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Abstract

This paper explicitly constructs cofree coalgebras over operads in the category of DG-modules.
Special cases are also considered in which the general expression simplifies (such as the pointed,
irreducible case).
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1. Introduction
We begin with the definition of the object of this paper:

Definition 1.1. Let R be a commutative ring with unit an@ be anR-module. Then a
coalgebraG will be calledthe cofree coalgebra cogenerated Gyif

(1) there exists a morphism &-modules
e.G—>C

called thecogeneration map
(2) given any coalgebr® and any morphism oR-modules

f:D—>C
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there exists ainiquemorphism of coalgebras
fiD—>G
that makes the diagram

f

D———
N

commute.

Q

&

-

a

If 'V is an operad (see Definition 2.7) a@ds a R-free DG-module, then the same defini-
tion holds for coalgebras and coalgebra-morphisms (see Definition 2.7yover

Remark 1.2. If they exist, it is not hard to see that cofree coalgebras mushimpieup to
an isomorphism.

Constructions of frealgebrassatisfying various conditions (associativity, etc.) have been
known for many years: One forms a general algebraic structure implementing a suitable
“product” and forms the quotient by a sub-object representing the conditions. Then
one shows that these free algebras map to any other algebra satisfying the conditions.
For instance, it is well-known how to construct the frakgebra over an operad—

see [6].

The construction of cofree coalgebras is dual to this, although Thomas Fox showed (see
[1,2]) that they are considerably more complex than free algebras. Definition 1.1 implies
that a cofree coalgebra cogenerated ®+amodule,C, must contain isomorphic images of
all possiblecoalgebras ovef.

Operads (in the category of graded groups) can be regarded as “systems of indices”
for parametrizing operations. They provide a uniform framework for describing many
classes of algebraic objects, from associative algebras and coalgebras to Lie algebras and
coalgebras.

In recent years, there have been applications of operads to quantum mechanics and
homotopy theory. For instance, Steenrod operations on the chain-complex of a space can
be codified by making this chain-complex a coalgebra over a suitable operad.

The definitive references on cofree coalgebras are the book [10] and two papers of
Fox. Sweedler approached cofree coalgebras as a kind of dual of free algebras, while Fox
studied thenab initio, under the most general possible conditions.

In Section 3, we describe the cofree coalgebra over an operad and prove that it has the
required properties. Theorem 3.8 gives our result.

In Section 4 we consider special cases such as the pointed irreducible case in which the
coproduct is dual to the operad compositions—see 4.10 and 4.14.
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2. Operads
2.1. Notation and conventions

Throughout this papeR will denote a commutative ring with unit. All tensor-products
will be over R so that® = ®k.

Definition 2.1. Let C and D be gradedR-modules. A map of graded modulgs C; —
D; 4 will be said to be of degreg.

Remark 2.2. For instance, thélifferential of a DG-module will be regarded as a degree
—1 map.

We will make extensive use of the Koszul Convention (see [5]) regarding signs in homo-
logical calculations:

Definition 2.3. If f:C1— D1, g:C2— Dy are maps, and® b € C1 ® C2 (wherea is a
homogeneous element), theA® g)(a ® b) is defined to bé—1)4€ds)-deda) £(4) @ g (b).

Remark 2.4. This convention simplifies many of the common expressions that occur in
homological algebra—in particular it eliminates complicated signs that occur in these
expressions. For instance, the differentig, of the tensor produdf ® D is 9c ® 1 +
1®dp.

If f;, gi are maps, it is not hard to verify that the Koszul convention implies that
(f1® g1) o (f2® g2) = (1)@ U (f1 0 fr® g10 g2).

Another convention that we will follow extensively is tensor products, direct products,
etc. are ofgraded modules.

Powersof DG-modules oveR, such a<C” will be regarded as iteratefl-tensor prod-
ucts:

—

nfactors
2.2. Definitions
Before we can define operads, we need the following:
Definition 2.5. Let o € S, be an element of the symmetric group and{let, ..., k,} be

n nonnegative integers Witk = Y _; k;. ThenTy,,. , (o) is defined to be the element
T € Sk that permutes the blocks

.....

(17"'7kl)7(kl+la"'9kl+k2)"'(K_Kn—la"'aK)

aso permutes the sdtl, ..., n}.
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Remark 2.6. Note that it is possible for one of thes to be 0, in which case the corre-
sponding block is empty.

The standard definition (see [6]) of an operad in the category of DG-modules is:

Definition 2.7. A sequence of differential gradel-free modules{V;}, will be said to
form aDG-operadif they satisfy the following conditions:

(1) there exists anit map(defined by the commutative diagrams below)
n:R— Vi;

(2) foralli > 1,; is equipped with a left action of;, the symmetric group;
(3) forallk > 1, andiy; > 0 there are maps

Y Vi@V ® -9V, ® >V,

wherei = Zl;:l ij.
They-maps must satisfy the following conditions:

Associativity: the following diagrams commute, whede j; = j, Y i =i, andg, =
> ¢—1je andhs = Z;‘;Y:gkl_’_l ig:

; ®ld ;
Ve ® (@1 Vi) ® (Q_ Vi) - Vi ® (R Vi)
iy
shuffle Vi (2.1)

Y
. .
Vie® (®1-1 Vi ® (@21 Vi) Ttz Ve ® (&1 Vi)

Units: the following diagrams commute:

Vk®Zki>'Vk Z®Vy——=V
Id ®nkl / n®ldl / (2.2)
Vi ® Vit V1® Vi

Equivariance: the following diagrams commute:

Vi®Vy,®---®Vj

G®51\L \LT/']_ AAAAA Jk (o) (23)
Vi ® Vja(l) ®-® Vja(k)

14
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whereo € i, and thes —1 on the left permutes the factof¥;,} and thes on the

right simply acts or,.. See 2.5 for a definition of T, (o).
ViRVj,®:---QV V;
Id ®T1®‘“fkl J/r1@-~-eark
Vi ® Vja(l) Q- ® Vja(k) V;

wherer; € §; andt1 @ --- @ 7, € S is the block sum.

The individual'v,, that make up the operad will be called itscomponents.

