
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
International Journal of Solids and Structures 44 (2007) 5301–5315

www.elsevier.com/locate/ijsolstr
Crack detection in elastic beams by static measurements

Salvatore Caddemi a,*, Antonino Morassi b
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Abstract

This paper deals with the identification of a single crack in a beam based on the knowledge of the damage-induced vari-
ations in the static deflection of the beam. The crack is simulated by an equivalent linear spring connecting the two adja-
cent segments of the beam. Sufficient conditions on static measurements which allow for the unique identification of the
crack are presented and discussed. The inverse analysis provides exact closed-form expressions of position and severity of
the crack as functions of deflection measurements for different boundary conditions. The theoretical results are confirmed
by a comparison with static measurements on steel beams with a crack. Extension of the presented analysis to multiple
cracks is briefly discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In several areas of civil and mechanical engineering, at present, real challenges arising for the control, main-
tenance and retrofitting of existing structures and machinery concern the diagnostic identification of damages.
To this purpose, nondestructive testing is of great interest under several respects, because it can provide a
direct assessment of integrity of structures during service or can be employed to assess the residual resistance
of a structure after the occurrence of a strong seismic event.

Within the large class of methods of nondestructive testing, static and dynamic techniques as diagnostic
tools in structural mechanics have received great attention in the engineering communities in last decades.
Conventional methods of nondestructive testing and evaluation such as visual inspection, radiography, ther-
mal analysis, ultrasonic testing, are very sensitive in terms of global assessment of a structure. In fact, they
usually require that the vicinity of the damage is known a priori and the portion of the structure being inspect-
ed is readily accessible. Modal analysis techniques or static methods, on the contrary, offer potential advan-
tages for damage detection in a global scale.
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In most of the diagnostic techniques, damage identification procedures are based on dynamic data (see, for
example, Adams et al., 1978; Gudmundson, 1982; Rizos et al., 1990; Hearn and Testa, 1991; Liang et al., 1992;
Morassi, 1993; Narkis, 1994; Capecchi and Vestroni, 1999; Vestroni and Capecchi, 2000; Chaudhari and Mai-
ti, 2000; Morassi, 2001; Pai and Young, 2001; Lele and Maiti, 2002; Dilena and Morassi, 2004; Gladwell,
2004, Chapter 15, for an updated review). Dynamic identification techniques, for the inverse problem of
detecting a single open crack in an elastic straight beam in bending, provide explicit expressions for the posi-
tion and the severity of the crack only in the case of small damages and for initially uniform beams under spe-
cial boundary conditions (pinned–pinned, sliding–sliding), see, for example, Narkis (1994) and Morassi
(2001). Nondestructive tests in dynamic regime provide, in general, a large number of information with respect
to static tests and, furthermore, since they can be easily carried out without interrupting the operation of a
system, they are profitably repeatable during service. However, in cases of simple structural system, such as
straight beams, subject to damage, static tests are easily executable and provide additional information to
dynamic identification without any introduction of uncertainties due to inertia distribution and damping
ratios. In the specialized literature there are, in fact, studies, although less numerous, proposing identification
procedures based on measurements by static tests or simultaneous use of static and dynamic data aiming at
structural identification or damage detection in structures (Hajela and Soeiro, 1990; Sanayei and Onipede,
1991; Sanayei and Scampoli, 1991; Hjelmstad and Shin, 1997). An optimization procedure for damage iden-
tification in straight beams by means of bending moment measurements by static tests has been proposed by
Di Paola and Bilello (2004). In this procedure the damage has been modelled as a distortion superimposed to
the undamaged beam. The identification algorithm is formulated as a constrained least-squared minimization
problem, where the few parameters defining the damage (position and severeness) are estimated in an iterative
way.

Recently, Buda and Caddemi (2007) proposed an identification procedure of concentrated damages, like
(open) cracks, for straight beams in bending under static loads. On the basis of closed form solutions obtained
for an open crack modelled as linear rotational spring, Buda and Caddemi (2007) formulated the identification
problem as a nonlinear optimization procedure consisting on the minimization of an error function measuring
the error between the analytical model deflections and the experimental data.

Aim of this paper is to reconsider the inverse problem of detecting a single crack in an elastic straight beam
in bending from static measurements in order to provide explicit expressions for the position and the severity,
which represent the exact solutions of the inverse problem. Here, the attention is also focussed on finding suf-
ficient analytical conditions which allow for a rigorous, e.g. mathematically proved, identification of the
damage.

The open crack is modelled as a linear elastic rotational spring located at the cracked cross-section. The
explicit expression of the damage-induced variation in the deflection of the beam, tested in the undamaged
configuration and in a damaged one under the same load distribution, allows to set a procedure to solve
the inverse damage identification problem. Sufficient conditions for the unique determination of both the dam-
age location and the damage severity together with exact closed form solutions in terms of deflection measure-
ments are obtained. The last section of the paper is devoted to some numerical applications including also
evaluation of the sensitivity of the presented closed-form solutions to instrumental noise affecting the
measurements.

2. Crack-induced variations in the deflection of a beam structure

The present method of crack identification is based on an explicit expression of crack-induced variations in
the deflection of a beam structure. To illustrate the main idea the case of slender straight beams under trans-
versal loads will be first considered. The approach can be straightforwardly extended to beams under longi-
tudinal loads and to more complex beam-like structures.

