutant embryos fail to express

Snail and to downregulate expression of E-cadherin (Cir-

una and Rossant, 2001). Snail acts as a transcriptional re-

pressor to inhibit E-cadherin expression (Batlle et al., 2000;

Cano et al., 2000), and in Snail mutant embryos E-cadherin

is not downregulated (Carver et al., 2001). These data sug-

gest a molecular pathway where Fgf signaling, through

regulation of Snail expression, downregulates E-cadherin

expression to promote EMT during gastrulation.

Targeted disruption of NCK- interacting kinase/Map4k4

(NIK) results in a similar phenotype to Fgfr1 mutant em-

bryos in which mesoderm accumulates in the primitive

streak (Deng et al., 1994; Xue et al., 2001; Yamaguchi

et al., 1994). In contrast to Fgfr1 mutants, NIK mutant em-

bryos express molecular markers of mesoderm develop-

ment, indicating that mesoderm is properly specified al-

though it does not migrate. While the signal transduction

pathway(s) downstream of Fgf and NIK in the gastrulating

embryo have not been elucidated, both can activate MAPK

cascades (reviewed in Bottcher and Niehrs, 2005; Buday

et al., 2002). MAPKs are a family of conserved serine/thre-

onine protein kinases that function in kinase cascades, re-

sulting in phosphorylation and activation of transcription

factors and/or additional kinases (reviewed in Chang and

Karin, 2001; New and Han, 1998). In mice, the p38 group
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Figure 1. The drey Mouse Mutation Disrupts a p38-Interacting Protein

(A–D) drey�/�mutant embryos exhibit a range of phenotypes. (A) E12.5 mutant embryo with exencephaly (between red arrows) and the ‘‘droopy eye’’

phenotype. (B) E12.5 mutant with spina bifida (between red arrows). (C and D) E10.5 mutant embryos demonstrating defects in mesoderm develop-

ment. (C) Embryo exhibits growth retardation, failure to turn, exencephaly, and various mesoderm defects including lack of somites. (D) Embryo ex-

hibits growth retardation, posterior truncations, and an open neural tube.

(E) Genetic map of drey interval on mouse chromosome 3. The number of recombination events over number of opportunities for recombination is

indicated for each polymorphic marker. Markers D3ski16, D3ski13, D3ski12, and D3ski4 never separated from the drey phenotypes. Within this in-

terval are six transcription units: BM02 (BM-002/ubiquitin folding modifier), Trpc4 (receptor-activated cation channel), Postn (periostin precursor [PN]/

osteoblast-specific factor 3[OSF2]), D3Ertd300e (p38-Interacting Protein), Exosc8 (exosome complex exonuclease or RRP43/ribosomal processing

protein 43), and Alg5 (Dolichyl-phosphate b-glucosyltransferase).

(F) The drey ENU-induced mutation results in a T to C transition (red) in the splice donor consensus sequence following exon 14 (blue box) in

D3Ertd300e encoding a p38-interacting protein (p38IP).

(G) Predicted protein motifs in p38IP: a nuclear localization sequence (NLS, red), PEST sequence (black), and Serine-rich regions (S-Rich, blue). The

human and mouse transcripts have 2202 bp and 1590 bp open reading frames that encode 733 and 530 amino acid proteins, respectively. The

p38IPdrey and p38IPRRK mutations result in truncated proteins at 317 and 133 amino acids, respectively.
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is represented by four genes: p38a/MAPK14, p38b/

MAPK11, p38d/MAPK13, and p38g/MAPK12. Deletion of

either the p38g or p38b genes does not result in any de-

tectable developmental phenotype, while a deletion of

the p38d gene has not been reported (reviewed in Kuida

and Boucher, 2004). p38a�/� embryos die during midges-

tation due to a placental defect (Adams et al., 2000; Mud-

gett et al., 2000). However, treatment of early mouse em-

bryos with the drug SB203580 to inhibit both p38a and

p38b, but not p38d or p38g, suggests that both p38a and

p38b are required for preimplantation development (Mae-

kawa et al., 2005; Natale et al., 2004). These experiments

also suggest that double mutant embryos would not likely

survive preimplantation development, and alternative ap-

proaches are needed to determine the full range of activi-

ties of the p38 family during development.

Using a forward genetic screen, we have identified a se-

ries of ENU-induced mutations that disrupt neural tube clo-

sure or gastrulation in the mouse embryo (Garcia-Garcia

et al., 2005; Kasarskis et al., 1998; Zohn et al., 2005).

Here we describe an ENU-induced splicing mutation in

the droopy eye (drey) line that results in a variety of incom-

pletely penetrant phenotypes including defects in neural

tube closure and gastrulation. Strikingly, a stronger allele

results in highly penetrant gastrulation defects, in particu-

lar defects in migration of mesoderm from the primitive

streak. We reveal that drey encodes a p38-interacting pro-

tein (p38IP) and is required for p38 activation in vivo. Fur-

thermore, we demonstrate that p38 activation is required

for downregulation of E-cadherin protein. Finally we pres-

ent evidence that p38 acts downstream from NIK, in a par-

allel pathway to Fgfs and Snail, to ensure a robust EMT by

regulating expression of the E-cadherin protein and tran-

script, respectively.

