On Henstock–Kurzweil and McShane integrals of Banach space-valued functions

Guoju Ye

College of Science, Hohai University, Nanjing 210098, PR China

Received 11 February 2006
Available online 7 September 2006
Submitted by B. Bongiorno

Abstract

This paper deals with the relation between the McShane integral and the Henstock–Kurzweil integral for the functions mapping a compact interval $I_0 \subset \mathbb{R}^m$ into a Banach space X and some other questions in connection with the McShane integral and the Henstock–Kurzweil integral of Banach space-valued functions. We prove that if a Banach space-valued function f is Henstock–Kurzweil integrable on I_0 and satisfies Property (P), then I_0 can be written as a countable union of closed sets E_n such that f is McShane integrable on each E_n when X contains no copy of c_0. We further give an answer to the Karták’s question.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Pettis integral; McShane integral; Henstock–Kurzweil integral

1. Introduction

It is known that the McShane integral and the Henstock–Kurzweil integral are two kinds of the Riemann-type integral. For real-valued functions the McShane integral is equivalent to the Lebesgue integral and the Henstock–Kurzweil integral is equivalent to the Perron integral. R.A. Gordon [7] generalized the definition of the McShane integral for real-valued functions to functions from intervals in \mathbb{R} to Banach spaces and discussed some of its properties. S.S. Cao in [10] defined the Henstock–Kurzweil integral for Banach space-valued functions. It is easy
to see from the corresponding definitions that for Banach space-valued functions the McShane integrability implies Henstock–Kurzweil integrability.

We are looking into the following problem: Is it true that if a Banach space-valued function f is Henstock–Kurzweil integrable on an interval I_0 then I_0 can be written as a countable union of closed sets E_n such that f is McShane integrable on each E_n?

This is an interesting and unanswered question. In this paper we give under suitable condition over the function f (see Property (P)) an affirmative answer to it when Banach space X contains no copy of c_0.

Furthermore, in his memoir [1] K.M. Ostaszewski mentioned that “the question posed by Kartáč in [5]—whether, for a Perron-integrable function, one can find a nondegenerate interval on which it is Lebesgue-integrable—remains unanswered.” For the one-dimensional real-function’s case this is a known result of [14] and for the Banach space’s case. Because the Henstock lemma does not hold in an infinite-dimensional Banach space (see [10]). In this paper, we use the other way to give an answer to the question posed by Kartáč in [5] for the m-dimensional case of the integrals of Banach-space-valued functions. This is to prove that for a Henstock–Kurzweil integrable function, one can find a non-degenerate interval on which it is McShane integrable when Banach space X contains no copy of c_0. Some other questions in connection with the McShane integral and the Henstock–Kurzweil integral are also studied.

2. Preliminaries

Let I_0 be a compact interval in \mathbb{R}^m (or \mathbb{R}^1) and $E \subset \mathbb{R}^m$ (or \mathbb{R}^1) a measurable subset of I_0. $\mu(E)$ stands for the Lebesgue measure. The Lebesgue integral of a function f over a set E will be denoted by $(L)\int_E f$. X is a real Banach space with the norm $\| \cdot \|$ and X^* its dual. $B(X^*) = \{x^* \in X^*; \|x^*\| \leq 1\}$ is the closed unit ball in X^*.

We say that the intervals I and J are nonoverlapping if $\text{int}(I) \cap \text{int}(J) = \emptyset$. By $\text{int} J$ the interior of J is denoted.

A partial M-partition D in I_0 is a finite collection of interval-point pairs (I, ξ) with nonoverlapping intervals $I \subset I_0$, $\xi \in I_0$ being the associated point of I. Requiring $\xi \in I$ for the associated point of I we get the concept of a partial K-partition D in I_0. We write $D = \{(I, \xi)\}$.

A partial M-partition $D = \{(I, \xi)\}$ in I_0 is an M-partition of I_0 if the union of all the intervals I equals I_0 and similarly for a K-partition.

Let δ be a positive function defined on the interval I_0. A partial M-partition (K-partition) $D = \{(I, \xi)\}$ is said to be δ-fine if for each interval-point pair $(I, \xi) \in D$ we have $I \subset B(\xi, \delta(\xi))$ where $B(\xi, \delta(\xi)) = \{t \in \mathbb{R}^m; \text{dist}(\xi, t) < \delta(\xi)\}$ and dist is the metric in \mathbb{R}^m.

Definition 1. An X-valued function f is said to be McShane integrable on I_0 if there exists $S_f \in X$ such that for every $\varepsilon > 0$, there exists $\delta(t) > 0$, $t \in I_0$, such that for every δ-fine M-partition $D = \{(I, \xi)\}$ of I_0, we have

$$\left\| (D) \sum f(\xi) \mu(I) - S_f \right\| < \varepsilon.$$

We write $(M)\int_{I_0} f = S_f$ and S_f is the McShane integral of f over I_0.

f is McShane integrable on a set $E \subset I_0$ if the function $f \cdot \chi_E$ is McShane integrable on I_0, where χ_E denotes the characteristic function of E.