Bending deflections of an elastic beam of length L are governed by the Bernoulli–Euler equation
�ðav00Þ00 þ p ¼ 0 in ð0; LÞ; ð1Þ

where v = v(x) is the transversal displacement of the beam axis evaluated at the cross-section of abscissa x and
p = p(x) is the transversal load per unit length acting along the beam axis.
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For definiteness p is assumed to be a regular load distribution, e.g. a continuous function, but this regularity
request can be significantly weakened to include, in the limit case, also concentrate loads. The quantity
a = a(x) denotes the bending stiffness of the beam and will be assumed to be continuous and such that
a(x) P a0 for every x 2 [0,L], where a0 is a positive constant. Also for a(x), the regularity request can be weak-
ened to include more general cases.

Let the ends of the beam be restrained by translational and rotational elastic springs. In this case the
boundary conditions are the following:
ðav00Þ0 þ h1v ¼ 0 ¼ av00 � g1v0 for x ¼ 0; ð2Þ

ðav00Þ0 � h2v ¼ 0 ¼ av00 þ g2v0 for x ¼ L; ð3Þ
where h1, h2, 0 < hi <1, i = 1,2, and g1, g2, 0 < gi <1, i = 1,2, are the elastic constants of the translational
and rotational springs, respectively, at the ends of the beam.

When the elastic constants of the springs assume limit values, e.g. 0 or 1, one has the well known ideal

boundary conditions:
pinned–pinned : h1 ¼ 1; g1 ¼ 0; h2 ¼ 1; g2 ¼ 0; ð4Þ
clamped–free : h1 ¼ 1; g1 ¼ 1; h2 ¼ 0; g2 ¼ 0; ð5Þ
pinned–clamped : h1 ¼ 1; g1 ¼ 0; h2 ¼ 1; g2 ¼ 1; ð6Þ
clamped–clamped : h1 ¼ 1; g1 ¼ 1; h2 ¼ 1; g2 ¼ 1: ð7Þ
Suppose that a crack appears at the cross-section of abscissa s 2 (0, L) and that the crack always remains open
during the deformation of the beam.

A crack on a beam element significantly increases the flexibility due to the strain energy concentration in the
vicinity of the crack tip under load. Following, for example, Freund and Herrmann (1976) and Gounaris and
Dimarogonas (1988), a crack can be macroscopically modelled as an elastic link connecting the two adjacent
segments of beam. In the present analysis, since only in-plane bending deflections are considered, the rotation-
al crack compliance is assumed to be dominant in the local flexibility matrix. Therefore, an open crack is mod-
elled by inserting an elastic rotational spring at the damaged cross-section. The values of the stiffness K of the
spring are tabulated for a large number of cases, for different geometry of the cross-section and different crack
shape. When a lateral crack of uniform depth d is present in a rectangular cross-section of width b and height
h, for example, the stiffness K has the expression
K ¼ EI
5:346hC d

h

� � ; ð8Þ
where E is the Young’s modulus of the beam material, I is the moment of inertia of the beam cross-section and
the dimensionless local compliance C d

h

� �
has the expression
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� �9

þ 66:56
d
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� �10

; ð9Þ
see, for example, Rizos et al. (1990).
Hence, the static deflection of the damaged beam, under the load distribution p, is governed by the follow-

ing differential equation
�ðaev00Þ00 þ p ¼ 0 in ð0; sÞ [ ðs; LÞ; ð10Þ
where, in addition to the boundary conditions (2) and (3), one has to consider also the jump conditions
½evðsÞ� ¼ ½aðsÞev00ðsÞ� ¼ ½ðaðsÞev00ðsÞÞ0� ¼ 0; ð11Þ
aðsÞev00ðsÞ ¼ K½ev0ðsÞ�; ð12Þ
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that are to hold at the cross-section where the crack occurs. In (10)–(12), ev is a function belonging to H1(0, L)
with square summable second derivatives, e.g. ev 2 H 1ð0; LÞ \ ðH 2ð0; sÞ [ H 2ðs; LÞÞ, where Hm(I), m = 1,2, are
the usual Sobolev spaces on the interval I � R. Moreover, [/(s)] � (/(s+) � /(s�)) is the jump of the function
/ at x = s.
Let
wðxÞ � evðxÞ � vðxÞ ð13Þ
be the function which represents the crack-induced variation in the deflection of the beam under the same load
distribution p. A direct computation shows that w satisfies the following differential equation
ðaw00Þ00 ¼ 0 in ð0; sÞ [ ðs; LÞ; ð14Þ
coupled with the jump conditions
½wðsÞ� ¼ ½aðsÞw00ðsÞ� ¼ ½ðaðsÞw00ðsÞÞ0� ¼ 0; ð15Þ

K½w0ðsÞ� ¼ � eM ðsÞ; ð16Þ
and a set of boundary conditions which coincide with those satisfied by the undamaged beam. In Eq. (16), the
expression
eM ðsÞ � �aðsÞev00ðsÞ ð17Þ
denotes the bending moment at the cross-section where the damage occurs, in the damaged beam, under the
load distribution p.

An expressive physical interpretation of the function w can be inferred by an inspection of the governing
Eq. (14) coupled with the jump conditions (15) and (16): w(x) is the transversal displacement of the undam-
aged beam when, under the same boundary conditions, the singular angular distortion
a ¼ �
eM ðsÞ
K

ð18Þ
is introduced between the two cross-sections adjacent to the damaged cross-section, at the abscissa x = s. The
latter interpretation is in agreement with the principle of virtual distortion introduced by Di Paola (2004) for
systems with uncertain parameters.