RESULTS

Neural Tube, Eye, and Mesoderm Defects in drey

Embryos

As part of our ongoing ENU-mutagenesis screen, we iden-

tified the mutant mouse line droopy eye (drey). Mutant em-

bryos exhibit a variety of incompletely penetrant defects

including expansion of the retinal-pigmented epithelium

over the dorsal half of the eye (present in 116/147 embryos

analyzed; 79%) and neural tube closure defects consisting

of spina bifida (21/147; 14%) and exencephaly (81/147;

55%; Figures 1A and 1B). A small percentage of embryos

(4/147; 3%) show severe defects in mesoderm develop-

ment including a malformed allantois, somite defects,

and posterior mesoderm truncations (Figures 1C and

1D). Conversely, some drey mutant embryos (7/31; 23%)

do not exhibit any detectible phenotypes, and in a few
rare cases, drey mutant animals survive postnatally (4/

92; 4%) and could reproduce (1/92; 1%).

drey Encodes a p38-Interacting Protein

Using meiotic recombination mapping, the drey mutation

mapped to a 1 Mb region on mouse chromosome 3,

which contains six predicted transcripts including the

D3Ertd300e transcript (Figure 1E; NCBI accession

#BC052702). D3Ertd300e is annotated as a p38-interact-

ing protein based on identification of the human homolog

in a yeast two-hybrid screen using p38a as bait (Y.L. and

J.H., unpublished data; NCBI accession #AF093250). Fur-

thermore, we demonstrate that D3Ertd300e interacts with

p38 MAPK and is required for its activity in vivo (see below

and Figure 2), thus we rename D3Ertd300e: p38-interact-

ing protein (p38IP). There is very little known about the

p38IP gene and there are no apparent studies of p38IP

function. Human p38IP/C13orf19 was found to have al-

tered expression in prostate cancers relative to normal

prostate tissue (Schmidt et al., 2001, 2005) and to be ex-

pressed in human hematopoietic stem cells (Gomes

et al., 2002). Since p38 MAP Kinase has been shown to

regulate a variety of biological processes such as apopto-

sis, proliferation, and gene expression (reviewed in New

and Han, 1998), p38IP was an interesting candidate to

test as the responsible gene for a regulator of neural tube

closure. Upon sequencing drey genomic DNA around the

splice junctions of the predicted p38IP transcript, a T to

C transition was identified in the splice donor consensus

sequence at the end of exon 14 (Figure 1F). The p38IP pro-

tein contains a classical nuclear localization sequence, a

PEST sequence, and a serine-rich region at the C terminus

(Figure 1G).

To determine if the mutation disrupts p38IP splicing, an

RT-PCR assay was performed using primers flanking

exon 14 (Figure 1H). Amplification of wild-type cDNA re-

sulted in a single 500 bp PCR product, whereas mutant

cDNA produced multiple products including a 500 bp

product at low abundance, indicating that a small propor-

tion of transcripts are spliced normally in mutant embryos.

Sequencing of the aberrantly spliced transcripts indicates

that they encode disrupted proteins with premature stop

codons encountered at either 951 or 948 bp. The small

proportion of normal transcripts produced likely accounts

for the incomplete penetrance of phenotypes observed in

drey mutant embryos.

To confirm that mutation of p38IP is responsible for the

developmental defects in p38IPdrey mutants, a second al-

lele of p38IP was obtained from the BayGenomics gene-

trap resource and used in a complementation test cross.

ES cell clone RRK304 (designated p38IPRRK) contains an

insertion in the seventh intron of the p38IP gene, which is
(H) Splicing of p38IP transcript in p38IP+/+ (+/+) and p38IPdrey/drey (�/�) embryos. Some transcripts are spliced normally in p38IPdrey/drey embryos

whereas the majority of transcripts use alternate splice donor sequences.

(I) The p38IPRRK gene trap allele fails to complement p38IPdrey as p38IPdrey/RRK embryos at E10.5 exhibit exencephaly (between red arrows, I). p38IP

mRNA is expressed ubiquitously in E7.5 embryos (J).
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Figure 2. p38IP Interacts with p38a and Is Required for p38 Activation In Vivo

(A) Flag-p38a was coexpressed with YFP-p38IP in 293T cells. Immunoprecipitation was performed with anti-Flag (a-Flag) M2 agarose beads 24 hr

after transfection, and the immunoprecipitates and cell lysates (WCL) analyzed by Western blot using anti-Flag (a-Flag) and anti-YFP (a-YFP) anti-

bodies.

(B) 293T cells were lysed and immunoprecipitated with either preimmune serum (PI) or anti-p38IP antibody (a-p38IP) from two different His-p38IP

immunized rabbits. The immunoprecipitates were analyzed by Western blot using anti-p38IP (a-p38IP) and anti-p38 (a-p38) antibodies.

(C) HF7c yeast cells were cotransfected with pGAD424-p38IP and pGBT9 (marked as V), pGBT9-p38a(AF) (a), pGBT9-p38b(AF) (b), pGBT9-p38g(AF)

(g), or pGBT9-p38d(AF) (d). The cells were plated on minus leucine and tryptophan medium (SD-LW) to select cells cotransfected with pGAD424 and

pGBT vectors.

(D) The same as (C) except medium lacking additional histidine (SD-LWH) was used to select for interaction.

(E) b-galactosidase colony-lift assay of the cells shown in (C).

(F) b-galactosidase activity in cells cotransfected with pGAD424-p38IP and pGBT9 (vector), pGAD424-p53 and pGBT9 Large T (p53/Large T), or

pGAD424-p38IP and pGBT9 p38a(AF).

(G) AH109 yeast cells were cotransfected with pGAD424-p38IP(human), pGAD424-p38IP(mouse), pGAD424-N-terminal-p38IP(1–383) or pGAD424-

C-terminal p38IP(380–733), and pGBT9 or pGBT9-p38a(AF) and plated on medium as above. Interaction was determined by growth on medium

lacking additional histidine (SD-LWH), b-galactosidase activity, and by coimmunoprecipitation of in vitro translated p38IP(human), N-terminal

p38IP(1–383), and C-terminal p38IP(380–733) with p38a (ND = not determined).