We write $(M)\int_E f = (M)\int_{I_0} f \chi_E = F(E)$ for the McShane integral of f on E.

\[\text{Definition 1.} \]

An X-valued function f is said to be McShane integrable on I_0 if there exists $S_f \in X$ such that for every $\varepsilon > 0$, there exists $\delta(t) > 0$, $t \in I_0$, such that for every δ-fine M-partition $D = \{(I, \xi)\}$ of I_0, we have

$$\left\| (D) \sum f(\xi) \mu(I) - S_f \right\| < \varepsilon.$$

We write $(M)\int_{I_0} f = S_f$ and S_f is the McShane integral of f over I_0.

f is McShane integrable on a set $E \subset I_0$ if the function $f \cdot \chi_E$ is McShane integrable on I_0, where χ_E denotes the characteristic function of E.

We write $(M)\int_E f = (M)\int_{I_0} f \chi_E = F(E)$ for the McShane integral of f on E.

\[\text{Definition 1.} \]
It is well known that the McShane and the Lebesgue integrals are equivalent. Replacing the term “\(M\)-partition” by “\(K\)-partition” in the definition above we obtain Henstock–Kurzweil integrability and the definition of the Henstock–Kurzweil integral (HK) \(\int_{I_0} f\).

It is clear that if \(f : I_0 \rightarrow X\) is McShane integrable, then it is also Henstock–Kurzweil integrable because every \(K\)-partition is an \(M\)-partition.

The basic properties of the McShane integral and Henstock–Kurzweil integral, for example, linearity, additivity with respect to intervals, etc. can be found in [4–10,12,13,15–21]. We do not present them here. The reader is referred to the above mentioned references for the details.

3. The main results

By Proposition 3.5.4 of [19], the following lemma holds:

Lemma 2. If \(f : I_0 \rightarrow X\) is Henstock–Kurzweil (McShane) integrable on \(I_0\), then for each \(x^* \in X^*\), \(x^*(f)\) is Henstock–Kurzweil (McShane) integrable on \(I_0\) and \((HK)\int_{I_0} x^*(f) = x^*((HK)\int_{I_0} f)\).

In [11] it is shown that if a real-function \(f : I_0 \rightarrow R\) is Henstock–Kurzweil integrable on \(I_0\), then there exists a sequence of closed sets \(F_i \subset I_0, i \in \mathbb{N}\), such that \(\bigcup_{i} F_i = I_0\) and \(f\) is Lebesgue integrable on each \(F_i\). By Baire theorem, for each perfect set \(E\) there is \(F_{n_0}\) which contains a portion \(P = E \cap I\) of \(E\) such that \(f\) is McShane integrable on \(P\). So we have

Lemma 3. If a real-function \(f : I_0 \rightarrow R\) is Henstock–Kurzweil integrable on \(I_0\), then each perfect set contains a portion on which \(f\) is McShane integrable.

It is also easy to show that the following lemma holds (see [16]):

Lemma 4. If \(f : I_0 \rightarrow X\) is Henstock–Kurzweil integrable on \(I_0\), then \(f\) is Henstock–Kurzweil integrable on each subinterval \(I\) of \(I_0\).

By Lemmas 2 and 4, we obtain the following Lemma 5.

Lemma 5. Assume that \(f : I_0 \rightarrow X\) is Henstock–Kurzweil integrable on \(I_0\) and that for every \(x^* \in X^*\) the real function \(x^*(f) : I_0 \rightarrow \mathbb{R}\) is McShane integrable.

Then for every interval \(I \subset I_0\) we have

\[
(M)\int_{I} x^*(f) = x^*((HK)\int_{I} f).
\]

Lemma 6. Assume that \(f : I_0 \rightarrow X\) is Dunford integrable on \(I_0\) with the indefinite Dunford integral \(\nu\) defined by

\[
\nu(E) = (D)\int_{E} f \in X^{**}.
\]

Assume that \(\nu(J) = (D)\int_{J} f \in X\) for every interval \(J \subset I_0\). Then the following claims are equivalent:

\[\text{HK} \int_{I_0} f \]

\[x^* \int_{I_0} f \]

\[(HK) \int_{I_0} f \]

\[(M) \int_{I} x^*(f) \]

\[x^*((HK)\int_{I} f) \]

\[(HK)\int_{I} x^*(f) \]

\[x^*((HK)\int_{I} f) \]
(i) f is Pettis integrable;
(ii) for every sequence $J_i \subset I_0$, $i \in \mathbb{N}$, of nonoverlapping intervals the sum $\sum_{i=1}^\infty \nu(J_i)$ is norm convergent in X;
(iii) for every $\varepsilon > 0$ there is $\eta > 0$ such that
$$\|\nu(E)\| = \left\| (D) \int_E f \right\| < \varepsilon$$
provided $E \subset I_0$ is measurable with $\mu(E) < \eta$;
(iv) ν is countably additive.