It is worth noticing that (i) no condition on the smallness of the damage has been introduced in the analysis
above, that is w is defined for a crack of generic severeness; (ii) the present analysis can be easily extended to
the case of multiple cracks (see at the end of this section); (iii) w(x) is not identically equal to the zero function
if and only if eM ðsÞ 6¼ 0, or, equivalently, if the load distribution is such that the bending moment at the dam-
aged cross-section is different from zero. This last condition eM ðsÞ 6¼ 0 can be read as a sort of identificability
or observability condition to be satisfied by the load distribution.

In the diagnostic inverse problem, one seeks to extract information on damage location and severeness from
measurements of the crack-induced variation in the deflection w(x) of the beam axis under a single, prescribed
load distribution. Therefore, the crucial point of the inverse analysis lies on the determination of w(x) and on
the study of its properties.

The relative deflection w can be evaluated by solving the boundary value problem (14)–(16) with the appro-
priate set of boundary conditions. There is, however, a more convenient approach which is based on an
extended version of the Betti–Maxwell Theorem for beam structures with a singular angular distortion. More
precisely, for every x 2 ð0; LÞ, one can prove that
wðxÞ ¼ �aMxðsÞ; ð19Þ
where MxðsÞ is the bending moment at the cross-section of abscissa s, s 2 (0,L), of the undamaged beam when
a unit transversal, positive (downwards directed) force is applied at the cross-section of abscissa x.

It is not excessive to say that all the present damage identification procedure originates from Eq. (19). In
fact, by recalling the definition of a given in (18), from (19) one can obtain the fundamental identity
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wsðxÞ ¼
1

K
eM ðs;KÞMxðsÞ; ð20Þ
namely, the damage-induced variation in the deflection of the beam due to a crack located at s and of severity
K, under a given load distribution, is proportional to the product of two quantities. The first quantity,eM ðs;KÞ, is the bending moment present at the cracked cross-section, of abscissa s, of the damaged beam. Note
that, with the exception of statically determinate beams, eM ðs; KÞ depends also on K. The second quantity,
MxðsÞ, is the bending moment present at the cross-section of abscissa s due to a unity force acting at the
cross-section of abscissa x of the undamaged beam.

It is worth noticing that eM ðs; KÞ depends on the assigned load distribution, whereas MxðsÞ only depends on
the properties of the undamaged beam (boundary conditions and stiffness coefficient a) and on the force loca-
tion x. Moreover, no matter how the boundary conditions and the coefficient a are, the function MxðsÞ is a

continuous, piecewise linear function of the variable s.
Finally, it is worth noticing that Eq. (19) allows for a great simplification on the calculations needed to

obtain w, because it only requires the evaluation of the bending moment on the undamaged beam under a unit
transversal force, and this can be done by well established techniques.

The extension of the fundamental identity (20) to multiple open cracks is immediate. With the usual nota-
tion and by modelling each crack with an elastic rotational spring of stiffness Ki at the damaged cross-section
of abscissa si, i = 1, . . . ,n, one has
wðxÞ ¼ 1

K1

eM ðs1ÞMxðs1Þ þ � � � þ
1

Kn

eM ðsnÞMxðsnÞ: ð21Þ
3. Identification of a crack in an elastic beam from static tests

In this section the inverse problem of identifying a single open crack in a uniform elastic beam by using
static measurements will be closely investigated. An extension of the proposed diagnostic technique to beams
with varying bending stiffness will be presented in the last part of this section.

The main goal of this paper is to find a minimal set of sufficient conditions on static measurements which
allows for the unique identification of the crack. The key point of the diagnostic procedure will be presented
by considering separately the cases corresponding to the boundary conditions (4) and (7). Clamped–free (5)
and pinned–clamped (6) boundary conditions can be discussed similarly.

Without loss of generality, let a 5 0, that is the given load distribution satisfies the observability conditioneM ðsÞ 6¼ 0, see Eqs. (16)–(18).

3.1. Pinned–pinned beam

An easy computation shows that the solution w of the boundary value problem (14)–(16), coupled with the
boundary conditions (4), is given by
wðxÞ ¼ �a �
xð1� s

LÞ; 0 6 x 6 s;

sð1� x
LÞ; s 6 x 6 L;

�
ð22Þ
where a ¼ � eM ðs;KÞ=K. Note that sign(w(x)) = �sign(a) in (0,L), that is w(x)50 in (0,L). Assume that two
measurements of the relative transversal displacement w are taken at two points of the beam axis of abscissa
g1, g2, where
0 < g1 < s < g2 < L: ð23Þ
From Eq. (22), by dividing side by side the expressions of w(g1) and w(g2) the unknown a disappears and the
following single linear equation on the damage location s is obtained:
s 1� g2

L

� �
r12 þ

g1

L

� �
¼ g1; ð24Þ
where r12 � w(g1)/w(g2) > 0. Since ((1 � g2/L)r12 + g1/L) > 0, one has
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s ¼ g1

1� g2

L

� �
r12 þ g1

L

: ð25Þ
Eq. (25) says that if the relative displacement w is measured at two points g1, g2 which are at the left and at the
right of the damage, respectively, e.g. g1 < s < g2, then the position of the crack can be uniquely determined.
Moreover, Eq. (25) is a closed form expression for the damage location s.