For reasons that will become clear in the sequel, we follow the nonstandard convention
of usingsubscriptgo denote components of an operad—35e- {V, } rather thanV (n)}.
Where there is any possibility of confusion with grading of a graded groups, we will
include a remark.

We will also use the termperadfor DG-operad throughout this paper.

Definition 2.8. An operad,V, is calledunital if 'V has a 0-componeriy = R, concen-
trated in dimension 0 and augmentations

En:Va®@WV®-- Vo=V, - Vo=R

induced by their structure maps.

Remark 2.9. The literature contains varying definitions of the terms discussed here.

Our definition of unital and non-unital operad corresponds to that in [6]. On the other
hand, in [7] Markl defines anital operad to have anit (i.e., the map;: R — V1) and calls
operads meeting the condition in Definition 28ymented unitaNone of Markl's operads
have a 0-component and his definition of augmentatidginvolves the 1-component (so
that the “higher” augmentation maps: V,, — R do not have to exist).

2.3. The composition—representation

Describing an operad via the-maps and the diagrams in 2.7 is known as the
representation of the operad. We will present another method for describing operads more
suited to the constructions to follow:

Definition 2.10. Let 'V be an operad as defined in 2.7,iein be positive integers and let
1<i < n.Define

0 Vi ® Vin = Vigm—1
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theith composition operationn V, to be the composite
Vn ® Vm

Vi @RTI@Vy @ R
\L1®n[—1®1®nn—[
Vi ® 'Vli_l @V ® 'Vln_i
14

Vi +m—1

The y-maps defined in 2.7 and the composition-operations uniquely determine each
other.

Definition 2.11. Let 'V be an operad, let ¥ j < n, and let{ay,...,«;} be positive
integers. Then define
LitVi®Vu; ® - ®@Va; = Vi jiy o
to be the composite
Vi@V ® - ® Vo,

Vi ® (Vo ® - @V, ®R® - ® R)

il@(lf@m"f’) (2.4)
Vi ® Ve, ® - ® Vo, ®V1® - ® V1)

|

rvn+2{:1(a,-—1)

Remark 2.12. Clearly, under the hypotheses abokg,= y .
Operads were originally calledomposition algebrasnd defined in terms of these
operations—see [3].

Proposition 2.13. Under the hypotheses @f11, supposg < n. Then

Sy ) Vn @ Vay @+ @ Vg 'vn-i-ztj:ll(ot;—l)'

In particular, the y-map can be expressed as an iterated sequence of compositions and
y-maps and the composition-operations determine each other.

Lj+1=LjO(>ko

Remark 2.14. We will find the compositions more useful than themaps in studying
algebraic properties of coalgebras o%er
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The mapy and the composition-operatiofs;} define they- and thecomposition—
representationsf V, respectively.

Proof. This follows by induction ory: it follows from the definition of thgo;} in the case
wherej = 1. In the general case, it follows by applying the associativity identities and the
identities involving the unit map;: R — V1. Consider the diagram

Vi ® (Vo ® - ® Vo, ® R ) @ RIFEL@D gy,  @Ri1

l®(lj®r}”_j)®nj+z{=l(ai_1)®l®nn_j_l

_i i+ (-1 .
Vi ® Vo, ® - ® Vo, ® V J)®vi Y@ )®'Va,~+1®'vzj 1
o ELaes 29
EDRICE nejo1
V"+Zf=1(ai—l) ®M ' ® Vo, ®Vy )

%
vn—Q—Z{:ll(a,- -1

The associativity condition implies that we can shuffle copie¥pto the immediate
left of the rightmost term, and shuffle tha ® - - - ® V1 on the right to get a factor on the
left of

Ve ® V8@ Ve 8]
and one on the right of
vl ® Va

(this factor of V1 exists becausg < n) and we can evaluatg on each of these before
evaluatingy on their tensor product. The conclusion follows from the fact that each copy
of V1 that appears in the result has been composed with the uniyreaphe left factor is

Y (Ve ® V) ® -+ @y (Vo @ V') = Vey @+ @ Ve
and the right factor is

Y(V1® V1) = Va;
so the entire expression becomes

Y(Va ® Vay ® - ® Vo, ® V) /7
which is what we wanted to prove.O

Jj+1

The composition representation is complete when one notes that the various diagrams in
2.7 translate into the following relations (whose proof is left as an exercise to the reader):
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Lemma 2.15. Compositions obey the identities
(=pdimbdime g o, 1¢)oib ifid+n—1<],
((loib)OjCZ ao,-(bo]-_H_lc) fi<j<i+n-—1,
(=pdimbdime (g o) o; o1 b IF1<j <,
wheredegc = m, dega = n, and
aog(y(o-b)=T1. pn..,100) (ao;b). (2.6)
——

ith position
Given compositions, we defirgeneralized structure majs operads.

Definition 2.16. Let 'V be an operad and let= {u1, ..., u,}, be alist of symbols, each of
which is either a positive integer or the symboMe define thegeneralized composition
with respect tau, denotedy, by

m
VUZVO®Lj:vm®Vu1®"'®vum_>'Vn9
j=1

where
m
n= Z uj
j=1
and we follow the convention that

(1) e =1 when used in a numeric context,

(2) Vo =R,
12V, — Vy, ifuj#e,
@3 = ' ! ,
n:R— "V otherwise
Remark 2.17. If {ug,, ..., ug} C{u1, ..., un} is the sublist of nor» elements, them, is
amap

VWiV ® Vg ® - ® Vi, = V.

Lemma 2.18. Let 'V be an operad, lekz, m,a > 0 let 1 < i < n be integers, and let

U= {us,....,un}, V={v1,...,0n}, W= {wa,..., wyym—1} be lists of symbols as in
Definition2.16with
uj £ e,

m
uiZZUj,

j=1
wj=u; ifj<i,

Wj =0Vj—it1 if j>iandj <i+m,
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Wi =uUj_pm1 IfjZ=i+m,
n+m—1

o= Z w;
=1
n
=2 uj.
=1

Then the diagram

+m—1 0i®1 +m—1
Vi ® Vi ® ®Z:;_n Vwk l n4+m—1 Q& ®Z:T vwk
lil@)’v@lniosl \Lyw
n
Vi @ Q=1 Vi 7 Vo

commutes, whereis the shuffle map that send, i — 1 places to the right.