This is Proposition 2B of [6] for the case of $I_0 \subset \mathbb{R}^m$. Note that in [6] D.H. Fremlin and J. Mendoza only proved above lemma for the case of $I_0 \subset \mathbb{R}^1$. In fact, it also holds if the interval I_0 is in \mathbb{R}^m.

Lemma 7. Suppose that the Banach space X contains no copy of the space c_0. Assume that $f : I_0 \to X$ is Henstock–Kurzweil integrable on I_0 and Dunford integrable on I_0 as well.

Then for every open set $G \subset I_0$ there exists $x_G \in X$ such that

$$\text{(M)} \int_G x^*(f) = x^*(x_G)$$

for every $x^* \in X^*$.

Proof. Given λ such that $0 < \lambda < 1$ an interval I in \mathbb{R}^m is called λ-regular if

$$r(I) = \frac{\mu(I)}{d(I)^m} > \lambda,$$

($r(I)$ is the regularity of the interval I) and $d(I) = \sup\{|x - y|; \ x, y \in I\}$, $|x - y| = \max\{|x_1 - y_1|, \ldots, |x_m - y_m|\}$, and $x = (x_1, \ldots, x_m), y = (y_1, \ldots, y_m)$.

Suppose that G is an open subset of I_0.

For $t \in G$ let $\delta(t) > 0$ be such that $B(t, \delta(t)) \subset G$.

Let $0 < \lambda < 1$ be fixed. Define

$$\Phi = \left\{ I \subset I_0, I \text{ is an interval; } t \in I \subset B(t, \delta(t)), r(I) > \lambda, t \in G \right\}.$$

Then Φ is a Vitali cover of G and if $I \in \Phi$ then $I \subset G$.

By the Vitali covering theorem (see, e.g., [13, Proposition 9.2.4]), there is a sequence $E_n, n \in \mathbb{N}$ (E_n is the finite union of nonoverlapping intervals belonging to Φ), such that

$$\mu(G \setminus E_n) < \frac{1}{n},$$

i.e., $\mu(G \setminus E_n) \to 0$ for $n \to \infty$ and $E_n \subset G$ for any $n \in \mathbb{N}$.

Denote $E_0 = \bigcup_{n=1}^\infty E_n$. Since $G \setminus E_0 \subset G \setminus E_n$ for every $n \in \mathbb{N}$ we have $\mu(G \setminus E_0) \leq \mu(G \setminus E_n) < \frac{1}{n}$ for every $n \in \mathbb{N}$ and consequently $\mu(G \setminus E_0) = 0$. This yields $\mu(E_0) = \mu(G)$.

Let us set $F_n = \bigcup_{i=1}^n E_i$. Then clearly $F_n \nearrow E_0$ for $n \to \infty$ and for every $n \in \mathbb{N}$ the set F_n can be expressed as a finite union of nonoverlapping intervals in \mathbb{R}^m.

Set $F_0 = \emptyset$ and define $K_n = F_n \setminus F_{n-1}^\circ$ where F_{n-1}° is the interior of the set F_{n-1}. We have $E_0 = \bigcup_{n=1}^{\infty} K_n$, $K_n \cap K_l^\circ = \emptyset$ for $n \neq l$ and again K_n can be expressed as a finite union of nonoverlapping intervals in \mathbb{R}^m, i.e.

$$K_n = \bigcup_{i=1}^{p_n} I_i^n,$$

while $\{I_i^n; i = 1, \ldots, p_n, n \in \mathbb{N}\}$ forms an at most countable system of nonoverlapping intervals contained in E_0.

Since $\bigcup_{n=1}^{p} K_n \subset E_0, p \in \mathbb{N}$, we have $\sum_{n=1}^{p} \mu(K_n) = \mu(\bigcup_{n=1}^{p} K_n) \leq \mu(E_0) = \mu(G) \leq \mu(I_0) < \infty$.

Given $x^* \in X^*$ the real function $x^*(f)$ is McShane integrable on I_0 and therefore it is also Lebesgue integrable on I_0.

Hence the Lebesgue integral $\int_{I_0} x^*(f)$ exists and

$$\int_{I_0} x^*(f) = \int_{E_0} x^*(f)$$

because $\mu(G \setminus E_0) = 0$ and $E_0 \subset G$.