It has to be noted that, by dividing side by side the relative displacement w(x) at two points both lying on
the same side of the damage, the unknowns a and s disappear. As a result, the damage location s cannot be
identified.

Once the damage localization problem is solved by means of Eq. (25), the damage severity K can be easily
determined. By measuring the relative displacement w(x) at x = g2 and by Eq. (20) the following linear equa-
tion on K is obtained:
wðg2Þ ¼
1

K
eM ðsÞs 1� g2

L

� �
: ð26Þ
Since, as for any statically determinate system, the bending moment eM doesn’t depend on K and w(g2)50, this
equation can be solved to obtain the closed form expression for the damage severity:
K ¼
eM ðsÞsð1� g2

L Þ
wðg2Þ

: ð27Þ
Hence it can be stated that, for the case of a pinned–pinned beam, the condition on the displacement measure-
ments g1 < s < g2 can be recognized as the sufficient condition for damage localization.

In a real damage identification procedure, since the damage location is not a priori known, one cannot be
sure whether the sufficient condition g1 < s < g2 is satisfied by two arbitrarily chosen abscissae g1, g2. In order
to address this point, let us suppose that two measurements lie at the left of the crack, e.g. 0 < g1 < g2 < s, and
the closed form expression (25) is erroneously adopted for damage localization. In this case displacement mea-
surements w(g1), w(g2) are both expressed by equation (22)1 as follows
wðg1Þ ¼ �ag1 1� s
L

� �
; wðg2Þ ¼ �ag2 1� s

L

� �
: ð28Þ
Substitution of Eqs. (28) into Eq. (25) leads to
sident ¼ g2 for 0 < g1 < g2 < s; ð29Þ
hence, in this case, the identified damage position sident coincides with the measurement position g2.
Analogously, by taking both measurements at the right of the damage, the following condition can be

proved
sident ¼ g1 for 0 < s < g1 < g2: ð30Þ
Equations (29) and (30) allow to recognize in practice those pairs of measurements which do not satisfy the
sufficient condition g1 < s < g2, even though the damage position is not a priori known.

On the basis of Eqs. (29) and (30) it is possible to set the following identification procedure, which is not
based on an a priori knowledge of the damage position, by means of repeated application of Eq. (25). Choose
g1 next to the left support and vary g2 from g1 towards the right support, then substitution of pairs g1, g2 in Eq.
(25) leads to identified values of s increasing with g2 (see Eq. (29)); when g2 reaches the exact damage position s

the identified damage position remains constant at its exact value, since the sufficient condition g1 < s < g2 is
satisfied.

A similar behavior is encountered by choosing g2 next to the right support and varying g1 from g2 back-
wards towards the left support.
3.2. Clamped–clamped beam

The relative displacement w for the clamped–clamped beam is given by
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wðxÞ ¼ �a �
2x2ðL�xÞ2

L3 � 1� ðLþ2xÞðL�xÞ2
L3

� �
ðs� xÞ; 0 6 x 6 s;

� xðL�xÞ2
L2 þ ðLþ2xÞðL�xÞ2

L3 s; s 6 x 6 L:

8<
: ð31Þ
By measuring w at the points g1, g2, with 0 < g1 < s < g2 < L, one has
wðg1Þ ¼ �aðA1ðg1Þ þ B1ðg1Þðs� g1ÞÞ; ð32Þ
wðg2Þ ¼ �aðA2ðg2Þ þ B2ðg2ÞsÞ; ð33Þ
where A1(g1) > 0, A2(g2) < 0, B2(g2) > 0 and B1ðg1Þ ¼ �g2
1ð3L� 2g1Þ=L3 < 0 are given constants.

Here, the damage location problem is more complicated than the previous case, since w(g1), or w(g2), might
now vanish for some choices of s, g1 and g2. One can distinguish two situations. If w(g2) = 0, then Eq. (33)
gives directly
s ¼ �A2ðg2Þ
B2ðg2Þ

¼ g2

1þ 2 g2

L

: ð34Þ
Otherwise, if w(g2)50, by dividing w(g1) by w(g2), Eqs. (32) and (33) yield to the following linear equation on
the unknown variable s:
sðr12B2ðg2Þ � B1ðg1ÞÞ ¼ A1ðg1Þ � B1ðg1Þg1 � r12A2ðg2Þ; ð35Þ

where r12 � w(g1)/w(g2). A direct calculation shows that the coefficient of s does not vanish, so that Eq. (35)
has a unique solution. In fact, by taking into account the expressions of Ai and Bi, i = 1, 2, one has:
r12B2ðg2Þ � B1ðg1Þ ¼ �
ag2

1ðL� g2Þ
2

wðg2ÞL4
ð2Lþ g2 � g1Þ; ð36Þ
which is different from zero.
Analogous considerations hold if, from the beginning, it is assumed that w(g1) 5 0.
Concerning the determination of the damage severity, the expression of a can be used to obtain the follow-

ing equation for K:
wðg2ÞK ¼ eM ðs; KÞðA2ðg2Þ þ B2ðg2ÞsÞ: ð37Þ

Differently from the previous case, the bending moment eM ðs; KÞ now depends, usually in non-linear way, on
K, so that numerical methods have to be used to solve (37) in terms of K.

