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Abstract 

We determine the maximum number of 1 x 1 x ... x 1 x n rods which will fit inside an 
arbitrary d-dimensional rectangular box, on condition that they be packed parallel to the edges 
of the box. 

1. Introduction 

By an al x a2 x ... x ad brick, or box, we mean a rectangular parallelpiped in 
d-dimensional Euclidean space with edges of lengths al, a2, . . . , ad. We may think of it 
as the set of points (X1,x2, . . . , Xd)E[WdWithO<Xi<UifOri=1,2,...,d.Muchhas 
been written on the general problem of how much of a given box can be filled with 
non-overlapping translates of bricks of specified sizes, usually under the following two 
assumptions: 

(1) Bricks may only be packed with their edges parallel to those of the box. 
(2) All edge lengths of bricks and boxes are integral. 
These are genuine restrictions, as it has been shown [7] that more bricks may 

sometimes be packed by placing them at skew angles, and also [Z] that irrational tiles 

(e.g. 1 x $) will pack a large area more efficiently than rational ones, the uncovered 
area for a large square of side x being at most O(log x) in one case, as against O(x) in 
the other. 

If the bricks have integral edge lengths, then subject to (1) we may as well assume 
that the box does too, for it is easy to see that the number of bricks which will fit into 
an a, x a2 x ... x ad box is not reduced when each ai is replaced by its integer part. (It 
suffices to show that replacing each translate u + A by [u] + A, where A is a brick 

‘Sadly, the author passed away on June 10, 1994. 
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with integral edges, and [u] denotes ([u,], [uZ], . . . , Cud]) for u = (u1,u2, . . . , ua) E Rd, 
causes no overlapping of the bricks. If u + A, u + B are translates of integral bricks 
A, B in the original packing, then each of [u] + A, Co] + B is a union of disjoint 
translates of the unit cube C = ((&, &, . . . , 0,) E [WdJ 0 < 0, < l}, so they can only 
overlap if they contain a common translate x -I- C where x E Zd. But then since 
u-[u],v-[v]~Cwehave 

x+u-[u]+u-[u]E(u-[u]+x+C) n (v-[u]+x+C)c (u+A) n (u+B) 

contradicting the disjointness of the original packing.) 
Here we shall assume (1) and (2). A brick is called harmonic if after a suitable 

permutation of edge lengths we have ai 1 a. l+lfor 1 < i< d- 1,andiscalledarodifall 
but one of the ai is equal to 1. If the remaining ai is equal to n we call it a rod of length 
n, or an n-rod. The remarks in the preceding paragraph show that there is no loss of 
generality in 2 dimensions in assuming that a brick has relatively prime edge lengths, 
and in particular that a harmonic brick is a rod since, for example, packing 4 x 6 
bricks into a 9 x 11 box is equivalent by change of scale to packing 2 x 3 bricks into 
a 4f x 5; and hence into a 4 x 5 box. 

The best packing of rods (and hence of harmonic bricks) in 2 dimensions appears to 
have been discovered independently by several people, but the first in-depth treatment 
was probably that of Brualdi and Foregger [6] who stated their result in the form of 
a max/min equality. They define a representing set to be a set of unit cells inside a given 
box which meets every brick no matter where it is placed inside the box. If one can 
exhibit a packing of k bricks into the box, and at the same time a representing set of 
k cells, it is then clear that both the packing and the representing set are optimal, in the 
sense that they use the maximum number of bricks and the minimum number of cells, 
respectively. Brualdi and Foregger showed that this is always possible for harmonic 
bricks in 2 dimensions, and also in 3 dimensions subject to certain restrictions. In 
particular the max/min equality holds for rods in 3 dimensions. They also showed that 
equality does not hold for any nonharmonic brick, so that the optimal packing and 
the optimal representing set are then more difficult to determine. 

Barnes and Shearer [S] studied representing sets for rectangles in the infinite plane 
and found that only in the harmonic case does the optimal density of a representing 
set equal the packing density of the brick. They determined the optimal representing 
set for all rectangles except those having length/width ratio greater than 2, with 
fractional part between j and 3. This gap still remains to be filled. Little is known in 
higher dimensions. 

Barnes Cl] gives the best packing of arbitrary m x n integral bricks in sufficiently 
large boxes, showing that the obvious necessary conditions derived from simulta- 
neous packing with m-rods and with n-rods are also sufficient when the box is large. 
There is reason to believe that this principle holds in higher dimensions for a brick 
whose edge lengths ai are pairwise coprime - hence the fundamental importance of 
knowing the best packing with rods. The reason for the coprime restriction is to 
ensure that an integer defined in [3], called the variety dimension, turns out to be zero. 
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This number gives an asymptotic measure of the rate of growth of the wasted volume 
in the best packing of a large box, and is zero when this wasted volume is bounded 
independently of the size of the box. 

In general, the best packing of a box with an arbitrary brick A is likely to be 
determined by the best packing with each harmonic brick which packs A, rather than 
by each rod which packs A. A key role is played byjakes, by which we mean bricks of 
typelxlx ... xlxnxnx +.. x n, a concept intermediate between that of a rod and 
a harmonic brick. For example it can be shown that an arbitrary set of cells in lRd can 
be packed with positive and negative’ copies of a brick A if and only if it can be so 
packed with copies of each flake which packs A. The only bricks with variety 
dimension greater than zero for which the best packing is known for all boxes are the 
1 x 2 x 2 and 1 x 2 x 4 bricks in 3 dimensions. The answer, recently determined in [4], 
suggests that the generalisation from rods to harmonic bricks is likely to be the most 
difficult step in a theory of best packing with arbitrary bricks. In this paper, we shall 
complete the first step of such a theory by showing that Brualdi and Foregger’s 
max/min equality holds for rods in d dimensions. 

