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1. INTRODUCTION

Consider the Lienard equation
X+ f(x)x +g(x)=0

or equivalently

x=y
y=—f(x)y —g(x),

where f and g are continuous functions on R. As we know, there have
been many studies on the existence and uniqueness of the limit cycles for

(1.1)
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the planar system (1.1) (cf. [6], for instance). If the functions f and g are
periodic in x of period 27, then Eq. (1.1) defines a system on the cylinder

H:0<x<2mw, ly| < oo,

and it may have a non-zero-homotopic orbit on H. The cylinder system of
this type can be found in the oscillating theory of applied sciences. Some
special forms of Eqg. (1.1) have been studied qualitatively and numerically
(see [2,4] and [3, pp. 449-473]). However, studies for the global behavior of
the general cylinder system (1.1) are relatively few. In 1959, Sansone [4]
investigated the existence of non-zero-homotopic periodic orbits of Eq.
(1.1) and proved that if f(x) > 0 and g(x) < 0 for all x, then Eq. (1.1) has
a periodic orbit of this type. In this paper, we are concerned with the
global behavior of Eq. (1.1) where both f and g may have roots and obtain
several new results on the existence and uniqueness of the periodic orbits.
Finally, as an application, we provide an example (Example 2.3) in which
we discuss completely the global behavior for a particular equation of the
form (1.1) appearing in [3, p. 449].

2. THE MAIN RESULTS AND PROOF

Throughout this paper we will always suppose that the continuous f and
g are 27r-periodic in x.
Let

H*:0<x<2m, y>0
H :0<x<2m, y <0.
Then
H=cl.(H'UH").
From (1.1) we have

dx = —f(x) - & y # 0. (2.1)

Clearly, there exists a constant M > 0 such that

g()

<M for0<x<27and|yl > 1.

—f(x) -

-

It follows that for a given & > 0, there exists N > 0 such that for any
solution (x(z, yo), y(¢, y,)) of (1.1) satisfying

x(0,y,) =0, y(0,¥5) =Yo, lyol = N
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it holds that for a unique ¢, with y,z, > 0,

x(ty,y9) = 2m,0 <x(t,y,) <2m,and |y(t,y,)l > 8
for 0 <t <t,s0n y,.

Hence, if |y,| = N, the orbit of the solution (x(¢, y,), y(¢, y,)) for 0 < ¢ <
t,Sgn y, can be represented as

y=Y(x,y,) for0<x<2m
with the property
Y(x,y,)l =8 for0<x<2m. (2.2)

Integrating (2.1) from 0 to x, we have

Y(x,y0) =yo = F(x) = Gy(x, o), (2.3)
where
RO = [T G = [T 2

From (2.2) thru (2.4), we have immediately

LEMMA 2.1. It holds uniformly for 0 < x < 27 that

lim [Y(x,yo)l = .

\y0|~>oc

Using Lemma 2.1, we can prove

THEOREM 2.1. Let

S [Td B [Tk ad €= [TFs(d

Then
@ lim |_,m(Y(27T Yo) — yo) = —A4
(i) lim,, |w(Y Qm,y,) —y&) = —2B if A=0;
(i) lim, _, (Y*Q7, yo) —yo) = -3C if A=B=0.

Proof. Equation (2.3) gives that

Y(2m,yy) =yo —A — Gy(27, y,).
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Obviously, from (2.4) and Lemma 2.1,

lim G,(27,y,) = 0.

\y0|~>oc

Hence, conclusion (i) follows.
Let 4 = 0. From (2.1) we have

ydy = —f(x) ydx — g(x) dx.

Integrating from 0 to x yields that

2Y20xv0) = yE] = = [ )Y (o yo) du = [ g(u) du. (25)
Substitution of (2.3) into the right-hand side of Eq. (2.5) produces that

Y2(x,y0) —y5 = F?(x) = 2yoF(x) = 2G(x) + 2Gy(x,,), (2.6)

where

G(x) = [[g(u)du,  Gy(x.y0) = [ f(w)Gy(w, yo) du. (27)
Since A = F(27) = 0, we have from (2.6)

Y?(2m,yy) = yi = —2B + 2Gy(2m, y,).