For the case under study there are two other choices for couples of measurements of w(x).
By taking two measurements of w(x) at the points g1, g2 such that 0 < g1 < g2 < s one has
r12 ¼
wðg1Þ
wðg2Þ

¼ A1ðg1Þ þ B1ðg1Þðs� g1Þ
A1ðg2Þ þ B1ðg2Þðs� g2Þ

; ð38Þ
under the condition w(g2) 5 0. After simple algebra, Eq. (38) leads to the following equation for s
sðr12B1ðg2Þ � B1ðg1ÞÞ ¼ A1ðg1Þ � B1ðg1Þg1 þ r12ðB1ðg2Þg2 � A1ðg2ÞÞ: ð39Þ

The coefficient of s is different from zero, e.g.
r12B1ðg2Þ � B1ðg1Þ ¼ �
ag2

1g
2
2

L4
ðg2 � g1Þ; ð40Þ
and therefore Eq. (39) gives uniquely the damage location s.
If w(g2) = 0, then, from Eq. (32) with g1 replaced by g2, one has directly
s ¼ �A1ðg2Þ
B1ðg2Þ

þ g2 ¼
2� g2

L

3� g2

L

L: ð41Þ
Finally, similar considerations hold true when the two measurements w(g1), w(g2) are taken at the right of the
damaged cross-section, that is 0 < s < g1 < g2 < L. In brief, if w(g2)50, the following expression for s is
obtained



5308 S. Caddemi, A. Morassi / International Journal of Solids and Structures 44 (2007) 5301–5315
s ¼ A2ðg1Þ � r12A2ðg2Þ
r12B2ðg2Þ � B2ðg1Þ

; ð42Þ
where the denominator (r12B2(g2) � B2(g1)) always is different from zero. Otherwise, if w(g2) = 0, then the
expression for s is given by Eq. (34).

It can be concluded that, for the case of clamped–clamped beams, any pair of measurements can be adopted
for the exact damage localization, provided that the correct explicit expression is used as follows:

(a) Eq. (35) for 0 < g1 < s < g2 < L,
(b) Eq. (39) for 0 < g1 < g2 < s,
(c) Eq. (42) for s < g1 < g2 < L.

However, since the damage position is not a priori known, one cannot be sure of the explicit expression to be
adopted. By arguing as in the last part of the previous section, the following relevant properties, holding when
Eq. (35) is erroneously adopted, can be derived:

(i) Eq. (35) provides g2 < sident < s for 0 < g1 < g2 < s,
(ii) Eq. (35) provides s < sident < g1 for s < g1 < g2 < L.

Properties (i) and (ii) are employed for an identification procedure presented in the numerical application.
3.3. Non-uniform beams

In this part it will be shown how the previous arguments can be adapted to investigate the more general case
of non-uniform beams, e.g., beams with continuous, nonconstant bending stiffness a(x) satisfying the condi-
tion a(x) P a0 for every x 2 [0, L], where a0 is a positive constant. In particular, the attention will be focussed
on the damage localization problem.

Again, the starting point is the special form of the expression (19) for the variation w of the transversal dis-
placement caused by the crack, under a given load distribution, and, in particular, the linear dependence of
w(x) on the bending moment Mx(s). It is recalled that Mx(s) is the bending moment present at the cross-section
of the undamaged beam of abscissa s induced by a unit transversal force acting downwards at the point of the
beam axis of abscissa x.

For statically determinate beams, such as the pinned–pinned case, the bending moment function Mx(s)
doesn’t depend on the bending stiffness a(x). Therefore, the results proved for the uniform case can be directly
extended also to non-uniform beams.

For the remaining cases, pinned–clamped and clamped–clamped, one can proceed as follows. For the sake
of completeness, the pinned–clamped beam will be considered in detail, the other case being analogous.

By expression (19) it turns out that the variation w of the transversal displacement caused by the crack has
the following expression:
wðxÞ ¼ �a �
T xð0Þs� ðs� xÞ; 0 6 x 6 s;

T xð0Þs; s 6 x 6 L:

�
ð43Þ
Here, Tx(0) is the shear force present at the left end of the beam due to a unit transversal force acting down-
wards at the point of the beam axis of abscissa x. Note that Tx(0) is assumed to be positive if the shear force is
directed upwards. A direct calculation shows that
T xð0Þ ¼
R L

x
n�x
aðnÞ n dnR L

0

R L
s

n
aðnÞ dn

� �
ds
; x 2 ½0; L�; ð44Þ
that is, Tx(0) is a regular function of C1 class for x 2 [0,L] such that
0 < T xð0Þ < 1 for x 2 ð0; LÞ; T 0ð0Þ ¼ 1; T Lð0Þ ¼ 0: ð45Þ



S. Caddemi, A. Morassi / International Journal of Solids and Structures 44 (2007) 5301–5315 5309
As it will be apparent in the sequel, property (45) plays an important role in solving the damage localization
problem. From the mechanical point of view, property (45) has a clear meaning: it says that the vertical reac-
tion at the pinned left end is directed upwards and that its magnitude cannot exceed the magnitude of the ap-
plied force.