2. Main results 

If an a, x a2 x ..a x ad box is to be packed with n-rods, we may assume that ai 2 n 
for 1 < i < d, for if say al < n then the only way to pack the box is to pack each 
lxazx ... x ad layer separately. Thus the problem merely reduces to one in d - 1 
dimensions. 

Let ri,r2, . . . . rd be the remainders when a,, a2, . . . , ad are divided by n, and let 
si=n-ri.Whend= 1, the optimal packing of a length al box with n-rods obviously 
leaves a hole of length rr. For d = 2, we may pack an al x a2 box leaving a hole of size 
either rl x r2 or s1 x s2 (see Fig. 1). 

Brualdi and Foregger call these packings Type I and Type II, respectively, and 
show that one of them is the optimal packing. Type I is optimal if rl + r2 < n and 
Type II is optimal if rl + r2 > n. (If rl + r2 = n, they both have the same size hole.) 

Let S be a subset of (1,2, . . . , d} of even cardinality, partitioned into pairs in an 
arbitrary way. Define tl, t2, . . . , td by 

ti = 
i 

li if i $ S, 
Si if i E S. 

For each i 4 S we pack a length ai box leaving a length ri hole, and for each pair (i, j) in 
the partition of S we pack an ai x aj box leaving an si x Sj hole. The Cartesian product 

‘A general&d form of packing using negative bricks is introduced in [3], e.g. superimposing a negative 
2 x 6 and positive 3 x 6 rectangle gives a packing of a 1 x 6 box with three positive and two negative 2 x 3 
bricks. 
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of all these packings gives a packing of an ai x a, x ..+ x ad box leaving a hole of size 
tl x tz x ‘.f x td. For a suitable choice of the set S, we will show that this packing is 
optimal by constructing a representing set which meets each rod in exactly one cell, 
but does not meet the hole. 

Theorem 1. Let S be a subset of { 1,2, . . . , d} of even cardinality for which x4= 1 ti is 
minimal. Then the packing described above is optimal - hence an al x a2 x .a. x ad box 
can accommodate precisely 

- f, [ fr ai - fI ii] 
i=l i=l 

n-rods. 

Remark. In practice tl, tZ, . . . , td (and hence $) may be computed from rl, r,, . . . , rd 
by arranging them in nonincreasing order and then complementing (i.e. subtracting 
from n) those pairs (rl, r2), (r3, r4), etc., whose sum exceeds n. 

Proof of Theorem 1. We define a perfect representing set (PRS) to be a set T of unit 
cells in Rd such that every n-rod contains exactly one cell of T. For example, if the cells 
are assigned integer coordinates in the obvious way, then those cells (x1,x2, . . . , &) 
with xf= 1 Xi E 0 (mod n) form a PRS. It is clear that any PRS must necessarily be 
periodic of period n in each direction, and hence may be specified by giving a set of 
rid-i cells in the n x n x ... x n torus which meets every n-rod. Also, applying an 
arbitrary translation to a PRS yields another PRS. Hence it will serve our purpose to 
findaPRSinsidethenxnx .a. x n torus, together with any tl x t2 x s-. x td subbox 
which does not meet this PRS. 

When x4= 1 ti is minimal we have ti + tj < n for all i # j since otherwise the pair 
(ti, tj) could be replaced by (n - ti, n - tj), and S replaced by its symmetric difference 
with {i, j}, thereby reducing the sum. In particular if a < b are the two largest tip we 
have a + b < n and hence a < in, from which it follows that a tl x t2 x ..a x td box 
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will fit inside an ax a x ... x a x (n - a) box. We construct a PRS which avoids this 
latter box. 

Label the cells of the n x n x ... x n torus with coordinates (xi, x2, . . . , xd) where 
1 6 xi < n. Now choose any a x a latin square based on the symbols 1,2, . . . , a. By 
a standard result (cf. Theorem 2.2 of [8]) an y r x s latin rectangle containing symbols 
1,2, . . . , n can be extended to an n x n latin square provided each symbol appears at 
least r + s - n times in the rectangle. In particular, since a + a - n d 0 we may extend 
our a x a latin square to an n x n latin square based on the symbols 1,2, . . . , n so that 
only the symbols 1,2, . . . , a appear in its initial a x a subsquare. We now regard the 
large square as a multiplication table, making { 1,2, . . . , n} into a (nonassociative!) 
semigroup, by defining the product x*y to be the entry in row x, column y. The set 
{1,2,..., u} is closed under this binary operation, i.e. forms a subsemigroup, and the 
product has the property that if one of x,y is fixed while the other runs through the 
values 1,2, . . . , n, then the product x*y runs through these same values in some order. 

We define an extended product xi *x2* ... *& by performing the operations from 
left to right - e.g. x * y * z means (x * y) * z. An easy induction on k shows that if all but 
one of the xi are held fixed while the remaining one runs through the values 1,2, . . . , n 
then the product x1 *x2 * ... *xk also runs through 1,2, . . , n in some order. 

Let T be the set of cells (x1,x2, . . . . xd) in the n x nx ... xn torus for which 
xi*x2*“‘*x&i = xd. The previous remark shows that T is a PRS and the fact that 
{1,2,...,u} is closed under the operation shows that T avoids the 
a x a x ... x a x (n - a) box consisting of those cells with 

1 ~ Xi f U, i= 1,2 )...) d- 1, a+ld&<n. 

This completes the proof. ??
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