Now conclusion (ii) is evident since lim,  _,.G,(x, yo) = = from (2.7) and
Lemma 2.1. Similarly to (2.6) we can deduce that

H[Y2(xy0) —¥3] = —foxﬂ’zdu - fongdu
= ZfoGdu + fogdu —y2F(x) — 3F%(x)
0 0

+y,F2(x) = y,G(x) — 2[0sz du + ngGl du.

Notice that

j;fodu =F(x)G(x) — fongdu.
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We have
2@ ye) ~ il = —C - 2["fGy v + [sG

if A =B =0. Then the last conclusion follows similarly. The proof is
completed.

Using Theorem 2.1 we can determine the boundedness of the orbits of
Eqg. (1.1) on the half cylinder H* or H™ if |A| + |B| + |C| # 0. In most
cases this condition is sufficient for the boundedness of solutions. For
example, if 4 # 0or A =0, and B # 0, the behavior of the orbits of Eq.
(1.1) for |y,l large is as shown in Fig. 2.1.

From the first equation of (1.1) it is easy to see that any non-zero-homo-
topic periodic orbit of (1.1) does not intersect with the x-axis. Thus, we can
discuss the existence of such periodic orbits on H* or H~. In what follows
we develop our discussion on H*. First we have

THEOREM 2.2.  Suppose that A > 0. If g(x) < 0 for all x and
f(x) <0 when g(x) = 0, (2.8)
then Eq. (1.1) has exactly one periodic orbit on H* and no periodic orbit on
H™.

Proof. We first consider the case where g(x) <0 for all x. Then,
yly—o = —g(x) > 0. It follows from Theorem 2.1 that Eq. (2.1) has at least

21 0 2n 0 2n 0

2n

é"//
<

\ |/
/A

1/

(@) A>0 (b) A<O ) A=0,B=0 (d) A=0,B<0

FIGURE 2.1
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one 2-periodic solution of H*. For any 2#-periodic solution Y(x, y,) of
Eqg. (2.1), we have from (2.3)

A+ fozw%dx —o0. (2.9)

Note that Y(x, y,) # Y(x, y3) # 0 for y, # y;. It follows from (2.9) and
g(x) < 0 that there is a unique y, such that (2.9) is satisfied. Hence, we
have proved the theorem if g(x) < 0.

Next, we consider the general case. From the above discussion, for any
e > 0, the perturbed system

x=y

2.10
y=—f(x)y — (g(x) — &) (210)

has a unique periodic orbit

I:y=Y(x,y,(&))>0

with Y(0, y,(£)) = Y2, y,(&)) = y,(&). Note that T, is stable. We have

¢ — f(x)dt < 0. (2.11)
Fg
Let
Y(x,50(0)) = lim Y (x, yo(&)). (2.12)

Then y = Y(x, y,(0) (0 < x < 27) is a closed invariant curve of Eq. (1.1)
on H. We now prove that

Y(x,y,(0)) >0  forall x € [0,27]. (2.13)

I this is not the case, then without loss of generality, we may assume that,
Y(0, yo(0)) = y,(0) = 0. Note that y|,_o = —g(x). It follows easily that
g(0) = 0. That is, the origin is a critical point of Eq. (1.1). Thus, the curve
y = Y(x, y,(0)) represents a singular closed orbit Ty of Eqg. (1.1) on H.
Obviously from (2.12), lim,_, ,I', = T,. Therefore from (2.8) we have

e—>0"¢

Sﬁ—f(x)dt—>+oo as e—0,
L

which contradicts (2.11). Then (2.13) follows. Therefore, we obtain a
periodic orbit y = Y(x, y,(0)) of Eq. (1.1). The uniqueness of periodic
orbits follows from (2.9). This finishes the proof.
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ExampLE 2.1. From Theorem 2.2, the system

xX=y,
y=—(1—-2cosx)y —cosx+1
has a unique non-trivial periodic orbit on H.
In the case that g has different signs. The simplest case is that g has
exactly two roots on [0, 277). We will consider this case in the rest of this

paper. Without loss of generality we can assume that there exists x, €
(0, 27) such that

g(0) =0,(x —x5)g(x) >0  forx #x,,x e (0,27). (2.14)

THEOREM 2.3.  Suppose that

(iA>0,B<00orA=B=0,C>0;

(i) g € C* and g'(0) # 0;

(i) F(x) < F(y) forall 0 <y <x, <x < 2 satisfying G(x) = G(y).