Now, by measuring w, for example, at the points g1, g2, with 0 < g1 < s < g2 < L, one has
wðg1Þ ¼ �aðT g1
ð0Þs� ðs� g1ÞÞ; ð46Þ

wðg2Þ ¼ �aT g2
ð0Þs: ð47Þ
By (43) and (45) the relative displacement w(g2) is always different from zero. Therefore, one can divide (46) by
(47) obtaining, after a reordering of the terms, the following linear equation on s:
sðr12T g2
ð0Þ � T g1

ð0Þ þ 1Þ ¼ g1; ð48Þ
where r12 � w(g1)/w(g2). The coefficient of the damage location s is given by
r12T g2
ð0Þ � T g1

ð0Þ þ 1 ¼ � ag1

wðg2Þ
T g2
ð0Þ; ð49Þ
and, by (45) again, it is different from zero. It follows that Eq. (48) admits the unique solution
s ¼ g1

r12T g2
ð0Þ � T g1

ð0Þ þ 1
: ð50Þ
The case in which the measurements w(g1) and w(g2) are both taken at the left of the damage can be discussed
analogously. Let 0 < g1 < g2 < s < L. If w(g2) = 0, then by (46) it follows that
s ¼ g1

1� T g2
ð0Þ ; ð51Þ
where, by (45), the denominator is positive. Otherwise, if w(g2)50, then the following equation in s can be
formed
sðr12ðT g2
ð0Þ � 1Þ � ðT g1

ð0Þ � 1ÞÞ ¼ g1 � r12g2: ð52Þ
A direct calculation shows that the coefficient of s is equal to
r12ðT g2
ð0Þ � 1Þ � ðT g1

ð0Þ � 1Þ ¼ � a
wðg2Þ

ðg2ð1� T g1
ð0ÞÞ þ g1ð1� T g2

ð0ÞÞÞ; ð53Þ
which is different from zero because of condition (45). Therefore, Eq. (52) can be uniquely solved with respect
to the damage location s.

Finally, the case of two measurements at the points g1, g2 such that 0 < s < g1 < g2 < L, dividing side by side
the expressions of w(g1) and w(g2), leads to the disappearance of both unknowns a and s. As a result, the dam-
age location s cannot be identified.

Up till now, the bending stiffness a(x) has been assumed to be a continuous function in [0,L]. The consid-
erations above show that this regularity request can be weakened to include also a bounded function a(x) with
a finite number of jump discontinuities. This fact, for example, allows one to extend the above results to
stepped beams, that is beams with bending stiffness of the form a(x) = ci, x 2 (xi�1,xi), for some subdivision
of the interval [0, L] and some set of positive constants ci. Some applications of the proposed diagnostic tech-
nique to stepped beams have been worked out in (Ret, 2004).

3.4. Remark on multiple crack identification

A full treatment of the identification of multiple cracks by static measurements is beyond the goals of this
paper. However, for the sake of completeness, a succinct account of the main findings will be presented in the
sequel for a pinned–pinned beam with n cracks located at the cross-sections of abscissae
0 < s1 < s2 < � � � < sn < L. The bending stiffness a = a(x) of the beam is supposed to be a continuous function
satisfying the condition a(x) P a0 for every x 2 [0, L], where a0 is a positive constant.
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A direct calculation based on expression (21) shows that the crack-induced variation in the transversal
deflection of the beam under the same load distribution is given by
wðxÞ ¼

x
L

Pn
i¼1

ð�Lþ siÞai; 0 6 x 6 s1;

x
L

Pn
i¼k
ð�Lþ siÞai þ ð�1þ x

LÞ
Pk�1

i¼1

siai; sk�1 6 x 6 sk; k ¼ 2; . . . ; n;

ð�1þ x
LÞ
Pn
i¼1

siai; sn 6 x 6 L;

8>>>>>>><
>>>>>>>:

ð54Þ
where, according to (18), the singular distortion ai is defined as ai ¼ �
eM ðsiÞ

Ki
.

Let the relative displacement w be measured at the 2n points g1, gi, g0i, gn+1, i = 2, . . . ,n, satisfying the
conditions
0 < g1 < s1 < g2 < g02 < � � � < sk�1 < gk < g0k < sk < � � � < sn < gnþ1 < L: ð55Þ
Conditions (55) mean that w is measured at the 2n points gk and g0k between each pair of consecutive cracks
located at sk�1 and sk and, moreover, it is measured at a single point in the two segments of beam which are
delimited by the left support and the first crack (g1), and the right support and the nth crack (gn+1).

It can be shown that, if ai 5 0 for every i = 1, . . . ,n, then this set of measurements allows for the unique
determination of the position and severity of the n cracks. The proof of this result involves the solution of
a system of 2n non-linear equations in the 2n unknowns si, Ki, i = 1, . . . ,n, and can be found in a paper by
Caddemi and Morassi (2006).

Moreover, under the same assumptions, closed form expressions of the damage parameters in terms of the
static data are available. For example, in the case of a pinned–pinned beam with two cracks, one obtains the
following expressions for the damage locations s1, s2, and for the angular distortions a1, a2 (related to the
equivalent rotational spring stiffnesses K1, K2) in terms of the measured deflections:
s1 ¼
ðg2wðg02Þ � g02wðg2ÞÞg1

�wðg1Þðg02 � g2Þ þ ðwðg02Þ � wðg2ÞÞg1

; ð56Þ

s2 ¼
Lwðg3Þðg02 � g2Þ � ðg2wðg02Þ � g02wðg2ÞÞðg3 � LÞ

wðg3Þðg02 � g2Þ � ðwðg02Þ � wðg2ÞÞðg3 � LÞ ; ð57Þ

a1 ¼ �
wðg1Þ

g1

� wðg2Þ � wðg02Þ
g02 � g2

; ð58Þ

a2 ¼
wðg2Þ � wðg02Þ

g02 � g2

þ wðg3Þ
g3 � L

: ð59Þ
Finally, as in the identification of a single crack, it is possible to set an identification procedure which is not
based on an a priori knowledge of the relative position of the cracks and of the measurement points, see Cad-
demi and Morassi (2006) for a detailed treatment.