(H–M) Analysis of phosphorylation of p38, ATF2, and CREB in the eye of E12.5 wild-type (H, J, and L) and mutant (I, K, and M) embryos. (H0)–(M0) shows

higher magnification of boxed region in (H)–(M). Phosphorylated p38 is detected in the retinal-pigmented epithelium (RPE), neural retina (NR), and the

lens of wild-type embryos (H and H0), whereas it is only detected in a few scattered cells in the p38IPdrey/drey eye (I and I0). Phosphorylated CREB is

detected in RPE, NR, and lens of wild-type eyes (J and J0) but is not activated in RPE or NR of the p38IPdrey/drey eye (K and K0). Phosphorylated-ATF2 is

detected in the RPE, NR, and lens of wild-type (L and L0) but is downregulated in the RPE of the p38IPdrey/drey eye (M and M0 ).
predicted to fuse the first 133 amino acids of p38IP to a b-

galactosidase and neomycin phosphotransferase cas-

sette. To determine the fidelity of splicing of the genetrap

cassette into the p38IP transcript, RT-PCR using primers
960 Cell 125, 957–969, June 2, 2006 ª2006 Elsevier Inc.
that flank exons 7 and 8 was performed. The absence of

any detectable normal transcript in p38IPRRK/RRK mutant

embryos suggests that this allele is likely a null or a severe

hypomorph (data not shown). Similar to p38IPdrey/drey



mutant embryos, transheterozygous p38IPdrey/RRK mutant

embryos exhibit incompletely penetrant phenotypes that

range from gastrulation and neural tube defects to mor-

phologically normal embryos (Figure 1I and data not

shown). This genetic experiment confirms that the muta-

tion in p38IP is responsible for the drey phenotypes.

To determine if p38IP is expressed in a pattern that is

consistent with a role in regulation of gastrulation or neu-

rulation, p38IP expression was examined by in situ hybrid-

ization using an antisense RNA probe against the p38IP

transcript in wild-type embryos and LacZ in p38IPRRK/+

embryos. These experiments reveal that the p38IP tran-

script is expressed ubiquitously at all stages examined

(E7.5–E12.5; Figure 1J and data not shown).

p38IP Is Required for Activation of p38 In Vivo

As mentioned above, we identified the human homolog of

p38IP in a yeast two-hybrid screen using p38a as bait. Six

colonies representing three different genes were identified

out of 2 3 107 colonies screened. Two of the proteins were

known p38a interactors: the p38a substrate MK2 and Pax6

(Mikkola et al., 1999; Stokoe et al., 1992). One undescribed

353 amino acid peptide was identified, and because there

was no information available about the gene, we named it

p38-Interacting Protein (p38IP) (Y.L. and J.H., unpublished

data; NCBI accession #AF093250). To confirm the interac-

tion, we tested the ability of p38IP to interact with p38a in

coimmunoprecipitation assays. When YFP-tagged p38IP

and Flag-tagged p38a are coexpressed in 293T cells,

p38IP associates with p38a (Figure 2A). Interaction be-

tween endogenous p38IP and p38a is also detected fol-

lowing immunoprecipitation of untransfected 293T cells

(Figure 2B). To determine the specificity of p38IP binding

to p38, p38 isoforms with the TGY dual phosphorylation

site changed to AGF were used in a yeast two-hybrid inter-

action assay (Figures 2C–2F). Cells cotransfected with

p38IP and p38a are able to grow on SD-LWH media and in-

duce b-galactosidase activity, indicating an interaction,

whereas p38IP does not interact by these assays in yeast

with p38b, p38d, p38g, or vector control pGBT9 (Figures

2C–2E). Coexpression of p38IP and p38a is able to signif-

icantly induce b-galactosidase activity comparable to that

of p53 and large T antigen (Figure 2F).

In comparison to human p38IP, mouse p38IP ends at

amino acid 530, resulting in a single N-terminal Serine-rich

domain. To determine if the mouse p38IP also interacts

with p38, we tested binding in a yeast two-hybrid assay.

Identical to human p38IP, mouse p38IP only interacted

with the p38a isoform when scored for growth on medium

lacking histidine (SD-LWH) and induction of b-galactosi-

dase (Figure 2G and data not shown). To determine if the

truncated p38IP proteins that are potentially produced in

p38IPdrey and p38IPRRK mutant mice (Figure 1G) can bind

to p38a, we mapped the binding domain in the p38IP

protein. Yeast coexpressing N-terminal p38IP (1–383)

and p38a are not able to grow on SD-LWH media or in-

duce the b-galactosidase reporter, indicating that p38IP

does not interact with this fragment. In contrast, cells
cotransfected with C-terminal p38IP (380–733) and p38a

are able to grow on SD-LWH media and induce b-galacto-

sidase, indicating that the p38a interaction domain is in the

C-terminal region of the protein. The interaction domain

also was confirmed in a coimmunoprecipitation assay

using in vitro translated proteins (data summarized in

Figure 2G). These data reveal that the truncated proteins

potentially produced by the two mutant alleles of p38IP

do not bind p38a.

To determine the in vivo relevance of the interaction be-

tween p38IP and p38, we examined whether p38 activity

was misregulated in the drey mutant mouse. The activation

of p38 and its downstream substrates CREB and ATF2

were examined using phospho-specific antibodies in

wild-type and drey mutant eyes, an organ that is affected

by p38IP truncation. In the wild-type E12.5 eye, p38,

CREB, and ATF2 are phosphorylated in the retinal-pig-

mented epithelium (RPE; p38: 53%, CREB: 67%, ATF2:

89% of cells), neural retina (NR; p38: 69%, CREB: 57%,

ATF2: 79% of cells), and lens (p38: 44%, CREB: 46%,

ATF2: 74% of cells; Figures 2H, 2J, and 2L). In contrast,

in the p38IPdrey/drey mutant eye, phosphorylated p38 is

only detected at low levels in a few cells scattered through-

out the eye (RPE: 1%; NR: 6%; lens: 7% of cells; Figure 2I).