Then Eq. (1.1) has a periodic orbit on H™.

Proof.  From condition (i) and Theorem 2.1 we have Y(2m, y,) <y, for
Yo > 0 sufficiently large. Hence, in order to prove the existence of a
periodic orbit on H, it suffices to prove that

Y(2,y,) > o for y, > 0 small. (2.15)

By condition (ii), the critical points (0,0) and (27, 0) are saddle points of
Eq. (1.1) (they are the same point on H). Making the so-called Lienard
transformation v =y + F(x), we have from Eq. (1.1)

x=v-F(x), 0= —-g(x). (2.16)
Further, noting (2.14) we introduce the Filippov transformation
Z = [ g(u) du = G(x) - G(x,) (2.17)
o
so that Eq. (2.16) becomes

dz
——=F(Z)-v, 0<Z<Z,i-12 (2.18)
U
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where F,(Z)=F(x/(2)), i=1,2, Z, = GQw) — G(x,), Z, = G(0) —
G(X,), and x,(Z) €[0,x,] for 0 <Z < Z,, and x,(Z) € [xy,27] for
0 < Z < Z, are inverse functions of (2.17). Note that

Z, - Z,=G(2m) — G(0) = B.
It follows from condition (i) that
Z, <2, (2.19)
Then, it is easy to see that condition (iii) is equivalent to
F(Z2) <F,(Z) for0<Z<Z,. (2.20)

By (2.20) and applying the comparison theorem (see [5]) of ordinary
differential equations to (2.18) we can prove that Eg. (1.1) has no non-triv-
ial zero-homotopic periodic orbits or separatrix loops (see [1] and [6,
Chapter 5]). Therefore, there are three cases on the relative positions of
separatrice of Eg. (1.1) on H™ as shown in Fig. 2.2.

Clearly, in the case shown in Fig. 2.2(c), inequality (2.15) holds. Hence,
we need to rule out the possibilities shown in Figs. 2.2 (a) and 2.2 (b). If
the case shown in Fig. 2.2 (a) occurs, then for the phase portrait of
separatrice of the planar system (2.16) we have the case shown in Fig. 2.3
(a.

Let P = (2m, A), and Q be the intersection point of the line x = x,
with the separatrix connecting the origin O and P. By applying the
comparison theorem to (2.18), it follows from (2.20) that the image of the
gr_bit segment 5_5 under the transformation (2.17) must lie below that of
Q P, and hence, Z, < Z,, (cf. Fig. 2.3 (b)). This contradicts (2.19). In the
same way, a contradiction arises in the case shown in Fig. 2.2 (b). This
finishes the proof.

N )
\_/

—~— \

(a) () (©

FIGURE 2.2




114 HAN AND JIANG

A A
y=Fx) N ]
KNS L N . 8)
///’——\ X _) / \\\\ \ﬁ{\\\ lll
4 /) RN
0 1 » x 0 < e 4
0/\-/ ‘\\ z //I Z1
__/ F]\s ’
(@) (b)
FIGURE 2.3

Remark 2.1. From the proof of Theorem 2.3, we know that under
conditions (ii) and the case shown in (iii), Fig. 2.2 (c) must appear if B < 0.
Similarly, we can prove that under the same conditions (ii) and (iii), the
case shown in Fig. 2.4 (a) must occur on H~ if B > 0. Especially, the case
shown in Fig. 2.4 (b) occurs if B = 0.

Therefore, it follows from Theorem 2.1 immediately

COROLLARY 2.1. Suppose that conditions (ii) and (iii) of Theorem 2.3
hold.

() If A >0, B =0, then Eq. (1.1) has a periodic orbit on H™.