Further we have

$$(M) \int_{G} x^*(f) = (M) \int_{E_0} x^*(f)$$

$$= (M) \int_{\bigcup_{n=1}^{\infty} K_n} x^*(f) = (M) \int_{\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{p_n} I_i^n} x^*(f)$$

$$= \sum_{n=1}^{\infty} \sum_{i=1}^{p_n} (M) \int_{I_i^n} x^*(f) < \infty.$$
\[
\sum_{n=1}^{\infty} \sum_{i=1}^{p_n} x^* \left((HK) \int_{I_i^n} f \right)
\]

of real numbers is unconditionally, and therefore also absolutely, convergent.

Since \(X \) contains no copy of \(c_0 \), by the Bessaga–Pełczynski theorem [3, p. 22] the series
\[
\sum_{n=1}^{\infty} \sum_{i=1}^{p_n} x^* \left((HK) \int_{I_i^n} f \right)
\]
and for \(N \to \infty \) the left-hand side of this equality converges to \(x^*(x_G) \) while the right-hand side converges to \((M) \int_G x^*(f) \). This yields \((M) \int_G x^*(f) = x^*(x_G) \) for every \(x^* \in X^* \) and the proof is complete. \(\square \)

Lemma 8. Suppose that the Banach space \(X \) contains no copy of the space \(c_0 \). Assume that \(f : I_0 \to X \) is Henstock–Kurzweil integrable on \(I_0 \) and that for every \(x^* \in X^* \) the real function \(x^*(f) : I_0 \to \mathbb{R} \) is McShane integrable.

Then for every closed set \(H \subset I_0 \) there exists an element \(x_H \in X \) such that
\[
(M) \int_H x^*(f) = x^*(x_H)
\]
for every \(x^* \in X^* \).

Proof. If \(H \subset I_0 \) is closed then \(I_0 \setminus H \) is open and for every \(x^* \in X^* \) we have
\[
x^* \left((M) \int_{I_0} f \right) = \int_{I_0} x^*(f) = \int_{I_0} x^*(f) + \int_{I_0 \setminus H} x^*(f) = \int_{I_0 \setminus H} x^*(f) + x^*(x_{I_0 \setminus H}),
\]
where for the open set \(I_0 \setminus H \) the element \(x_{I_0 \setminus H} \in X \) is given by Lemma 7.

Hence
\[
\int_H x^*(f) = x^* \left((M) \int_{I_0} f - x_{I_0 \setminus H} \right)
\]
and we put \(x_H = (M) \int_{I_0} f - x_{I_0 \setminus H} \in X \). \(\square \)

The next statement is a corollary of Lemma 6.

Corollary 9. Suppose that the Banach space \(X \) contains no copy of the space \(c_0 \). Assume that \(f : I_0 \to X \) is Henstock–Kurzweil integrable on \(I_0 \) and that for every \(x^* \in X^* \) the real function \(x^*(f) : I_0 \to \mathbb{R}^1 \) is McShane integrable. Then for every \(\varepsilon > 0 \) there is \(\eta > 0 \) such that
\[
\left\| (D) \int_E f \right\| < \varepsilon
\]
provided \(E \subset I_0 \) is measurable with \(\mu(E) < \eta \).
Proof. By Lemma 4, for every interval \(J \subset I_0 \) we have \(v(J) = (D) \int_J f = (HK) \int_J f \in X \).

Assume that \(J_i \subset I_0, i \in \mathbb{N}, \) is a sequence of nonoverlapping intervals. Then the Henstock–Kurzweil integral \((HK) \int_J f \in X \) exists for every \(i \in \mathbb{N} \) and by Lemma 5 we have \(x^*((HK) \int_{J_i} f) = (M) \int_{J_i} x^*(f) \) for \(i \in \mathbb{N} \).

It is easy to see, by McShane integrability of \(x^* f \) on \(I_0 \), that the series \(\sum_{i=1}^{\infty} x^*((HK) \int_{J_i} f) \) of real numbers is absolutely convergent.

Since \(X \) contains no copy of \(c_0 \), by the Bessaga–Pelczynski theorem [3, p. 22] the series \(\sum_{i=1}^{\infty} (HK) \int_{J_i} f = \sum_{i=1}^{\infty} (D) \int_{J_i} f \) is unconditionally convergent in norm to an element \(x \in X \).

Then (ii) of Lemma 6 is satisfied and therefore we obtain the corollary. \(\square \)

Theorem 10. Suppose that the Banach space \(X \) contains no copy of the space \(c_0 \). Assume that \(f : I_0 \rightarrow X \) is Henstock–Kurzweil integrable on \(I_0 \) and that \(f \) is Dunford integrable on \(I_0 \). Then \(f : I_0 \rightarrow X \) is Pettis integrable.

Proof. It follows at once from Lemma 8, Corollary 9 and Lemma 6. \(\square \)

Let us note that if the function \(f : I_0 \rightarrow X \) is Henstock–Kurzweil integrable, by Lemma 2, for each \(x^* \in X^* \) the real function \(x^*(f) \) is Henstock–Kurzweil integrable on \(I_0 \) and if we further assume that \(x^*(f) \) is McShane integrable on a subset \(H \) of \(I_0 \), then \(x^*(f) \) is Henstock–Kurzweil integrable on \(G = I_0 \setminus H \) and \((HK) \int_G x^*(f) = (HK) \int_{I_0} x^*(f) - (M) \int_H x^*(f) \).