The phosphorylation of p38 substrates is not detected in

specific cell layers in p38IPdrey/drey mutant eyes. Phos-

phorylated CREB is detected in the lens of p38IPdrey/drey

eyes (53%) but is greatly reduced in the RPE (4%) and neu-

ral retina (4%; Figure 2K). While phosphorylated ATF2 is

detected in the neural retina (88%) and lens (75%) of

p38IPdrey/drey eyes, it is significantly reduced in the RPE

(9%; Figure 2M). These data reveal that p38IP interacts

with p38a, and in mutant embryonic tissues in which trun-

cated p38IP cannot bind p38a, activation of p38 and

downstream substrates is impaired in vivo.

p38IP Is Required for Development of Mesoderm

To investigate further the role of p38IP in embryogenesis,

we examined mutant phenotypes in mouse embryos ho-

mozygous for the more severe p38IPRRK allele (Figure 3).

E9.5 and E10.5 mutant embryos exhibit multiple develop-

mental defects consistent with abnormalities in develop-

ment of mesoderm (Figures 3A–3D). Yolk sac membranes

are wrinkled and poorly vascularized, and mutants develop

a malformed allantois that fails to fuse to the chorion. Mu-

tant embryos are necrotic, developmentally delayed, ex-

hibit misshapen head folds and exencephaly, and fail to

form somites or form only a few anterior somites.

These widespread abnormalities in development of

mesodermally derived tissues could originate during gas-

trulation when mesoderm is specified and migrates. At

gastrulation, p38IPRRK/RRK mutant embryos contain

a mass of cells on the posterior side (Figures 3E and 3F).

Histological analysis reveals that a significant proportion

of the mesoderm failed to migrate away from the primitive

streak (Figures 3G and 3H). Mesoderm migration defects

were consistently observed although the extent varied

between mutants.
Cell 125, 957–969, June 2, 2006 ª2006 Elsevier Inc. 961



Figure 3. Defects in Mesoderm Development and Migration in p38IPRRK/RRK Mutant Embryos

At E10.5, p38IPRRK/RRK mutant embryos (B) exhibit exencephaly (between red arrows), are necrotic, are developmentally delayed, and exhibit defects

in development of extraembryonic mesoderm such as malformed and avascular yolk sacs (YS) compared to sibling controls (A). E9.5 p38IPRRK/RRK

mutant embryos (D) are developmentally delayed with enlarged head folds (red arrow) and exhibit multiple defects in mesoderm development, such

as lack of somites (yellow arrow) and malformed allantois (white arrow), as compared with sibling controls (C). At E7.5, a mass of cells is observed

accumulating in the primitive streak of p38IPRRK/RRK mutant embryos (red *, F) compared with controls (E). Hematoxylin and Eosin (H&E) staining of

E7.5 p38IP+/+ (G) and p38IPRRK/RRK mutant (H) embryos demonstrates that mesoderm cells accumulate in the mutant primitive streak (black *). (I)

Schematic of gastrulation in the mouse embryo. The epiblast of the E7.5 gastrula stage mouse embryo is shaped like a cup nestled within a cup

of visceral endoderm. Mesoderm is induced in the posterior region of the epiblast and undergoes an EMT to delaminate and migrate out of the streak.

Completion of EMT is dependent upon downregulation of E-cadherin. Once the mesoderm has exited the streak, it migrates anteriorly between the

epiblast and visceral endoderm layers. Primitive streak to the right in (E)–(I).
This phenotype is strikingly similar to that of Fgfr1 and

Fgf8 mutant embryos (Deng et al., 1994; Sun et al., 1999;

Yamaguchi et al., 1994). Fgfr1 is required for the expres-

sion of a series of mesoderm-specific markers such as

Sprouty2, Tbx6, Brachyury, and Lim1; moreover, Fgfr1 is

required for the expression of Snail, which mediates down-

regulation of the transcript for the E-cadherin cell adhesion

protein to promote EMT (Ciruna and Rossant, 2001). How-

ever, in contrast to Fgf mutants, Sprouty2, Tbx6, and
962 Cell 125, 957–969, June 2, 2006 ª2006 Elsevier Inc.
Brachyury are correctly expressed in p38IPRRK/RRK mutant

embryos (Figures 4A–4F). In wild-type embryos, Lim1 is

expressed at higher levels in cells as they migrate away

from the primitive streak (Barnes et al., 1994). In mutant

embryos, Lim1 is expressed, although in a more limited

range (Figures 4G and 4H), suggesting that cells are

turning on the mesenchymal developmental program but

nevertheless fail to properly migrate away from the

streak.