(i) f A>0, B=0, or A=B=0, C>0, then Eq. (1.1) has two
non-zero-homotopic orbits on H.

Remark 2.2. If, instead of condition (iii) of Theorem 2.3, it holds that
(iii) F(x) > F(y) for all 0 <y <x, <x < 27 satisfying G(x) = G(y),
then we have Fig. 2.5.

(@) (B20) (b) B=0)

FIGURE 2.4
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FIGURE 2.5

Remark 2.3. Suppose that B <0, let y, € (0, x,) satisfy G(y,) —
G(xy) = Z,. If F(x) <F(y) for all y, <y <x, <x <2, then (2.20)
(and therefore, condition (iii) of Theorem 2.3) holds.

ExampLE 2.2. Consider the system

x=y,
) . ™ R (2.21)
y=—(cosx+ Ay + sm(x + E) + sin—.

where A is a constant. Using Theorem 2.3 and Remark 2.3, we can prove
that if 0 < A < 2y/2 /3, then (2.21) has a periodic orbit on H™.

First, note that the function sin(x + 7/8) + sin 7/8 has exactly two
simple roots — 7/4 and 7 on the interval [— 7/4, 2 — m/4). Moving the
critical points (—a/4,0) to the origin, we have from (2.21) that

x=y,

. aw A aw . m
y = —(cos(x— Z) + /\)y +sm(x— E) +sm§.

Then, we have

f(x) = cos(x - ;) + A, g(x) = —sin(x - g) - sing.

It is easy to see that

. ™ 1
F(x) =sm(x—z) + Ax + —= and

V2

m v v
G(x) = cos(x - —) — COS— — xsin—,
8 8 8
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and
T T
A = 2mA, B = —27TS|I"I§, and Xg=m+ 1

Let y, = m— /8. Then it is direct that G(y,) = B. Since 0 < A <
2V2 /3w < cos /8 we can examine that

f(ye) <O and F(x,) 2 A. (2.22)

Note that f has exactly two simple roots on [0,27] which belong to
(Bm/4,y4) U (xq,27). It follows from (2.22) that F(y) > F(x,) > F(x) for
vo <y <x, <x < 2. Hence, the conclusion follows from Theorem 2.3
and Remark 2.3. For the uniqueness of the periodic orbits we have

THEOREM 2.4.  Suppose that (2.14) holds. If
F(x)=0,#0 for 0 <x < x,,
F(x) <A, #4 forxy <x <2,
then Eq. (1.1) has at most one periodic orbit on H* or on H™. Therefore, Eq.

(1.1) has at most two non-zero-homotopic periodic orbits on H.

Proof. Let L:y =y(x) > 0 be a periodic orbit of Eqg. (1.1) on H*. It
suffices to prove that

I(L) =¢ —f(x)dt <0. (2.23)
We have
I(L) =f02”— ig; dx

e ) e S
e AR LR M
=7, +1, (2.24)

[N

Put v(x) = y(x) + F(x); then

dy(x X
v'(x) = % +f(x) = - igxg .

Hence, v'(x) < 0 for x € (x,, 27r). It follows from our assumption that

v(x) —F(x)=zv(x) —A=v(2m) - A for x € (x,,27).
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Therefore,
=
i <F<; (—xz)wic)U)(:)v ()
- u(lic(jw—) ;(io) * Li”u<x3”i(?<x>
< u(ic(jw—) ;(:o) ¥ f(_> =

U(xo) —A
) — Flag) =¥

since 4 > F(x,). In the same way, we can prove that J; < 0. Thus, from
(2.24) we have I(L) < 0. This shows that any periodic orbit L must be
asymptotically stable. hence, it must be unique if it exists on H™.

If L is situated on H: y(x) < 0. Then, instead of (2.24), we have

I(L)=j;;—§§i;dx

_ j'ZWf(x) de

y(x)
B xof(x) quf(x)
_fo y(x) dx+/xo y(x) &

I+,

Since, in this case, we have

v'(x) = —%>0 for x € (x4,27),

we can prove that fz < 0 and J: < 0 using the same method we used
previously. Hence, we obtain again that I(L) < 0. This proves that L is a
unique periodic orbit on H~. The proof is completed.