Remark 2.19. The conditions om, v, andw imply thatw is the result of replacing; with
the entire listv.

Proof. This is a straightforward consequence of Definition 2.16 and the associativity
condition in diagram (2.1). O

Morphisms of operads are defined in the obvious way:

Definition 2.20. Given two operad® and W, amorphism

fiv—->w
is a sequence of chain-maps

fi :'V,' - W;
commuting with all the diagrams in 2.7 or (equivalently) preserving the composition oper-
ations in 2.16.

Now we give some examples:
Definition 2.21. The operadg is defined via
(1) Itsnth componentigs—a chain-complex concentrated in dimension O.
(2) Its structure map is given by
V(]-S,l ® 1Skl K& 1Sk,1) = 151(7
where %, € S; is the identity element anff = >""_, k;. This definition is extended

to other values in the symmetric groups via the equivariance conditions in 2.7.

Remark 2.22. This was denoted/ in [6].
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Verification that this satisfies the required identities is left to the reader as an exercise.

Definition 2.23. Let G denote the operad with compone#tss,,, 1)—the bar resolutions
of Z overn for all n > 0. See [9] for formulas for the composition-operations.

Now we define an important operad associated toRumgodule.

Definition 2.24. Let C be an R-free DG-module. Then th€oendomorphisnoperad,
CoENd (), is defined to be the operad with component of raakHomg (C, C?), with the
differential induced by that o€ andC’. The dimension of an element of HgtC, C*)

(for somei) is defined to be its degree as a mapClis equipped with an augmentation

¢:C—> R,

where R is concentrated in dimension 0, then CoEfy is unital, with 0 component
generated by (with the identificationC® = R).

Remark 2.25. One motivation for operads is that they model the iterated coproducts that
occur in CoEngx). We will use operads as an algebraic framework for defining other
constructs that have topological applications.

2.4. Coalgebras over an operad

Definition 2.26. Let 'V be an operad and &t be anR-free DG-module equipped with a
morphism (of operads)

f:V— CoEndC).

ThenC is called acoalgebraoverV with structure mapf .

Remark 2.27. A coalgebra(, over an operady, is a sequence of maps
[ VeC—C",

forall n > 0, wheref, is RS,-equivariant or maps (via thedjoint representation
gn: C — Homgg, (V,,, C").

This latter description of coalgebras (via adjoint maps) is frequently more useful for our
purposes than the previous one. In the case whiegeunital, we write

Homgs, (Vo, C°%) = R
and identify the adjoint structure map with the augmentatio@ of
go=¢:C — R =Homgs,(Vo. CO).

These adjoint maps are related in the sense that they fit into commutative diagrams:
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C & Homgs, (V,., C")
Homg (1,1®---®gn ®--®1)
—_—
ith position
-1 Homgs, (Va., C'~L @ Homgs,, (V. C™) ® C"~)

lt

HOMRgs, 1,1 (Vntm—1, crm=t WHOmR (Vi ® Vi, C"H11

2.7)
forall m,n > 0 and all 1< i < n, where: is the composite
Homgs, (Vs, C'~* ® Homgs,, (Vn, C™) ® C" )
Homgs, (V,, Homg (R, C'~1) @ Homgs,, (V,n, C™) ® Homg (R, C"1))
H 2.8)

Homg (V,,, Homg (V,,, C"+1=1))

Homg (V, ® V, C"H—1)

In other words: The abstract composition-operation¥iexactly correspond to com-
positions of maps ifHomg (C, C™)}.
The following is clear:

Proposition 2.28. Every chain complex is trivially a coalgebra over its own coendomor-
phism operad.

2.5. Examples
Example 2.29. Coassociative coalgebras are precisely the coalgebrasouMeee 2.21).

Definition 2.30. Cocommuts an operad defined to have one basis elenjgntfor all
integersi > 0. Here the rank ob; is i and the degree is 0 and the these elements satisfy
the composition-lawy (b, @ by, ® - - - ® by,) = bk, whereK =Y ""_; k;. The differential

of this operad is identically zero. The symmetric-group actions are trivial.

Example 2.31. Coassociative commutative coalgebras are the coalgebra€ogemmut
The following example has many topological applications

Example 2.32. Coalgebras over the opera®, defined in 2.23, are chain-complexes
equipped with a coassociative coproduct and Steenrod operations for all primes (see [8]).
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3. Thegeneral construction
We begin by defining

Definition 3.1. Letn > 1 be an integer and létbe 0 or 1. Define? (n) to be the set of
sequences$us, ..., u,} of elements each of which is eitheasymbol or an integep k
and such that

m
Zuj :n, (3.1)
j=1

wheree = 1 for the purpose of computing this sum.
Given a sequenag e & (n), let|u] = m, the length of the sequence.

Remark 3.2. Note that the sef;1(n) is finite and for anyu € £, (n) |u| < n. By contrast,
Po(n) is always infinite.

Definition 3.3. Let V be an operad, lef be aR-free DG module and set

k= { 0 if Visunital
1 otherwise
Now define

KC=C @ 1_[ HomRS,, (Vna Cn),
n>k

where Hongs,(Vo, C% = R in the unital case.
Consider the diagram

[ 1> HOMgs,, (Vin, (KC)™)

& (3.2)

KC—gatirar L Inzk uepin HOMR(Viu @ Viy ® -+ @ Vg, €)

where

(1) thec, are defined by
cn = [ Home(yu, 1)

ue Pk (n)
with
Homg (yu, 1) : Homgs, Vs, C") = Homg (Viy @ Viy ® -+ ® Vi, C")
the dual of the generalized structure map
Y Vg ® Vi, ® - @ Vi — Wi

from Definition 2.16. We assume th#&lf = R andC*® = C so that Homgs, (V,., C*) =
C.
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(2) y =TITu>« ym and the maps
Ym :HOMRs,, (Vi (KCY") — [ HOMg (Vi @ Viy ® -+ ® Viy,. C")

n=k
uePy(n)

map the factor
m
Homgs,, ('vm, ®Lj) C Homgs,, (Vin, (KC)™)
j=1

with L; = HomRSuj (Vu;, C*) via the map induced by the associativity of the Hom
and® functors.