At E8.5, examination of molecular marker expression

reveals that mesoderm is properly specified although dis-

organized in mutant embryos (Figures 4I–4T). Presomitic

mesoderm is specified as evidenced by Fgf8 and Tbx6

expression (Figures 4I, 4J, 4M,and 4N). Mox1, a somite

marker, is expressed in mutant embryos, although not or-

ganized into somitomeres (Figures 4K and 4L). Less se-

verely affected mutant embryos do form some anterior so-

mites as evident by expression of Twist (Figures 4S and

4T). Often the paraxial mesoderm is not divided into dis-

crete left and right domains, likely due to defects in devel-

opment of the midline. Examination of Brachyury, a midline

Figure 4. Mesoderm Is Properly Specified in p38IPRRK/RRK

Mutant Embryos But Disorganized

Expression of molecular markers of mesoderm at E7.5: Sprouty2 (A

and B), Brachyury (C and D), Tbx6 (E and F), and Lim1 (G and H) ex-

pression in p38IP+/+ (A, C, E, and G) and p38IPRRK/RRK mutant (B, D,

F, and H) embryos. Primitive streak to the right in (A)–(H). Expression

of molecular markers at E8.5: Fgf8 (I and J), Mox1 (K and L), Tbx6 (M

and N), Snail (O and P), Brachyury (Q and R), and Twist (S and T) in

p38IP+/+ (I, K, M, O, Q, and S) and p38IPRRK/RRK mutant (J, L, N, P,

R, and T) embryos.
axial mesoderm marker, shows that the midline is present

in mutant embryos but is often severely disrupted and dis-

continuous (Figures 4Q and 4R). Less severely affected

embryos, however, show division of Snail and Twist ex-

pression into discrete left and right domains, indicating

a more normal midline (Figures 4O, 4P, 4S, and 4T). These

results indicate that both axial and nonaxial mesoderm

is specified in p38IPRRK/RRK mutant embryos but dis-

organized.

p38IP Is Required for Downregulation of E-Cadherin

To determine if these defects in mesoderm migration are

related to defects in p38 activation, p38 phosphorylation

was determined in the primitive streak of E7.5 wild-type

and mutant embryos. In wild-type embryos, phosphory-

lated p38 is detected ubiquitously in all germ layers (Fig-

ures 5A–5C). Despite the ubiquitous expression pattern

of p38IP, in mutant embryos, phosphorylated p38 is not

detected specifically in the primitive streak (between ar-

rows) and in the mesoderm that fails to migrate away

from the streak (arrowhead, Figures 5D–5F). Phosphory-

lated p38 is detected, however, in the rest of the embryo,

including the few mesoderm cells that are able to migrate

away from the primitive streak.

Fgfr1 regulates the expression of Snail transcript and the

Snail protein represses E-cadherin transcription to pro-

mote EMT (Ciruna and Rossant, 2001). To determine if

this pathway is disrupted in p38IPRRK/RRK mutant embryos,

the expression of Snail and E-cadherin was examined dur-

ing gastrulation. Snail is expressed at normal levels in the

primitive streak of mutant embryos, indicating that p38IP

is not required for regulation of Snail expression (Figures

5G and 5J). Consistent with the expression of Snail, which

acts as a transcriptional repressor at the E-cadherin pro-

moter, the E-cadherin transcript is downregulated in the

mesoderm of mutant embryos, although these cells fail

to migrate (Figures 5H and 5L).

The E-cadherin protein is localized to the adherence

junctions of cells in the epithelium, and the E-cadherin

transcript gets rapidly downregulated as cells exit the ep-

ithelial cell layer (Figure 5I). Yet, in the cells that have just

exited the epithelial layer and downregulated the E-cad-

herin transcript, E-cadherin protein is still present at the

junctions and gets downregulated as cells migrate away

from the streak (Figure 5M). This observation suggests

that E-cadherin protein expression is also regulated post-

transcriptionally. To determine if p38IP is required for

posttranscriptional regulation of E-cadherin, E-cadherin

protein expression was examined in mutant embryos

(Figures 5N and 5O). Strikingly, in mutant embryos, the

E-cadherin protein remains localized to the junction of

the cells that fail to migrate away from the primitive streak.

These results raise the intriguing possibility that two path-

ways act independently to regulate E-cadherin in the

primitive streak to allow mesoderm migration: Fgf/Snail

acts at the transcriptional level to downregulate the

E-cadherin transcript and p38IP acts to downregulate or

destabilize the E-cadherin protein.
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Figure 5. p38IP Is Required for Activation of p38 in the Primitive Streak and for Downregulation of E-Cadherin Protein Indepen-

dently of Snail

(A–F) In E7.5 p38IP+/+ embryos (A–C), p38 is activated throughout the embryo as revealed by immunofluorescence using anti-phospho-p38 antibody

(P-p38). In p38IPRRK/RRK mutant embryos (D–F), p38 is not phosphorylated specifically in the primitive streak (between arrows in F) and mesoderm

that fails to migrate away from the primitive streak (arrowhead in F). Open arrowhead indicates some of the few mesoderm cells that migrated away

from the primitive streak and activated p38. (C) and (F) show overlay of P-p38 localization (A and D) and nuclei (B and E). Regions where p38 is ac-

tivated are in pink while regions where p38 is not activated are blue.

Snail is expressed in the primitive streak of E7.5 p38IP+/+ (G) and p38IPRRK/RRK mutant (J) embryos. As mesoderm leaves the primitive streak, E-cad-

herin expression is downregulated in p38IP+/+ embryos at both the transcriptional (H and I) and protein (M and N) levels, whereas in p38IPRRK/RRK

mutants the E-cadherin transcript is downregulated (L) but not the protein (O) in cells that fail to migrate away from the streak (arrowhead). Markers

of EMT such as Integrin-a5 (P) and Fibronectin (R) are upregulated in mesoderm as it migrates away from the primitive streak of wild-type embryos.

Integrin-a5 (Q) and Fibronectin (S) are upregulated normally (arrowhead) in cells that fail to migrate from the p38IPRRK/RRK mutant streak. b-catenin

expression in wild-type (T) and p38IPRRK/RRK mutant (U) embryos highlights the epithelial and mesenchymal cell morphologies. E-cadherin-positive

cells that fail to migrate away from the streak exhibit a mesenchymal morphology (arrowhead). Primitive streak is to the right in (A)–(U).
When cells undergo EMT, the expression levels of

a number of cell adhesion markers become either up- or

downregulated. To determine if p38IP is required for other

aspects of EMT, additional EMT markers were examined in

mutant embryos. Markers of mesoderm migration such as

Integrin-a5 and Fibronectin are efficiently upregulated in

mutant mesoderm that fails to migrate away from the prim-

itive streak (Figures 5P–5S). In addition, as cells delami-

nate from the primitive streak, they change morphology

as highlighted by staining with an anti-b-catenin antibody
964 Cell 125, 957–969, June 2, 2006 ª2006 Elsevier Inc.
(Figures 5T and 5U). Taken together, these results suggest

that while p38IPRRK/RRK mutant mesoderm undergoes

a partial EMT, it fails to complete EMT and downregulate

the E-cadherin protein.