4. Numerical applications

In the preceding sections it has been shown how to employ the measurement of static deflections of a
cracked beam so as to assess the location as well as the severity of the damage. Aiming to account for the
practical use of the results above within the analysis of real cases, the present section is devoted to outlining
some applications of numerical character.

Among several numerical tests performed, some results of the damage identification for pinned–pinned and
clamped–clamped cases are presented and discussed in detail in the sequel. They are representative of the
results obtained in the investigation and of the main features of the proposed method of crack detection.

In particular, the diagnostic technique is applied to a steel beam of the series IPE 200, of length L = 6 m,
having bending stiffness of the cross section equal to a = 4080 MNm2, with a single open crack located at the
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cross section of abscissa s = 2.8 m and whose severity is equivalent to a rotational spring stiffness
K = 10 GNm/rad. In order to reproduce a commonly used experimental set-up, the load distribution acting
on the beam is chosen as a concentrated load P = 10 KN applied at the mid point of the beam span.

Whatever case of boundary conditions is treated, as it was shown previously, measurements of the relative
transversal displacement at two points g1 and g2 are needed to localize a single crack.

4.1. Pinned–pinned beam

In order to apply the closed form expression provided by equation (25) for damage localization in a pin-
ned–pinned beam, two relative displacement measurements w(g1), w(g2) have to be taken at g1, g2 at the left
and at the right of the crack, respectively, e.g. 0 < g1 < s < g2 < L (sufficient condition for identification). How-
ever, since in the inverse identification problem the damage location is not a priori known, the procedure pro-
posed in the section concerning the pinned–pinned beam is here adopted. In particular, by taking the
measurement w(g1) next to the left support at g1 = 0.1 m, and the second measurement w(g2) at g2 increasing
along a grid of points with step 0.5 m and using Eq. (25), the results plotted in Fig. 1a have been obtained.
Analysis of Fig. 1a shows that the estimated damage position sident increases with g2. However, once g2 reaches
the actual damage position 2.8 m, the identified damage position will remain constant at its actual value.

On the other hand, in Fig. 1b the results provided by equation (25), concerning g2 = 5.9 m fixed next to the
right support and g1 increasing along a grid of points with step 0.5 m, are plotted. The identified damage posi-
tion sident keeps its actual value 2.8 m for g1 6 2.8 m; when g1 becomes greater than 2.8 m then sident increases
with g1.

It can be concluded that the deflection of the beam has to be measured in a grid of points fxigN
i¼1,

0 < x1 < � � � < xN < L, along the beam axis. The identified damage positions, obtained by replacing the exper-
imental measurements into equation (25), lying on an horizontal line provide the actual damage position.
Both, Fig. 1a and b, have been obtained by employing twelve measurements, however, even six, equally
spaced, measurements along the beam span would provide the same information and lead to the actual dam-
age position. Once s is identified, the actual damage severity K is provided by Eq. (27).

4.2. Clamped–clamped beam

In this case closed form solutions of damage localization are represented by Eqs. (35), (39), (42) for mea-
surement positions 0 < g1 < s < g2 < L, 0 < g1 < g2 < s, s < g1 < g2 < L, respectively.

In Fig. 2a and b results obtained by the adoption of Eq. (35) only are reported. In particular, in Fig. 2a,
with g1 fixed at 0.1 m, the identified damage position is plotted for g2 increasing along the beam span. In
Fig. 2b, for g2 fixed at 5.9 m, the identified damage position is plotted for g1 increasing along the beam span.
Both Fig. 2a and b show that the exact damage localization is provided by the horizontal lines obtained by
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Fig. 1. Pinned–pinned beam: Identified damage position sident: (a) versus measurement position g2, for fixed measurement position
g1 = 0.1 m; (b) versus measurement position g1, for fixed measurement position g2 = 5.9 m.
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Fig. 3. a–f Clamped–clamped beam: percentage error es = 100(sident � s)/s on the damage location with g1,g2 varying along the beam span,
for error levels 1% and 5% on the measurement data, and for different values of equivalent stiffness rotational spring: K = 10 GNm/rad
(small damage), K = 4.6 GNm/rad (moderate damage), K = 1.5 GNm/rad (severe damage).
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making use of Eq. (35). For those pairs of measurements both lying on the same side of damage, Eq. (35) pro-
vides values sident slightly higher than g2 or lower than g1 (broken lines in Fig. 2a and b, respectively).