A submoduleM C K C is calledV-closedif

(oea I1 cn)(M) c y( [ [ Homgs, (Va, M”))-

n>k n>k
Now we take stock of the terms in diagram (3.2).

Lemma 3.4. Let V be an operad and let = 0 if 'V is unital and1 otherwise. Under the
hypotheses of Definitio®.3, if C is a DG module oveRr, set

L1C =KC,
-1
L,C = (069 I cn> [ | v (Homgs,, (Viu. (Ln-10)™)).
n>k mZ=k
Then
o0
LyC=(")LaC (3.3)
n=1

—the maximalV-closed submodule oK C (in the notation of Definition3.3}—is a
coalgebra overV with coproduct given by

g=yto (0@ I c,,> :LyC — [ [ Homgs, (Va. (LvC)"). (3.4)
n=>k n=>k

Remark 3.5. See Appendix A for the proof.

Lemma 3.6. Let V be an operad and let = 0 if V is unital and1 otherwise. Given a
coalgebraD overV with adjoint structure maps

dy : D — Homgg, (V, D")
any morphism of DG-modules

f:D—C
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induces a map
o
f=rfe][]Homgs, (1 f")od,:D— C& [ | Homgs, (V. C")

n=k n=k

whose image lies in

LyC S C@& [ [ Homgs, (Va. C")
n>k

as defined in Lemm®&4. Furthermore,f is a morphism ofv-coalgebras.

Remark 3.7. In the unital case, the augmentatibRp C — R is induced by projection to
the factor Hongs,(Vo, C°) = R.

Proof. We prove the claim whe@ = D and use the functoriality ot C with respect to
morphisms ofC to conclude it in the general case. In this cgse id: D — D andf =d.
We claim that the diagram

[Ty Homg (L, f)

D=9 [T,s Homgs, (Ve D) — 22— T 5 1], Homgs,, (Vi (Ly D)")
7 yonn>/\, Homg (1,d")od y (35)
LyD [Tk uepy (m) HFOMR(Vjy) ® Vg @ ---® Vi, cm)
08 ], > cn

commutes, where,, y, andy, are as defined in Definition 3.3 so that the lower row and
right column are the same as diagram (3.2). Clearly, the upper sub-triangle of this diagram
commutes sinc¢ = d. On the other hand, the lower sub-triangle also clearly commutes by
the definition ofc, and the fact thaD is a'V-coalgebra. It follows that the entire diagram
commutes. But this implies that ipﬁg ]_[n>k Homgs, (V,, D") = K D (in the notation of
Definition 3.3) satisfies the condition that

(oea ]:[kc) (imf)cy (]:[k Homgs, (Va, (im f)”))

so that imf is V-closed—see Definition 3.3. It follows that if7\C LvD < K D since
Ly D is maximalwith respect to this property (see Lemma 3.4).
This implies both of the statements of this lemma
Theorem 3.8. Let D be a coalgebra over the operdadwith adjoint structure maps
dn D — HomRSn (Vn, Dn)
and let

f:D—>C
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be any morphism of DG-modules. Then the coalgebra morphism
fiD— LyC
defined in Lemma.6is the unique coalgebra morphism that makes the diagram

p—ts1yC

\ i (3.6)
f

C

commute. ConsequentlyyC is the cofree coalgebra oveP cogenerated byC. The
cogeneration magsee Definitionl.1) ¢: LyC — C is projection to the first direct
summand.

Proof. Letk =0 if V is unital and 1 otherwise. It is very easy to see that diagram (3.6)
commutes withf as defined in Lemma 3.6. Suppose that

g:D— LyC
is another coalgebra morphism that makes diagram (3.6) commute. We claignrthust
coincide with f. The component

HOMg (Ve .0}, 1) : LvC — [ | Homgs, (V. (LvC)")

n>k

isomorphically maps

Homgs, (Va, C")
to the direct summand

Homgs, (Va, C") C Homgs, (Va, (LvC)").
For g to be a coalgebra morphism, weusthave (at least)

.....

for all n > k. This requirement, howeveforcesg = f.
Lemma 3.6 and the argument above verify all of the conditions in Definition I1l.

4. Special cases
4.1. Dimension restrictions

Now we address the issue of our cofree coalgebra extending into negative dimensions.
We need the following definition first:

Definition 4.1. If E is a chain-complex, and is an integer, letE> denote the chain-
complex defined by
0 ifi <t,
El-bt = ker8,+1:E,+1—> E, ifi=r+1,
E; ifi >r+ 1



120 J.R. Smith / Topology and its Applications 133 (2003) 105-138

Corollary 4.2. If C is a chain-complex concentrated in nonnegative dimensionslaisd
an operad, then there exists a seoalgebra

MyC C LyC

such that

(1) as a chain-complex\f C is concentrated in nonnegative dimensions,
(2) for any V-coalgebra,D, concentrated in nonnegative dimensions, the image of the
classifying map

f:D— LyC
liesinMyC C LyC.

In addition, MyC can be defined inductively as followlset Mo = (LyC)>~ ! (see4.1)
with structure map

80: Mo — [ [ Homgs, (Vs (LvC)") = Q1.

n>0

Now define
Miy1 =81 (8:(M)N Q) S8 01
with structure map

Siv1=26iIMiy1:Miy1— O,

where
Qi = 1_[ HOmRSn (Vny Mln)l>_19
n>0
Then
o0
MyC=(\M;.

i=0

Remark 4.3. Our definition ofM+ C is simply that of the maximal sub-coalgebralof C
contained withinLy C>~1—i.e., the maximal sub-coalgebrarnonnegativelimensions.