To study further the requirement for p38IP in mesoderm

migration, mesoderm from the primitive streak of E7.5

wild-type embryos or the cells that fail to migrate away

from the primitive streak of mutant embryos were dis-

sected and cultured on fibronectin-coated plates. Wild-

type mesoderm migrates extensively away from the



Figure 6. p38IP and p38 Are Required for

Downregulation of E-Cadherin in a Fgf-

Independent Pathway

(A–L) Cultured primitive streak explants were

costained with anti-E-cadherin antibody (A, C,

E, G, I, and K) and the nuclear stain Hoechst

to visualize the cells that no longer express E-

cadherin (B, D, F, H, J, and L). Dotted red line

indicates border of E-cadherin expression

and dotted blue line indicates border of

Hoechst staining. Wild-type mesoderm cells

from primitive streak explants (A and B) down-

regulate E-cadherin expression and migrate

extensively away from the explant, while cells

from p38IPRRK/RRK mutant embryos (C and D)

fail to downregulate E-cadherin and do not mi-

grate away from the streak. Incubation of

p38IPRRK/RRK mutant primitive streak with the

anti-function E-cadherin antibody results in

downregulation of E-cadherin expression and

extensive migration of mesoderm away from

the streak (E and F). Cells from primitive streak

explants from E7.5 p38IP+/+ embryos incu-

bated with DMSO downregulate E-cadherin

and migrate away from the explant (G and H),

while cells from explants incubated with 20

mM p38 kinase inhibitor SB203580 do not

downregulate E-cadherin or migrate (I and J),

whereas coincubation with 20 mM SB203580

plus the anti-function E-cadherin antibody res-

cues EMT and mesoderm migration (K and L).

Activation of p38 is impaired in the primitive

streak of NIK but not Fgf8 mutant embryos.

Phospho-p38 expression in E7.5 wild-type

(M), Fgf8�/� (N), and NIK�/� (O) mutant em-

bryos. p38 is activated in cells that fail to migrate from the primitive streak in Fgf8�/� mutant embryos (open arrow in N). In NIK�/� mutant embryos

(O), p38 is not phosphorylated specifically in the primitive streak (between arrows) and mesoderm that fails to migrate away from the primitive streak

(arrowhead). White dotted line highlights epiblast. Primitive streak is to the right.
explant coincident with the downregulation of E-cadherin

protein (Figures 6A and 6B and Burdsal et al., 1993). As

seen in vivo, cells from the mutant primitive streak that

failed to downregulate E-cadherin also failed to migrate

when explanted (Figures 6C and 6D). To determine

whether p38IPRRK/RRK mutant cells can migrate if E-cad-

herin function is blocked, explants were incubated with

a function-perturbing anti-E-cadherin antibody. This re-

sulted in both the downregulation of E-cadherin and exten-

sive migration of mutant cells away from the explant (Fig-

ures 6E and 6F). These results suggest that p38IPRRK/RRK

mutant cells likely remain in the primitive streak due to a

deficiency in the downregulation of E-cadherin protein, but

otherwise p38IP is not required for general cell migration.

p38 Activity Is Required for E-Cadherin

Downregulation

p38IPRRK/RRK mutant embryos fail to activate p38 specifi-

cally in the primitive streak and the mesoderm that

fails to downregulate E-cadherin (Figures 5F and 5O). To

determine if the failure to downregulate E-cadherin in

p38IPRRK/RRK mutant embryos is due to a failure to activate

p38 in the primitive streak, explants from wild-type em-

bryos were cultured in the presence of either a specific
p38 kinase inhibitor or vehicle control (DMSO). The chemical

inhibitorSB203580 targets bothp38a andp38b but notp38d

or p38g (Cuenda et al., 1995). In control explants incubated

with DMSO, cells are capable of downregulating E-cadherin

and migrating away from the explant (Figures 6G and 6H).

In contrast, explants treated with 20 mM SB203580 did not

downregulate E-cadherin and failed to migrate away from

the explant (Figures 6I and 6J). This result indicates that

p38 activity is required for downregulation of E-cadherin

and EMT. To confirm this and to test whether p38 is also re-

quired for mesoderm migration after EMT, explants were

incubated in 20 mM SB203580 and the function blocking

anti-E-cadherin antibody (Figures 6K and 6L). Similar to

p38IPRRK/RRK mutant explants, addition of anti- E-cadherin

antibody rescued EMT and cell migration. These results

indicate that both p38IP and p38 are required for downre-

gulation of E-cadherin but not for mesoderm migration.

p38 Acts Downstream of NIK in Mesoderm Migration

To determine if Fgf signaling is required for p38 activation

in the primitive streak, p38 phosphorylation was examined

in Fgf8 mutant embryos (Figures 6M and 6N). In contrast

to p38IPRRK/RRK mutants (Figures 5D–5F), Fgf8 mutant

embryos showed robust activation of p38 in the primitive
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streak and the cells that fail to migrate. The Drosophila ho-

molog of NIK/Map4k4, Misshapen (Msn), requires p38 ac-

tivity for some in vivo responses (Paricio et al., 1999), and

the phenotype of NIK�/� embryos (Xue et al., 2001) is sim-

ilar to that of p38IPRRK/RRK, suggesting that they may act in

a similar pathway. Similar to p38IP mutant embryos, p38 is

not activated in the primitive streak (between arrows) or

the mesoderm that accumulates in the streak of NIK mu-

tant embryos (arrowhead, Figure 6O). These data indicate

that NIK may act upstream of p38 in a pathway to promote

EMT and that this pathway is independent of Fgf signaling.