Now we introduce the following concept:

Property (P). We say that a Henstock–Kurzweil integrable function \(f : I_0 \rightarrow X \) satisfies the property (P) if for every open subset \(G \) of \(I_0 \) there is a family \(\{I_n\} \) of nonoverlapping intervals \(I_n \) such that \(G = \bigcup_{n=1}^{\infty} I_n \), for each \(x^* \in X^* \) the function \(x^*(f) \) is McShane integrable on \(H = I_0 \setminus G \) and equality

\[
(HK) \int_G x^*(f) = (HK) \int_{I_0} x^*(f) - (M) \int_H x^*(f) = \sum_{n=1}^{\infty} (HK) \int_{I_n} x^*(f)
\]

holds, where the series of the right hand is absolutely convergent.

The following is an example of function defined on an compact interval of \(\mathbb{R}^m, m > 1 \), taking values in a Banach space which contains no copy of \(c_0 \) and satisfying Property (P).

Example. Let \(X \) be an infinite-dimensional Banach space and contain no copy of \(c_0 \). Suppose that a series \(\sum_{n=1}^{\infty} x_n \) in \(X \) is unconditionally convergent and not absolutely convergent. For every positive integers \(i, j \) let

\[
I_{i,j} = \left(\frac{1}{i+1}, \frac{1}{i} \right) \times \left(\frac{1}{j+1}, \frac{1}{j} \right) \subset \mathbb{R}^2.
\]

The set \(\{I_{i,j}\}_{i,j=1}^{\infty} \) is countable, we denote its elements by \(I_1, I_2, \ldots, I_n, \ldots \) for convenience.

Define a function \(f : [0, 1] \times [0, 1] \rightarrow X \) by \(f(t) = \frac{1}{\mu(I_{i,j})} x_n \) for \(t \) in \(I_n \) and \(f(t) = 0 \) for all other values of \(t \). Obviously, the function \(f \) is measurable. By Proposition 2.3.3 and Theorem 6.2.1 of [19], \(f \) is Henstock–Kurzweil integrable.
Since X contains no copy of c_0, then for each $x^* \in X^*$, $\sum_{n=1}^{\infty} |x^*(x_n)|$ is convergent. Hence,

$$\int_{I_0} |x^*(f)| = \sum_{n=1}^{\infty} \int_{I_n} |x^*(f)| = \sum_{n=1}^{\infty} |x^*(x_n)| < \infty.$$

It is easy to verify that for every open subset G of I_0 with $G = \bigcup_{k=1}^{\infty} J_k$ and $\{J_k\}$ is a family of nonoverlapping intervals, for each $x^* \in X^*$ the function $x^*(f)$ is McShane integrable on $H = I_0 \setminus G$ and the equality

$$\int_G x^*(f) = \int_{I_0} x^*(f) - (M) \int_H x^*(f) = \sum_{k=1}^{\infty} \int_{J_k} x^*(f)$$

holds. Therefore, f satisfies Property (P).

Lemma 11. Suppose that the Banach space X contains no copy of the space c_0 and $f : I_0 \to X$ is Henstock–Kurzweil integrable on I_0. Assume that for each $x^* \in X^*$ the function $x^*(f)$ is McShane integrable on a closed subset H of I_0 and f satisfies Property (P). Then there exists an element $x_H \in X$ such that

$$(M) \int_H x^*(f) = x^*(x_H)$$

for each $x^* \in X^*$.

Proof. For each $x^* \in X^*$, the real function $x^*(f)$ is Henstock–Kurzweil integrable on I_0 and by the McShane integrability of $x^*(f)$ on H, $x^*(f)$ is Henstock–Kurzweil integrable on the open set $G = I_0 \setminus H$. It follows from Property (P) that for each $x^* \in X^*$, $\sum_{n=1}^{\infty} (HK) \int_{I_n} x^*(f)$ is absolutely convergent and

$$(HK) \int_G x^*(f) = \sum_{n=1}^{\infty} (HK) \int_{I_n} x^*(f) < \infty. \quad (2)$$

On the other hand, Lemma 4 shows that f is Henstock–Kurzweil integrable on each subinterval I_n, $n \in \mathbb{N}$, and

$$(HK) \int_{I_n} x^*(f) = x^*\left((HK) \int_{I_n} f\right)$$

for each $x^* \in X^*$ and every $n \in \mathbb{N}$.