4.2. The pointed irreducible case

We define the pointed irreducible coalgebras over an operad in a way that extends the
conventional definition in [10]:

Definition 4.4. Given a coalgebra over a unital operddvith adjoint structure map

a, :C — Homgg, ('Vna Cn)
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anelement e C is calledgroup-likeif a,(c) = f,(c") for all n > 0. Herec" € C" is the
n-fold R-tensor product,
fn =Homg(e,, 1) :Homg (R, C") = C" — Homgs, (V,. C")

ande, : V,, — R is the augmentation (which exists by 2.8).

A coalgebraC over a unital operad’ is calledpointedif it has auniquegroup-like
element (denoted 1), amqubinted irreducibldf the intersection of any two sub-coalgebras
contains this unique group-like element.

Remark 4.5. Note that a group-like element generates a ¥uboalgebra ofC and must
lie in dimension 0.

Although this definition seems contrived, it arises in “nature”: The chain-complex of a
pointed, simply-simply connected reduced simplicial set is pointed irreducible over the
operad&. In this case, the operad action encodes the effect on the chain level of all
Steenrod operations.

Note that our cofree coalgebra in Theorem 3.4 is pointed since it has the sub-coalgebra
R. It is not irreducible since theaull submodule,C (on which the coproduct vanishes
identically), is a sub-coalgebra whose intersection v&itis 0. We conclude that:

Lemma 4.6. Let C be a pointed irreducible coalgebra over a unital oper#id Then the
adjoint structure map

C — [ [ Homgs, (Va. C")
n>0

is injective.
The existence of units of operads, and the associativity relations imply that

Lemma 4.7. Let C be a coalgebra over an operad with the property that the adjoint
structure map

[[an:C— []Homgs, (Va.C")

n>1 n>1
is injective. Then the adjoint structure map

ay.C — Homg(V1, C)
is naturally split by

Homg (11, 1) : Homg (V1, C) > HOMR(R,C) =C
wheren; : R — V1 is the unit.

Remark 4.8. In general, the uniy; € V maps under the structure map
s:V— CoEndC)

to a unit of ims—a suboperad of CoEn@). We show thats(n1) is 1:C — C €
CoEnd ().
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Proof. Consider the endomorphism
e=Homg(n1,C)oa1:C — C
The operad identities imply that the diagram

l_[n an
C—"22" > [1,»1 Homgs, (V.. C™)

el
l_[n>l an

C
commutes sincey; is a unit of the operad and Haggaw1, C) o a1 must preserve the
coproduct structure (acting, effectively, as ttientity map.
It follows thate? = e and that kee ker]_[@la,,. The hypotheses imply that ke 0
and we claim that? = ¢ = ime = C. Otherwise, suppose thate C \ ime. Then
e(x —e(x)) =0 sox —e(x) € kere, which is a contradiction. The conclusion follows

Proposition 4.9. Let D be a pointed, irreducible coalgebra over a unital opefeidThen
the augmentation map

e:D— R

is naturally split and any morphism of pointed, irreducible coalgebras
fi:D1— D>

is of the form
1® f:D1=R®kerep, — D2 = R ®kerep,,

whereg; : D; — R, i =1, 2, are the augmentations.

Proof. Definition 4.4 of the sub-coalgeb® C D; is stated in an invariant way, so that
any coalgebra morphism must preserve itl

Ourresultis:

Theorem 4.10. If C is a chain-complex an® is a unital operad, define
PyC=LyC/C

(see TheorerB.4)with the induced quotient structure map.
Then Py C is a pointed, irreducible coalgebra ovér. Given any pointed, irreducible
coalgebraD overV with adjoint structure maps

dy : D — Homgs, (V, D")
and augmentation
e:D—> R
any morphism of DG-modules
fikere > C
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extends to a unique morphism of pointed, irreducible coalgebras®ver
1@ f: R ®kers - PyC,

where

o0
f=1@ [ Homgs, (L f") ody: D — PyC,
n=1

If pc: PyC — Homg('V1, C) is projection to the first factor, and
Homg (1, 1) :HOMz (V1,C) - C
is the splitting map defined .7, then the diagram

p—L s pyC

\ iHomR(ﬂlvl)OPC (4.1)

C

commutes.
In particular, Py C is the cofree pointed irreducible coalgebra o#with cogeneration
mapHomg(n, 1) o pc (see Definitiori.1).

Remark 4.11. Roughly speakingPy C is an analogue to th8huffle Coalgebrdefined in
[10, Chapter 11]. With one extra condition on the ope¥adhis becomes a generalization
of the Shuffle Coalgebra.

Proof. Since the kernel of the structure mapi@fvanishes
imfNnc=0

so that imf is mapped isomorphically by the projectién C — PyC.

It is first necessary to show that Hatty1, 1) o pc:Homg(V1, C) — C can serve as
the cogeneration map, i.e., that diagram (4.1) commutes.

This conclusion follows from the commutativity of the diagram

A
p~—4 ~p,p T p,c
N\ HomR(Tll»lD)OI’D Homg (n1,1c)opc

D———C

f

whered : D — Py C is the canonical classifying map &f.

The upper (curved) triangle commutes by the definitiorf pfhe lower left triangle by
the fact that Hom(n1, 1) splits the classifying map. The lower right square commutes by
functoriality of Py x.
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We must also show tha®y C is pointed irreducible. The sub-coalgebra generated by
1€ R =Homgs,(Vo, C°) is group-like.

Claim. If x € PyC is an arbitrary element, its coproduct idomgs, (V, PyC") for N
sufficiently large, contains factors &fe R C PyC.

This follows from the fact thall € $p(n) musthave terms; =0 for N = |u] > n—see
3.1 withk =0.

It follows thateverysub-coalgebra oPyC must contain 1 so thak is theuniquesub-
coalgebra ofPy C generated by a group-like element. This implies thaCC is pointed
irreducible.

The statement about any pointed irreducible coalgebra mappiRg ¢bfollows from
Lemma 3.6. O

Definition 4.12. Let C be a pointed irreducibl&-coalgebra with augmentation
e.C —> R.

If ¢ is some integer, we say thétis r-reducedif
(kerg); =0

foralli <.

Remark 4.13. If r > 1, the chain complex of areduced simplicial set (see [4, p. 170])
is naturally ar-reduced pointed, irreducible coalgebra o@&rThe case where< 0 also
occurs in topology in the study of spectra.