From Theorem 2.4 and the discussion of Example 2.2, Eq. (2.21) has a
unique periodic orbit on H* for A = 2\/5/377.



118 HAN AND JIANG

COROLLARY 2.2. Suppose that f(x) <0 (or = 0) for all x € R. Then
Eq. (1.1) has at most one non-zero-homotopic periodic orbit on H.

Proof. From the proof of Theorem 2.4, Eq. (1.1) has at most one
periodic orbit on H* or H~. Hence, it is sufficient to prove that Eq. (1.1)
cannot have a periodic orbit on both H* and H~ at the same time. Let
L:y = Y(x, y,) be a periodic orbit of Eg. (1.1) on H. Then, from (2.5) we
have

B =~ ["/(x)Y(x,yo) dx.

This gives the desired conclusion since both f(x) and Y(x, y,) keep the
constant sign.

ExampPLE 2.3. Consider the cylinder system
x=y,
y=—(p+cosx)y+ ksinx,

where k # 0 is a constant and w is supposed to be a parameter. Equation
(10-5) of [3] with A, = 0 can be reduced to the above equation. Without
loss of generality, we may assume that & = 1 in Eq. (2.25). We prove that
there exists a critical value u = u, € (0,1) such that if and only if
o < m < 1(resp., 0 < u < py), Eq. (2.25) has a unique non-trivial zero-
homotopic periodic orbit on H (resp., precisely two non-zero-homotopic
periodic orbits on H). The bifurcation diagrams are shown in Fig. 2.6.
In fact, let

f(x) = pw + cos x, g(x) = —sinx, Xy = T, A =27u,

(2.25)

F(x) =]xf(u) du = px + sin x, and
0

G(x) = Axg(u) du = cos x — 1.

=Sl=l=
= B A

p=1 Ho<u<l u=u, O<p<p, n<o

@) (b) © @ (e)

FIGURE 2.6
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Then

f\' 1+ pucosx )
| =——=5—>0 forxe (0,27),x# 7, if |ul <1,
g sin“x
and F(x) > 0(<A)for0<x <7 (m<x<2m), if u>0.

It follows from Theorem 2.4 and [7] that

(i) Equation (2.25) has at most one periodic orbit on H* or H~ for
w=>0.

(ii) Equation (2.25) has at most one non-trivial zero-homotopic periodic
orbit on H for |ul < 1.

Further, G(x) = G(y), 0 <y < 7 <x <2, implies that y =27 — x.
Hence, for m# < x < 27, we have

F(x) —F(y)=2u(x — m) + 2sinx

> 2 - +sinx]| >0 if w=>1,
[(x — ) x] if (2.26)
<0 if u<0.
It follows from [1, 6] that
(iii) Equation (2.25) has no non-trivial zero-homotopic periodic orbits
and separatrix loopson H if u <0or u > 1.

The case shown in Fig. 2.6 (a) follows from Theorem 2.1, conclusions (i)
and (iii) above, and Remark 2.2. Note that the critical point (s, 0) is stable
(unstable) if w > 1(< 1) since f'(7w) = u — 1. For u = 1, it is stable from
(2.26). Therefore, for u < 1 and | uw — 1| small, Eq. (2.25) has a stable limit
cycle generated from the point (4, 0). It is easy to examine that Eq. (2.25)
forms a rotated vector field with respect to w [6, Chapter 3]. Hence, the
limit cycle expands with w decreasing from 1. Observe that the vector field
(2.25) is symmetric with respect to the point (7, 0): it is invariant under the
change of (x,y) » 27 — x, —y). From conclusions (i) and (iii) above,
there must be a value u = u, € (0,1) such that the cases shown in Figs.
2.6 (b) and 2.6 (c) appear. And then, the cases shown in Figure 2.6 (d) and
2.6 (e) follow from conclusion (ii) above, Theorem 2.1, Corollary 2.1, and
the theory of rotated vector fields [6].
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