So, for each $x^* \in X^*$, (2) can be written as follows:

$$(HK) \int_G x^*(f) = \sum_{n=1}^{\infty} (HK) \int_{I_n} x^*(f) = \sum_{n=1}^{\infty} x^*\left((HK) \int_{I_n} f\right) < \infty \quad (3)$$

and $\sum_{n=1}^{\infty} x^*((HK) \int_{I_n} f)$ is absolutely convergent.

Since X contains no copy of c_0, by the Bessaga–Pelczynski theorem [3, p. 22] the series $\sum_{n=1}^{\infty} (HK) \int_{I_n} f$ is unconditionally convergent in norm to an element $x_G \in X$ and
\[
\begin{align*}
(HK) \int_G x^*(f) &= \sum_{n=1}^{\infty} (HK) \int_{I_n} x^*(f) = \sum_{n=1}^{\infty} x^* \left((HK) \int_{I_n} f \right) \\
&= x^* \left(\sum_{n=1}^{\infty} (HK) \int_{I_n} f \right) = x^*(x_G).
\end{align*}
\]

Hence,
\[
(M) \int_H x^*(f) = (HK) \int_{I_0} x^*(f) - (HK) \int_G x^*(f) = x^* \left((HK) \int_{I_0} f - x_G \right).
\]

Denote \(x_H = (HK) \int_{I_0} f - x_G \), then \(x_H \in X \) and \((M) \int_H x^*(f) = x^*(x_H) \). The lemma is proved. □

Remark. For 1-dimensional sense (\(I_0 \subset \mathbb{R}^1 \)), Property (P) in Lemma 11 can be removed. Because if \(I_0 \subset \mathbb{R}^1 \), \(G = I_0 \setminus H \) is an open set in \(I_0 \) and further let \(\{I_n\} \) be an enumeration of the intervals contiguous to \(H \). Then
\[
I_0 = H \cup G = H \cup \left(\bigcup_{n=1}^{\infty} I_n \right) \quad \text{and} \quad \mu(G) = \sum_{n=1}^{\infty} \mu(I_n).
\]

Theorem 15.10 of [9] (or Theorem 1 of [18]) shows that
\[
(HK) \int_G x^*(f) = (HK) \int_{I_0} x^*(f) - (M) \int_H x^*(f) = \sum_{n=1}^{\infty} (HK) \int_{I_n} x^*(f)
\]
and \(\sum_{n=1}^{\infty} (HK) \int_{I_n} x^*(f) \) is absolutely convergent. Therefore, Property (P) automatically holds. Hence, we have the following Corollary 12.

Corollary 12. Suppose that the Banach space \(X \) contains no copy of the space \(c_0 \) and \(f : I_0 \to X \) (\(I_0 \subset \mathbb{R}^1 \)) is Henstock–Kurzweil integrable on \(I_0 \). Assume that \(H \) is a closed set in \(I_0 \) and for each \(x^* \in X^* \) the real function \(x^*(f) \) is McShane integrable on \(H \). Then there exists an element \(x_H \in X \) such that
\[
(M) \int_H x^*(f) = x^*(x_H)
\]
for each \(x^* \in X^* \).

Remark. In the proof of Lemma 11, (1) is a key form. For the multidimensional Henstock–Kurzweil integral, (1) does not automatically hold, because from the Henstock–Kurzweil integrability of the function \(f \) on the interval \(I_0 \) one can not deduce that \(f \) is Henstock–Kurzweil integrable on a measurable subset of \(I_0 \) (see [19]). Therefore, taking notice of Theorem 10, we have the following Corollary 13.

Corollary 13. Suppose that the Banach space \(X \) contains no copy of the space \(c_0 \) and \(H \) is a closed set in \(I_0 \) (\(I_0 \subset \mathbb{R}^m \)). Assume that \(f \) is Henstock–Kurzweil integrable on \(H \) and further for
each $x^* \in X^*$ the real function $x^*(f)$ is McShane integrable on H. Then there exists an element $x_H \in X$ such that

$$(M) \int_H x^*(f) = x^*(x_H)$$

for each $x^* \in X^*$.

Proof. By Theorem 10 $f \chi_H$ is Pettis integrable on I_0 and therefore f is Pettis integrable on H, so there is an element $x_H \in X$ such that $(M) \int_H x^*(f) = x^*(x_H)$ for each $x^* \in X^*$. □

Theorem 14. Suppose that the Banach space X contains no copy of the space c_0 and $f : I_0 \to X$ is Henstock–Kurzweil integrable on I_0. Assume that f satisfies Property (P) and that f is Dunford integrable on a measurable set $E_0 \subset I_0$.

Then f is Pettis integrable on E_0.