We conclude this section with a variation of 4.2.

Proposition 4.14. If ¢ is an integer andC is a chain-complex concentrated in dimensions
> t, andV is a unital operad, lePy C be the pointed, irreducible coalgebra overdefined
in 4.10 There exists a sub-coalgebra,

FyiC C PyC
such that

(1) #3'Cis at-reduced pointed irreducible coalgebra oveér
(2) for any pointed, irreducible-reducedV-coalgebra,D, the image of the classifying
map

16 f:D — PyC
liesin ;'C C PyC.

In addition, ;' C can be defined inductively as followiset Yo = R @ (Py ()™ (see4.1
for the definition of(x)>") with structure map

a0:Yo— R @ [ [ Homgs, (Va. (PvC)") = Z_1.

n>0
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Now define

Yipp=o; e (V)N Zi) S Zia (4.2)
with structure map

oit1=ailYiy1:Yip1 — Z;,
where

Zi = R [ | Homgs, (Va. ¥}")™".

n>0

Then

o
Fyc =Y.
i=0

Remark 4.15. Our definition of ;' C is simply that of the maximal sub-coalgebrarfC
contained withinR @ Py C"'.

Example 4.16. For example, le = Gpo—the operad whose coalgebras are coassociative
coalgebras. LeCC be a chain-complex concentrated in positive dimensions. Since the
operad is concentrated in dimension O the “natural” coproduct given in 4.10rdudes
go into negative dimensions when appliedRad [[,. o Homgs, (Vn. ¢ so M, C =
Homgs, (V,, C")*0 = Homgs, (V,, C") for all n > 0 and

F50C = R [ | Homgs, (V. €")"°

n>0

=R&® @ Homgs, (n, C")

n>0

=T(C)

thetensor-algebra—the well-known pointed, irreducible cofree coalgebra used irbtre
construction.

The fact that the direct product is gfaded modules and dimension considerations
imply that, in each dimension, it only hasfiaite number of nonzero factors. So, in this
case, the direct product becomes a direct sum.
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Appendix A. Proof of Lemma 3.4

As always,k = 0 if 'V is unital and 1, otherwise. Note that the coproduct formula,
Eqg. (3.4) is well-defined because the map

y= H Ym
m>=k
is injective and

<0€B I1 Cn)(L'VC) < )’< [ | Homgs, (V.. (LVC)")>
n>k n>k
by our construction oLy C in Eq. (3.3).

The basic idea behind this proof is that dealizethe argument used in verifying the
defining properties of a free algebra over an operad in [6]. This is complicated by the fact
that Ly C is not really the dual of a free algebra. The closest thing we have to this dual is
K C in Definition 3.3. ButL+ C is containedn K C, not equal to it. We cannot dualize the
proof that a freeV-algebra is free, but can carry out a similar argument with respect to a
kind of “Hilbert basis” of Ly C.

Consider a factor

HomRSa ('Va, Ca) cCo 1_[ HomRSn (Vn, C"),
n=k
In general
Homgs, (Va. C*) ¢ LvC C C & [ | Homgs, (V.. C")
n>k
but we still have a projection
Pa: LyC — Homgs, Ve, C%).

Let its image bekK, € Homgs, (Vy, C*). We will show that all faces of the diagram in
Fig. A.1 other than the front face commute for@llz, m andu € £ («), with u; # e and
ul =n, Ve Pr(u;) with |v| =m andw € P («) wherew is the result of replacing thih
entry ofu by v, so coproduct on the copy 6f represente by; = e would vanish. Here,

is the composite

Homgs, (Vn, LyC' =1 @ Homgs, (Vin, LyC™) @ LyC"™)

Homgs, (Va, HOMg (R, LyC'~1) ® Homgs,, (Vin, LyC™) ® HOmg (R, LyC"~))

|

Homg (V,,, Homg (Vi LyC" 1M =1y)

Homg (Vs ® Vi, LyC" =1y
(A1)



8n

LyC

yir YoHompg (u, )

Ko

omg (w,1)

HomRSn (1s®;l':1 Puj )

{10Homg (1,21~ 1@y tHomg (. 1) @17 ~F)

8n+m—1 HomRSVH,m,l(

Homg (1, ®7:T71 Pw; )

-1
’Vn+l1’l—lv ®’;:T ij)i

Homgs, 1 (Vagm—1, (LyC)" =1

Homg (0;,1)

Homgs, (V. (LyC)")

toHomMp (L1®--®gm ®---®1)
—_— ——

ith position

'_mﬂomR(Vn ® Vi,

Homg (Vi ® Vi, (LyC)" 1)

Fig. A.1.

®

Homg (181 @4 pu;)

HomRS,, (Vn s ®?:1 Kuj)
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and:; is the composite

HomRS,, (vm ®l]_=11 Kuj ® HOI'T]RS,,, (Vm7 ®71:1 va) &® ®?:i+l Kuj)

Homgs, (V. A ® HOMgs, (Vi @1 Ky) ® B)

| (A.2)
HOMg (Vo Homg (Vo @111 Ko))

J

HomR(V ®'Vm, ®n+m le/)

with A = ®§.‘:11 Homg(R, K,,), B = ®'}=i+1 Homg (R, K, ). The top face commutes by

the definition of the coproduct dfyC and the fact that the image of the coproduct of an
elementr € Ly C under Honk (1, @j_; pu;) only depends o, (x)—sinced y_; ux =

«. This also implies that the left face commutes since the left face is the same as the top
face (forg,+,—1 rather tharg,).

To see that the right face commutes, note thatd:q are very similar—each term of
diagram (A.2) projects to the corresponding term of diagram (A.1). The naturality of the
projection maps and the fact that the top face of the diagram in Fig. A.1 commutes implies
that the right face commutes.

Note that Definition 3.1 implies that

n+m—1

n
(X:Zuj = Z wj,
j=1 j=1
m
Uu; ZZU]'.

j=1

Since elements of, are determined by their projections, the commutativity of all faces
of the diagram in Fig. A.1 except the front also implies thatftbat face commutes. This
will prove Lemma 3.4 since it implies that diagram (2.7) of Definition 2.26 commutes.