As far as the severity of the damage is concerned, a direct calculation shows that Eq. (37) gives the follow-
ing closed form expression for the stiffness K of the rotational spring which is used to model the crack (for
w(g2)50):
K ¼
P
2

s� L
4

� � ðA2ðg2ÞþB2ðg2ÞsÞ
wðg2Þ

� 4a
L3 ð3s2 � 3sLþ L2Þ for 0 < s < L

2
;

� P
2

s� 3L
4

� � ðA2ðg2ÞþB2ðg2ÞsÞ
wðg2Þ

� 4a
L3 ð3s2 � 3sLþ L2Þ for L

2
< s < L:

8<
: ð60Þ
4.3. Measurement errors

The damage analysis has been developed in absence of error so far, but, as it is well known, the results of
most identification techniques strictly depend on possible measurement errors and on the severity of the
damage to be identified. To take the effect of errors in the experimental data into account and to evaluate
the sensitivity of the proposed diagnostic method, different pairs of measurements at g1, g2, in a clamped–
clamped beam, corrupted by random errors, have been studied. In particular, random errors of magnitude
equal to 1% and 5% of the displacement measured on the damaged beam have been included in the analysis.
Moreover, to consider damage configurations of different severity, values of the stiffness K of the rotational
spring used to simulate the crack have been chosen such that the transversal displacement evðL

2
Þ in the dam-

aged beam is the 5% (‘‘small’’ damage, K = 10 GNm/rad), 10% (‘‘moderate’’ damage, K = 4.6 GNm/rad),
25% (‘‘severe’’ damage, K = 1.5 GNm/rad), bigger than the corresponding value vðL

2
Þ for the undamaged

beam.
The results of identification have been obtained by making use, for each pair of measurements, of the cor-

respondent formulas (35), (39) and (42) so as to assess the sensitivity to measurement errors of all of the pro-
posed closed form expressions.

In Fig. 3a–f the percentage error �s ¼ sident�s
s � 100 on the damage location, is plotted for g1, g2 varying

along a grid of points, for random errors 1% and 5% and for increasing levels of damage.
In particular, three different zones have to be distinguished in Fig. 3:

zone 1: (g1,g2) 6 s = 2.8 m, i.e. both measurements at the left of the damage;
zone 2: (g1,g2) P s = 2.8 m, i.e. both measurements at the right of the damage;
zone 3: (g1 < s = 2.8 m < g2) [ (g2 < s = 2.8 m < g1), i.e. one measurement at the left and one measurement
at the right of the damage.

Fig. 3a–f shows that the maximum error is always reached for measurements belonging to zones 1 and 2
(closed form solutions provided by Eqs. (39) and (42), respectively). More precisely, for small damage
(K = 10 GNm/rad), the percentage error on damage localization reaches values up to 40% for 1% measure-
ment error (Fig. 3a), and 50% for 5% measurement error (Fig. 3b) in zones 1 and 2. For moderate damage
(K = 4.6 GNm/rad), the percentage error reaches values up to 20% for 1% measurement error (Fig. 3c) and
50% for 5% measurement error (Fig. 3d). For severe damage (K = 1.5 GNm/rad), the percentage error reaches
values up to 10% for 1% measurement error (Fig. 3e) and 50% for 5% measurement error (Fig. 3f).

It can be observed that the measurement errors in the damage identification procedure are largely magnified
in those cases where measurements are taken both at the right or both at the left of the damage. Moreover, it
has to be remarked that the error propagation through the identification procedure is not proportional to the
measurement error.

Inspection of Fig. 3a–f show also that the sensitivity to measurement errors is considerably lower for those
measurement positions lying on different sides of the damage, i.e. zone 3, hence by adopting in the proposed
damage identification procedure the closed form expression provided by Eq. (35).

More precisely, for small damage (Fig. 3a and b) the level of the measurement errors of 1% and 5% could be
amplified in the damage position identification since the maximum values 2% and 20% are reached, respective-
ly; for moderate damage (Fig. 3c and d) the errors of 1% and 5% are not magnified in the damage position
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identification; on the contrary, for severe damage (Fig. 3e and f) the maximum error is 0.4% for 1% measure-
ment error and 2% for 5% measurement error.

It can be concluded that, for a given level of noise, the accuracy of the crack localization increases for
increasing levels of damage severity. In fact, when the damage is small, the crack-induced variations on the
beam deformation are masked by the errors on the measured data and, therefore, the estimate of the crack
location becomes worse.

5. Conclusions

This paper was concerned with the identification of a single crack in an elastic straight beam in bending
from the knowledge of static measurements. It was shown how an appropriate choice of pairs of measure-
ments of the damage-induced variations in the transversal displacements with respect to the crack position
may be useful for the unique identification of the damage. Closed form expressions for identification of crack
position and severeness were provided for different measurements positions. However, in practice, since the
measurement positions with respect to the crack are not known a priori, a procedure for damage localization,
based on detection of deflection measurements in a grid of points along the beam axis and successive appli-
cations of different closed form solutions, was proposed. Numerical results are in good agreement with the
theory.

The proposed identification procedure can be extended to cases of beams in presence of multiple cracks.
The case of a pinned–pinned beam with two cracks has been briefly discussed. However a consistent and more
general approach is currently under study and will be object of a forthcoming paper.

The effect of errors due to the presence of noise in the acquisition of experimental data was also explored. In
particular, the sensitivity to instrumental noise of the damage identification procedure was shown to be accept-
able when errors are small with respect to deflections induced by damage and the measurement points are cho-
sen in suitable regions of the beam axis. However, on the basis of the closed form solutions provided
throughout the paper, a full probabilistic analysis of the identified parameters by modelling the noise as sto-
chastic variables superimposed to the measured data will be object of a future study.
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