Proof. The Dunford integrability of f on the measurable set $E_0 \subset I_0$ shows that $x^*(f)$ is McShane integrable on E_0. By Lemma 2, $x^*(f)$ is Henstock–Kurzweil integrable on I_0 for each $x^* \in X^*$. It follows that $x^*(f)$ is Henstock–Kurzweil integrable on $I_0 \setminus E_0$ and

$$(HK) \int_{I_0 \setminus E_0} x^*(f) = (HK) \int_{I_0} x^*(f) - (M) \int_{E_0} x^*(f).$$

To prove that f is Pettis integrable on E_0, we have to show that for every measurable $E \subset E_0$ there is $x_E \in X$ such that $(M) \int_E x^*(f) = x^*(x_E)$ for each $x^* \in X^*$.

In fact, for every measurable subset $E \subset E_0$ and for each $x^* \in X^*$, the McShane integrability of $x^*(f)$ on E_0 implies that $x^*(f)$ is McShane integrable on $E \subset E_0$. For each $n \in \mathbb{N}$, there is a sequence of closed subsets $H_n \subset E$ such that

$H_n \subset H_{n+1}$, \quad $\mu(E \setminus H_n) < \frac{1}{n}$

and

$\mu\left(E \setminus \bigcup_{n=1}^{\infty} H_n\right) = 0$.

By the absolutely continuity of the Lebesgue integral we have

$$(M) \int_E x^*(f) = \lim_{n \to \infty} (M) \int_{H_n} x^*(f).$$

It follows from Lemma 11 that there exist $x_{H_n} \in X$, $n = 1, 2, \ldots$, such that

$$(M) \int_{H_n} x^*(f) = x^*(x_{H_n})$$

and

$$(M) \int_E x^*(f) = \lim_{n \to \infty} (M) \int_{H_n} x^*(f) = \lim_{n \to \infty} x^*(x_{H_n}).$$
for each \(x^* \in X^* \).

Let \(H_0 = \emptyset \). Then for each \(x^* \in X^* \),

\[
\begin{align*}
(M) \int_{E} x^* (f) &= \lim_{n \to \infty} \left(M \int_{H_n} x^* (f) \right) \\
&= \sum_{n=1}^{\infty} \left[\left(M \int_{H_n} x^* (f) \right) - \left(M \int_{H_{n-1}} x^* (f) \right) \right] \\
&= \sum_{n=1}^{\infty} \left[x^*(x_{H_n}) - x^*(x_{H_{n+1}}) \right] = \sum_{n=1}^{\infty} x^*(x_{H_n} - x_{H_{n+1}}).
\end{align*}
\]

Since \(X \) contains no copy of \(c_0 \), by the Bessaga–Pełczynski theorem [3, p. 22], there is \(x_E \in X \) such that \(\sum_{n=1}^{\infty} (x_{H_n} - x_{H_{n+1}}) \) is unconditionally convergent in norm to \(x_E \in X \) and \((M) \int_{E} x^*(f) = x^*(x_E) \). Hence, \(f \) is Pettis integrable on \(E_0 \) and the proof is complete. \(\square \)

In [4, Theorem 8] D.H. Fremlin proved the following result for the case of an interval \(I_0 \subset \mathbb{R}^1 \).

Lemma 15. A function \(f : I_0 \to X \) is McShane integrable on \(I_0 \) if and only if it is Henstock–Kurzweil integrable and Pettis integrable.

Checking Fremlin’s proof it can be seen that it still holds when \(I_0 \) is an interval in \(\mathbb{R}^m \). In fact, Lemma 15 was also proved in [19] for the case of \(I_0 \subset \mathbb{R}^m \).

Remark. The theorem in [20, p. 535] points out that a function \(f : I_0 \to X \) is Pettis integrable, then \(f \) is Henstock–Kurzweil integrable. In fact, this result is not correct. Otherwise, suppose that the theorem in [20, p. 535] holds, this means that the Pettis integrable function \(f \) is Henstock–Kurzweil integrable on \(I_0 \). It follows immediately from Lemma 15 that \(f \) is McShane integrable on \(I_0 \). However, the example 3C [6, p. 143] and the example (CH) [21, p. 1184] show that there is a function \(f \) such that \(f \) is Pettis integrable but not McShane integrable.

We come now to our main results.

Theorem 16. Suppose that the Banach space \(X \) contains no copy of the space \(c_0 \). Assume that the function \(f : I_0 \to X \) is Henstock–Kurzweil integrable and satisfies Property (P). Then each perfect set contains a portion on which \(f \) is McShane integrable.

Proof. Let \(E \) be a perfect set in \(I_0 \) and let \(\Delta = \{ I_n \} \) be the sequence of all open intervals in \(I_0 \) that intersect \(E \) and have rational endpoints. Let \(E_n = E \cap I_n \), \(n = 1, 2, \ldots \). For each pair of positive integers \(m \) and \(n \) let \(E^n_m = \{ x^* \in X^*: \int_{E_n} |x^*(f)| \leq m \} \). Then \(X^* = \bigcup_{m}^{\infty} \bigcup_{n}^{\infty} E^n_m \).