The bottom face of the diagram in Fig. A.1 commutes by the functoriality of
Homg (%, ).

It remains to prove that thback face commutes. To establish this, we consider the
diagram in Fig. A.2, where

n+m—1
SVi®@ Vi @ ® Vzuj
j=1
_v, ®vm®®vu,®<®vw)® R v,
Jj=i+l

-V ®®"Vu,®<"v ®®vw>® & v,

Jj=i+1



Homgg, (Vo, C%)

Homg (yu,1)

Homg (Vi ® &' _1 Vu;. C%)

Yn
Homg (yw,1)
Homg (so1l®1 1o @171 1)
-1
vy, JoHomg (yy,1)
Ky 2 - Homgg, ("Vn,®7-:1 Ku;)
170HOMR (1,1 71® (v, tHomg (., 1)) @17 )
_ +m—1 +m—1
Yo 10HOME (. 1) HomR(Vn+m—l®®?=T Vu;, C%) FomR(OIQZ)fﬁ'Of‘"IR(Vn®Vm®®?=r1" Vu;, C%)
Yndm—1 i
Hom v Q' 1Ky, ) Homg (V, ® Vi, @71 1Ky )
RSppm—at Fntm=1,"Fj=1  w; Homg (0. 1) RIS Tm S =1 )

Fig. A.2.
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is the shuffle map ang is the composite
-1
HomR (vn &® vm{»\@jiin ij)
HomR(ly®};lT71ywj)

HOMR (V, ® Vi, @17~ Homgs, (Vi €™))

HOMR (V, ® Vin, Homg (®'27 ™ Vi, C%))

HomR (Vn ® Vm ® ®7IT_1 vw_/- s Ca)

where the maps in the lower two rows are the natural associativity maps for thg-Hom
functor andw.

Clearly, the left and top faces of the diagram in Fig. A.2 commute bittesmface also
commutes because

(1) the maps Hom(o;, 1) and Honk(o; ® 1,1) only affect the first argument in the
Homg (x, %)-functor and the other maps in the bottom face only affect the second (so
there is no interactions between them)

(2) the remaining maps in that face are composites of natural multilinear associativity
maps like those listed in Egs. (B.1)—(B.4), so they commute by Theorem B.9.

Therear face commutes because the diagram

Yu
Ve Vi ® Q=1 Vi
VWT le1®yv®l”i os
+m—1 : +m—1
Vn—i—m—l ® ®Z:T V1uk 0;®1 Vi ® Vi ® ®Z:T vwk

commutes due to the associativity relations for an operad—see Lemma 2.18.

It remains to prove that theght face of the diagram in Fig. A.2 commutes. We note
that all of the morphisms involved in the right face are of the type listed in Egs. (B.1)—(B.4)
except foryy and invoke Theorem B.14

Appendix B. Multilinear functors

In this appendix, we consider multilinear functors on the category of Reeodules
and show that certain natural transformations of them must be canonically equal.

Definition B.1. An expression treés a rooted, ordered tree whose nodes are labeled with
symbols Hom an@ such that
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(1) every node labeled with Hom has precisely two children,
(2) every node labeled wit® can have an arbitrary (finite) number of children,
(3) leaf nodes are labeled withistinct R-modules.

Nodes are assigned a quality calleatiance(covarianceor contravariance as follows:

(1) The rootis covariant.

(2) All children of a®-node and the right child of a Hom-node have slagnevariance as
it.

(3) The left child of a Hom-node is given tloppositevariance.

Two expression-trees are regarded assthmeif there exists an isomorphism of ordered
trees between them that preserves node-labels.

Remark B.2. For instance, Fig. B.1 is an expression tree. That expression-treeotad
and orderedmeans that:

(1) there is a distinguished node called thet that is preserved by isomorphisms;
(2) the children of every interior node have a well-defimedering that is preserved by
any isomorphism.

Definition B.3. Given an expression tre, let M (T) denote theR-module defined recur-
sively by the rules

(1) if T is a single leaf-node labeled byrRamoduleA, thenM (T) = A;
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(2) if the root of T is labeled with Hom and its two children are expression-t@esnd
T, respectively, then

M(T) = Homg (M (T1), M(T?));
(3) if the root of T is labeled with® and its children are expression-tré@s. . ., 7, then

M(T) = Q) M(T)).

i=1

Remark B.4. This associates a multilinear functor of the leaf-nodes with an expression
tree.
For instance, ifT" is the expression tree in Remark B.2, then

M(T) =Homgp(A1® A2 ® A3, A4 ® As) ® As.
In other wordsT is nothing but thesyntax treeof the functors that make u (T').
Now we defineoperationghat can be performed on expression trees and their effect on

the associated functors.
Throughout this discussioff, is some fixed expression tree.

Definition B.5. TypeOtransformationsPerform the following operations or their inverses:
Hom-transform Given any subtreed of T, replace it by the subtree in Fig. B.2.
®-transform Given a subtree of the form of Fig. B.3, where- 0 is some integer and

11, ..., T, are subtrees, replace it by Fig. B.4,

where 0< i < n.
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Fig. B.4.

Fig. B.6.

In addition, we define slightly more complex transformations

Definition B.6. Type 1 transformationsPerform the following operation or its inverse: If
T has acovariantnode that is the root of a subtree like in Fig. B.5, wh&reT», andT3

are subtrees, replace it by the subtree in Fig. B.6.
If it has acontravariantnode that is the root of a subtree like Fig. B.6, replace it by the

subtree depicted in Fig. B.5.

Finally, we define the most complex transformation of all
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Fig. B.8.

Definition B.7. Type2 transformationsif 7 is an expression tree withaovariantnode
that is the root of this subtree like in Fig. B.7, where- 1 is an integer and\y, ..., A,
andBs, ..., B, are subtrees, we replace the subtree in Fig. B.7 by Fig. B.8.

If a node iscontravariantand is the root of a subtree like Fig. B.8, we replace it by the
tree in Fig. B.7.