This possibility is also supported by the similarities in ex-

pression of mesoderm markers in p38IPRRK/RRK and NIK

mutant embryos as compared to Fgf8 or Fgfr1 mutant em-

bryos (Deng et al., 1994; Sun et al., 1999; Xue et al., 2001;

Yamaguchi et al., 1994).

DISCUSSION

Here we identify a p38-interacting protein (p38IP) that is

required to bind and activate p38 during mouse develop-

ment. Loss of p38IP function causes severe embryonic

defects. A splicing mutation in p38IP results in a variety

of incompletely penetrant phenotypes including neural

tube, eye, and gastrulation defects. A stronger p38IP allele

results in completely penetrant gastrulation defects in

which mesoderm migration away from the primitive streak

is impaired, although mesoderm induction, patterning,

and migratory behavior are not affected. These defects

arise due to disruption of p38 activation leading to a de-

creased ability of specified mesoderm cells to downregu-

late the E-cadherin protein and complete EMT.

Figure 7. Model for Pathways Resulting in E-Cadherin Down-
regulation

Fgf signaling through Fgfr1 results in activation of two pathways regu-

lating mesoderm cell fate (expression of Tbx6 and Brachyury) or meso-

derm migration. To regulate mesoderm migration, Fgf signaling is re-

quired for expression of Snail, which downregulates expression of

the E-cadherin transcript. In an independent pathway, NIK/Map4k4

is needed for activation of p38, and p38IP is also required for activation

of p38 in vivo. p38 and p38IP activity are required for downregulation of

the E-cadherin protein. Both the Fgf/Snail and NIK/p38/p38IP path-

ways are required to ensure a robust EMT and to allow mesoderm to

migrate from the primitive streak.
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Outlined in our model (Figure 7), our data reveal an ad-

ditional mechanism of E-cadherin regulation in the gastru-

lating mouse embryo that is independent of the Fgf8/Snail

pathway. We show that NIK/p38/p38IP do not affect Snail

expression or the normal repression of E-cadherin tran-

scription. Instead, the NIK/p38/p38IP pathway is required

to properly downregulate E-cadherin protein expression.

Our results suggest that two pathways—Fgf/Snail and

NIK/p38/p38IP—act independently and converge on

E-cadherin expression: one at the transcriptional level and

one at the protein level to insure the rapid downregulation

of E-cadherin and a robust EMT; and disruption of either

pathway leads to defective gastrulation.

p38IP Regulates p38 Activity In Vivo

We demonstrate that p38IP specifically binds p38 in both

yeast two-hybrid and coimmunoprecipitation assays. We

mapped the binding domain to the C-terminal region of

p38IP. Significantly, the mutations in both the p38IPRRK

and p38IPdrey alleles result in deletion of the C-terminal

domain of p38IP, and these mutant proteins cannot bind

to p38. Furthermore, we demonstrate that p38 activation

in vivo is compromised in both p38IPRRK and p38IPdrey

mutants. Future experiments are required to elucidate

the biochemical mechanism(s) by which p38IP functions

to regulate p38.

We found that p38IP binds to only p38a in a yeast two-

hybrid assay, yet previous studies of p38a mutant em-

bryos demonstrated that p38a is essential for develop-

ment of the placenta but not for gastrulation (Adams

et al., 2000; Mudgett et al., 2000). This raises the possibility

that p38IP may be required for activation of other p38 iso-

forms in vivo. To begin to investigate this possibility, we de-

termined the expression pattern of p38b, p38g, and p38d

to determine if the other p38 isoforms are expressed in

the primitive streak. p38g and p38d are expressed in the

extraembryonic regions of the gastrula while p38b is ex-

pressed in the epiblast (Figure S1). This data combined

with studies in explanted mesoderm in which an inhibitor

of p38a and p38b prevents EMT (Figure 6) suggest that

p38IP may be required for activation of both p38a and

p38b in vivo. An alternate explanation is that p38a may nor-

mally mediate EMT in the primitive streak but in the ab-

sence of p38a, p38b may be able to compensate either

by altering its normal expression pattern or activity. In sup-

port of these ideas, we examined activation of p38 in p38a

mutant gastrula stage embryos and found that p38 is phos-

phorylated normally throughout the epiblast and streak

(I.E.Z. and L.N., unpublished data). In addition, we cannot

exclude the possibility that p38IP is also required for the

function of other, yet to be discovered, factors.

p38 Is Downstream of NIK

Our data provide an intriguing link between p38 activation

and the NIK pathway. This relationship to NIK is surprising

as NIK activates JNK but not p38 in cultured cells (Su et al.,

1997). Similarly, Misshapen (Msn), the Drosophila NIK ho-

molog, activates JNK to regulate dorsal closure (Su et al.,



1998), and Msn couples Frizzled and Disheveled to JNK

activation to regulate planar cell polarity in the Drosophila

wing and eye (Paricio et al., 1999). Interestingly in this con-

text, JNK acts redundantly with Dp38a and Dp38b, sug-

gesting that Msn is capable of regulating p38 activity in

vivo. During mouse embryogenesis, a role for NIK in eye

and neural tube morphogenesis has not been determined

as NIK mutant embryos die around E9.5 (Xue et al., 2001).