In fact, for each \(m \) and \(n \) we have \(E^n_m \subset X^* \), so \(\bigcup_{m}^{\infty} E^n_m \subset X^* \). On the other hand, for every \(x^* \in X^* \), by Lemma 2, \(x^*(f) \) is Henstock integrable on \(I_0 \). It follows from Lemma 3 that each perfect set \(E \) contains a portion \(P = E \cap I \) on which \(x^*(f) \) is McShane integrable. So there is a \(n_0 \in N \) such that \(I_{n_0} \subset I \) and \(I_{n_0} \in \Delta \). Note that \(x^*(f) \) is McShane integrable on \(P = E \cap I \), then \(x^*(f) \) is McShane integrable on a portion \(E_{n_0} = E \cap I_{n_0} \subset E \cap I \) and therefore there is a \(m_0 \) such that \(\int_{E_{n_0}} |x^*(f)| \leq m_0 \). Therefore, \(x^* \in E^0_{m_0} \) and \(X^* \supset \bigcup_{m}^{\infty} \bigcup_{n}^{\infty} E^n_m \). That is, \(X^* \supset \bigcup_{m}^{\infty} \bigcup_{n}^{\infty} E^n_m \).
Now we prove that each of the sets E^n_m is closed.

Let x^* be a limit point of E^n_m and $\{x^*_k\}$ a sequence in E^n_m that converges to x^*. Then the sequence $\{|x^*_k f|\}$ converges pointwise on I_0 to the function $|x^*(f)|$ and by Fatou’s lemma we have

$$\int_{E^n_m} |x^*(f)| \leq \liminf_{k \to \infty} \left\{ \int_{E^n_m} |x^*_k f| \right\} \leq m.$$

This shows that $x^* \in E^n_m$ and conclude that the set E^n_m is closed.

By the Baire Category Theorem, there exist $M, N, x^*_0, r > 0$ such that $\{x^* : \|x^* - x^*_0\| \leq r\} \subset EN_M$.

For each x^* in X^* with $\|x^*\| \neq 0$, by $x^*_0 \in \{x^* : \|x^* - x^*_0\| \leq r\}, \frac{r}{\|x^*\|} x^* + x^*_0 \in \{x^* : \|x^* - x^*_0\| \leq r\}$, we find that

$$\int_{E^n_m} |x^*(f)| \leq \frac{\|x^*\|}{r} \left\{ \int_{E^n_m} \frac{r}{\|x^*\|} x^*(f) + x^*_0(f) \right\} + \int_{E^n_m} |x^*_0(f)| \right\} \leq 2M \frac{r}{\|x^*\|}.$$

Hence, for each x^* in X^* the function $x^*(f)$ is Lebesgue integrable on the portion $E_N = E \cap I_N$. This shows that f is Dunford integrable on $E \cap I_N$.

According to Theorem 14, we obtain that f is Pettis integrable on $E \cap I_N$. It follows from Lemma 15 that f is McShane integrable on $E \cap I_N = P_0$. □

Note that the “perfect set” in Theorem 16 may be replaced by “closed set”, the result still holds.

Remark. In the proof of Theorem 16, taking the perfect set E as a subinterval I of I_0, i.e., $E = I$, the portion $E_N = I \cap I_N$ of I is still a subinterval J of I_0. That is, $J = I \cap I_N$ is a subinterval of I_0. Checking the above proof it can be seen that f is Dunford integrable on the subinterval J. On the other hand, by Lemma 4, f is always Henstock–Kurzweil integrable on the subinterval J of I_0. It follows from Theorem 10 that f is Pettis integrable on J. By Lemma 15 f is McShane integrable on J. Hence, we obtain the following theorem.

Theorem 17. Suppose that the Banach space X contains no copy of the space c_0 and $I_0 \subset R^m$. If a function $f : I_0 \to X$ is Henstock–Kurzweil integrable, then there exists a subinterval J of I_0 such that f is McShane integrable on J.

This is an answer to Karták’s question from [1] for the Banach space case mentioned in the introduction.

Using the Baire Category Theorem and Theorem 9 in [17] (or Theorem 4.16 in [19]), the following theorem can be obtained.

Theorem 18. Suppose that the Banach space X contains no copy of the space c_0 and that a function $f : I_0 \to X$ is given. Then I_0 can be written as a countable union of closed sets E_n such that f is McShane integrable on each E_n if and only if every closed set contains a portion on which f is McShane integrable.

Combining Theorems 16 and 18, we obtain the statement as follows.
Theorem 19. Suppose that X contains no copy of the space c_0. Assume that a function $f : I_0 \to X$ is Henstock–Kurzweil integrable and satisfies Property (P). Then I_0 can be written as a countable union of closed sets E_n such that f is McShane integrable on each E_n.

Acknowledgments

The author expresses her thanks to the referee for valuable comments and suggestions. The author is also very grateful to Professor Schwabik for his help to finish this paper.

References