Given these rules for transforming an expression tree, we can defindwred natural
transformationof functorsM (T'):

Claim B.8. Let T be an expression tree and &t be the result of performing a transform
e, defined above, ofi. Then there exists an induced natural transformation of functors

fle):M(T) — M(T').

Given a sequenceé = {ey, ..., ¢;} of elementary transforms, we defifi¢E) to be the
composite of thef (e;), i =1,...,n.
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This claim follows immediately from the recursive descriptiondfT) in Defini-
tion B.3, the well-known morphisms

Homg(R, A) = A, (B.1)
A®RQ®B=AQB, (B.2)
Homg (A, Homg (B, C)) = Homg (A ® B, C), (B.3)
Homg (A, B) ® Homg (C, D) - Homzr (A ® C, B® D) (B.4)

(whereA, B, C, andD are freeR-modules), and the functoriality @ and Hony (x, *).
In the case where thR-modules are DG-modules, we apply the Koszul convention for
type-2 transformations such a transformation sends

(a—>b)®(cr—d)
to
(_1)dimb~dimca Rcr bRd.
The Koszul conventions do@est produce a change of sign in any of the other cases.
Now we are ready to state the main result of the appendix:

Theorem B.9. Let T be an expression tree and supp&seand E; are two sequences of
elementary transformatior(@s defined in DefinitionB.5 throughB.7) that both result in
the same transformed tre€,. Then

f(E1) = f(E2):M(T) — M(T").
This result remains true if thR-free modules on the leaves are DG-modules and we follow
the Koszul Convention.

Remark B.10. “Same” in this context means “isomorphic.” This theorem shows that the
induced natural transformatiorf(E), only depends on the structure of the resulting tree,
not on the sequence of transforms used. Thekesis structuréo maps of the formy (E)

than one might think.

We devote the rest of this section to proving this result. We begin with

Definition B.11. Let T be an expression tree. Then inord@erdenote the list of leaf-nodes
of T as encountered in an in-order traversaloi.e.,

(1) if T is a single nodel, then inorde(T) = {A}
(2) if the root of T has child-subtreeds, ..., A, then
inordel7T) =inorder(A1) o --- o inorder(A,),
wheree denotes concatenation of lists.

Given transformations and in-order traversals, we want to record the effect of the
transformations on these ordered lists.
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Proposition B.12. Let T be an expression tree and suppose théree modules on its
leaves are equipped witR-bases. Then an element M (T) can be described as a set of
lists

x:{(al,...,ak)...},

whereq; € A; and A; is the freeR-module occurring in théth node ininordexT).

Remark B.13. To actuallydefineM (T') as a freeR-module, we must add quantifiers and
relations that depend on the internal structur& d@b these lists.

Proof. Let A and B be freeR-modules. Elements od ® B can be described as® b,
wherea € A, b € B are basis elements. So the list in this case has two elements and the set
of lists contains a single element:

{a,b)}.
Elements of Hom (A, B) are functions fromA to B—i.e., a set of ordered pairs

{(a1.bD). ..., (@i bi, .. )},

whereq; € A is a basis elemenb,; € B (not necessarily a basis element) awrybasis
element ofd occurs as the left member of some ordered pair. The general statement follows
from the recursive definition oM (T) in Definition B.3 and the definition of in-order
traversal in Definition B.11.

Now we prove Theorem B.9:

Letx € M(T) be given by

x:{(al,...,ak)...}

as in Proposition B.12. We consider the effect of the transformations defined in Defini-
tions B.5-B.7 on this element.

Type-0: transformations insert or remove terms equal o & into each list in the set.

Type-1: transformations haveo effecion the lists (they only affect theredicatesused to
define the module whose elements the lists represent).

Type-2: transformations permute portions of each liskirin the DG case, whenever an
element is permuted past an elemdntthe list is multiplied by(—1)dima-dimb,

Note that, innocase is thelatain the lists altered. Furthermore, we claim that the equality
of the trees resulting from performirigy andE, on 7' implies that:

o the permutations of the lists from the type-2 transformations must be compatible;
e the copies ofR inserted or removed by the type-O transformations must be in
compatible locations on the tree.

Consequently, the lists that result from performiixgandE; on the lists oft must be the
same and

F(ED () = f(E2)(x).
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The isomorphism of final expression trees also implies that the predicates that apply to
corresponding element of these lists are also the same. Since this is truefbiteary x
we conclude that

f(E) = f(E2).

In the DG casewe note that type-2 transformations may introduce a change of sign.
Nevertheless, the fact that the elements in the lists are in the same order implies that they
have been permuted in the same way—and therefore have the same sign-factor.

We can generalize (relativize) Theorem B.9 slightly. We get a result like Theorem B.9
except that we have introduced a morphism thatbitof the type

Theorem B.14. Let T be an expression tree whose leaf-modules{arg ..., A,} and
consider the diagram

T . T3
T T’
% %
1> — T4

where

(1) for some fixed indek, ¢ : Ay — T replaces the leaf node labeled with the modulg,
with an expression tre€ that has leaf-moduleBs, . .., B};

(2) E1, E2, E3, andE4 are sequences of elementary transformati@assdefined in Def-

initions B.5 throughB.7);
(3) f(p):Ax — M(T) is some morphism of freR-modules.

Then
f(E3)o f(p)o f(E1) = f(Ea) o f(p)o f(E2).

Remark B.15. In other words, Theorem B.9 is still true if we have a morphism in the
mix that is not of the canonical type in Egs. (B.1)—(B.4)—as long as the remaining
transformations are done in a compatible way.

Proof. Letx € M(T) be given by
x:{(al,...,an)...}.

We get

FED@) ={(@oq). - dom) -}
FED@) ={(@r,.--rarm) -- -},
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whereo, T € §,, are permutations. In each of these lists, we repladsy a set of lists
{(bl, . ..,bz)}

representing the value af(ax) and apply f(E3) and f(Eas), respectively—possibly
permuting the resulting longer lists. As in Theorem B.9, the result is two copies of the
same set of lists. This is because both sets of operations result in the expressibh tree
implying that the permutations must be compatible. As in Theorem B.9, the key fact is that
the data in the lists is not changed (except for being permuted).
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