However, JNK mutant embryos (either single or double

mutants) do not exhibit the severe gastrulation defects ob-

served in NIK mutant embryos (Kuan et al., 1999; Sabapa-

thy et al., 1999), suggesting that NIK may activate JNK-in-

dependent pathways in vivo. Indeed, our studies indicate

that p38 activity is specifically disrupted in NIK mutant em-

bryos, and mutations in either NIK or p38IP result in similar

gastrulation defects, providing additional in vivo support

for a link between NIK and p38 activation.

p38IP and Neural Tube Defects

Neural tube defects (NTDs) occur when the neural tube

fails to close completely during embryogenesis leading

to exencephaly/anencephaly and spina bifida. NTDs are

one of the most common birth defects observed in humans

and represent a complex genetic disease (reviewed in

Copp et al., 2003). The mouse has provided over 100 po-

tential candidate genes for NTDs, and in some instances

mutations in these genes have been identified in human

patients (reviewed in Copp et al., 2003; Zohn et al.,

2005). Furthermore, identification of hypomorphic muta-

tions associated with NTDs indicates that these types of

mutations will reveal many more potential candidate

genes. We show that a severe allele of p38IP results in gas-

trulation defects whereas the milder drey allele results in

exencephaly and spina bifida. Future experiments will de-

termine if the morphogenic defects in drey mutant mice

such as the failure to close the neural tube and eye defects

are due to specific defects in p38 activation.

EMT and Metastasis during Cancer

The EMT that occurs in the primitive streak of the gastru-

lating mouse embryo and during invasion and metastasis

of tumor cells involve regulation of E-cadherin expression

by Snail (reviewed in Barrallo-Gimeno and Nieto, 2005).

Furthermore, the loss of E-cadherin expression is a central

event in the transition of tumors from noninvasive to inva-

sive carcinomas (Batlle et al., 2000; Cano et al., 2000).

Here we present evidence of a Snail-independent path-

way in which p38 is required in the primitive streak to

downregulate E-cadherin expression at the posttranscrip-

tional level. Whether this Snail-independent, p38-depen-

dent pathway also functions in EMT during tumor invasion

remains to be determined.

EXPERIMENTAL PROCEDURES

Mouse Strains and Genotyping

drey was identified in a screen for recessive ENU-induced mutations

that cause morphological abnormalities at E12.5 (Garcia-Garcia
et al., 2005; Kasarskis et al., 1998; Zohn et al., 2005). The drey mutation

was generated on a C57BL/6J genetic background and backcrossed

to C3H. In a mapping cross of 480 opportunities for recombination,

drey was mapped between Massachusetts Institute of Technology

(MIT) simple sequence length polymorphism (SSLP) markers D3mit6

and D3mit137. For high-resolution mapping, additional polymorphic

DNA markers were generated based on nucleotide repeat sequences

(see http://mouse.ski.mskcc.org/ for primer sequences). A mouse em-

bryonic stem (ES) cell line carrying an insertion in the p38IP gene

(RRK304) was obtained from BayGenomics http://baygenomics.ucsf.

edu/ database. Other mutant mouse lines used were Fgf8 and NIK

(Meyers et al., 1998; Xue et al., 2001).

Molecular Identification of drey Mutation

cDNAs of the p38IP gene were amplified by RT-PCR (Superscript One-

Step RT-PCR, Invitrogen) using RNA from E10.5 drey/drey and C57BL/

6 control embryos. The splice site junctions around exon 14 were se-

quenced and a T to C transition discovered in the splice donor consen-

sus sequence. Sequencing was confirmed using ten additional drey/

drey mutant embryos.

Analysis of Mutant Phenotype

Whole-mount and section RNA in situs were performed as described

(Holmes and Niswander, 2001; Liu et al., 1998). p38IP expression pat-

tern was determined using an antisense RNA probe synthesized from

IMAGE clone: 2598858 or by expression of the lacZ transcript in

p38IPRRK/+ embryos. Immunofluorescence experiments were per-

formed as described (Timmer et al., 2002) using anti-E-cadherin anti-

body (1:100 dilution of anti-uvomorulin antibody; Sigma F3648),

Hoechst (10 mg/ml; clone DECMA-1, Sigma), anti-Phospho-p38 MAP

Kinase (Thr180/Tyr182) antibody (1:100 dilution; Cell Signaling #9211),

anti-Phospho-ATF2 antibody (1:100 dilution; Cell Signaling #9221),

anti-Phospho-CREB antibody (1:100 dilution; Cell Signaling #9191),

anti-Integrin-a5 (1:100; BD-Pharmingen #553319), anti-fibronectin

(1:100; Sigma F3648), anti-b-catenin (1:1000; Sigma C7082).

Culture of Primitive Streak Explants

Primitive streak explants were dissected from E7.5 wild-type and mu-

tant embryos and grown on fibronectin-coated plates for 3 days as de-

scribed (Ciruna and Rossant, 2001). Media was supplemented with 20

mM SB203580 (Calbiochem) in DMSO and/or anti-E-cadherin (1:100

dilution of anti-uvomorulin antibody; Sigma).

Interaction of p38a with p38IP

To identify p38-interacting proteins, we used a kinase-inactive mutant

of p38a fused with the GAL4 DNA binding domain (pGBT9-p38(AF)) as

bait and performed a yeast two-hybrid screen of a Hela cell cDNA li-

brary constructed in the activation domain plasmid pACT as described

by the manufacturer (BD Clontech). Sequencing showed that the clone

encodes amino acids 381–733 of p38IP (1–733). PCR and Southern

blots were used to clone full-length human p38IP from a phage library.

The specificity of the interaction was tested by immunoprecipitation as

described (Ge et al., 2002).

Supplemental Data

Supplemental Data include one figure and can be found with this arti-

cle online at http://www.cell.com/cgi/content/full/125/5/957/DC1/.
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