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SUMMARY

The functional consequences of signaling receptor
endocytosis are determined by the endosomal sort-
ing of receptors between degradation and recycling
pathways. How receptors recycle efficiently, in
a sequence-dependent manner that is distinct from
bulk membrane recycling, is not known. Here, in
live cells, we visualize the sorting of a prototypical
sequence-dependent recycling receptor, the beta-2
adrenergic receptor, from bulk recycling proteins
and the degrading delta-opioid receptor. Our results
reveal a remarkable diversity in recycling routes at
the level of individual endosomes, and indicate that
sequence-dependent recycling is an active process
mediated by distinct endosomal subdomains
distinct from those mediating bulk recycling. We
identify a specialized subset of tubular microdo-
mains on endosomes, stabilized by a highly localized
but dynamic actin machinery, that mediate this sort-
ing, and provide evidence that these actin-stabilized
domains provide the physical basis for a two-step
kinetic and affinity-based model for protein sorting
into the sequence-dependent recycling pathway.

INTRODUCTION

Cells constantly internalize a large fraction of proteins from their

surface and the extracellular environment. The fates of these

internalized proteins in the endosome have a direct impact on

several critical functions of the cell, including its response to

environmental signals (Lefkowitz et al., 1998; Marchese et al.,

2008; Sorkin and von Zastrow, 2009).

Internalized proteins have three main fates in the endosome.

First, many membrane proteins, such as the transferrin receptor
(TfR), are sorted away from soluble proteins, largely by bulk

membrane flow back to the cell surface. This occurs via the

formation and fission of narrow tubules that have a high ratio

of membrane surface area (and therefore membrane proteins)

to volume (soluble contents) (Mayor et al., 1993). Several

proteins have been implicated in the formation of these tubules

(Shinozaki-Narikawa et al., 2006; Cullen, 2008; Traer et al.,

2007), which provide a geometric basis to bulk recycling and

explain how nutrient receptors can recycle leaving soluble

nutrients behind to be utilized in the lysosome (Dunn and

Maxfield, 1992; Mayor et al., 1993; Maxfield and McGraw,

2004). Second, many membrane proteins are transported to

the lysosome to be degraded. This involves a process called

involution, where proteins are packaged into vesicles that bud

off to the interior of the endosome and, in essence, converts

these proteins into being a part of the soluble contents (Piper

and Katzmann, 2007). Involution has also been studied exten-

sively, and the machinery responsible, termed ESCRT complex,

identified (Hurley, 2008; Saksena et al., 2007; Williams and Urbé,

2007). Third, several other membrane proteins, such as many

signaling receptors, escape the bulk recycling and degradation

pathways, and are instead recycled in a regulated manner (Ha-

nyaloglu and von Zastrow, 2008; Yudowski et al., 2009). This

requires a specific cis-acting sorting sequence present on the

receptor’s cytoplasmic surface (Cao et al., 1999; Hanyaloglu

and von Zastrow, 2008). How receptors use these sequences

to escape the involution pathway and recycle, though they are

excluded from the default recycling pathway (Maxfield and

McGraw, 2004; Hanyaloglu et al., 2005), is a fundamental cell

biological question that is still unanswered.

Although it is clear that different recycling cargo can travel

through discrete endosomal populations (Maxfield andMcGraw,

2004), endosome-to-plasma membrane recycling from a single

endosome is generally thought to occur via a uniform population

of tubules. Contrary to this traditional view, we identify special-

ized endosomal tubular domains mediating sequence-depen-

dent recycling that are kinetically and biochemically distinct
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Figure 1. B2AR Is Enriched in Endosomal Tubular Domains Devoid of DOR

(A) HEK293 cells stably expressing FLAG-B2AR, labeled with fluorescently-tagged anti-FLAG antibodies, were followed by live confocal imaging before (left) and

after 5 min (right) of isoproterenol treatment. Arrows show internal endosomes.

(B) Example endosomes showing tubular domains enriched in B2AR (arrowheads) with one enlarged in the inset.

(C) Examples of DOR endosomes. DOR is smoothly distributed on the endosomal membrane and is not detected in tubules.

(D) Average fluorescence of B2AR (red circles) and TfR (green diamonds) calculated across multiple tubules (n = 123 for B2AR, 100 for TfR). B2AR shows a 50%

enrichment over the endosomal membrane, while TfR is not enriched. Each point denotes an individual tubule, the bar denotes the mean, and the gray dotted line

denotes the fluorescence of the endosomal membrane.

(E) An endosome containing both internalized B2AR and DOR, showing a tubule containing B2AR but no detectable DOR (arrowheads).

(F) Trace of linear pixel values across the same endosome, normalized to the maximum, confirms that the tubule is enriched for B2AR but not DOR.

(G) Linear pixel values of endosomal tubules averaged across 11 endosomes show specific enrichment of B2AR in tubules.

Error bars are SEM. See also Figure S1 and Movie S1 and Movie S2.
from the domains that mediate bulk recycling. These domains

are stabilized by a local actin cytoskeleton that is required and

sufficient for receptor recycling. We propose that such special-

ized actin-stabilized domains provide the physical basis for over-

coming a kinetic barrier for receptor entry into endosomal

tubules and for affinity-based concentration of proteins in the

sequence-dependent recycling pathway.

RESULTS

Visualization of Receptor Sorting in the Endosomes
of Living Cells
The beta 2-adrenergic receptor (B2AR) and the delta opioid

receptor (DOR) provide excellent models for physiologically rele-

vant proteins that are sorted from each other in the endosome.

Although they share endocytic pathways, B2AR is recycled effi-

ciently in a sequence-dependent manner while DOR is selec-

tively degraded in the lysosome (Cao et al., 1999; Whistler

et al., 2002). To study the endosomal sorting of these cargo

molecules, we started by testing whether tubulation was

involved in this process. Because such sorting has not been

observed in vivo, we first attempted to visualize the dynamics

of receptor sorting in live HEK293 cells expressing fluorescently

labeled B2AR or DOR receptors, using high-resolution confocal

microscopy. Both receptors were observed mostly on the cell
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surface before isoproterenol or DADLE, their respective

agonists, were added. After agonist addition, both B2AR

(Figure 1A) and DOR (data not shown) were robustly internalized,

and appeared in endosomes within 5 min (Figure 1A and Movie

S1 available online). As a control, receptors did not internalize

in cells not treated with agonists, but imaged for the same period

of time (Figure S1A). The B2AR-containing endosomes colocal-

ized with the early endosome markers Rab5 (Figure S1B) and

EEA1 (data not shown), consistent with previous data.

Internalized B2AR (Figure 1B), but not DOR (Figure 1C), also

labeled tubules that extended from the main body of the

receptor. When receptor fluorescence was quantified across

multiple B2AR-containing tubules, we saw that receptors were

enriched in these tubules compared to the rest of the endosomal

limiting membrane (Figure 1D). The bulk recycling protein TfR, in

contrast, was not enriched in endosomal tubules (Figure 1D).

This suggests that sequence-dependent recycling receptors

are enriched by an active mechanism in these endosomal

tubules.

These endosomal tubules were preferentially enriched for

B2AR over DOR on the same endosome. In cells coexpressing

FLAG-tagged B2AR and GFP-tagged DOR, we observed endo-

somes that contained both receptors within 5 min after coapply-

ing isoproterenol and DADLE. Notably, these endosomes

extruded tubules that contained B2AR but not detectable DOR



Figure 2. Membranes Derived from Endosomal Tubules Deliver B2AR to the Cell Surface

(A) Frames from a representative time lapse series showing scission of a vesicle that contains B2AR but not detectable DOR, from an endosomal tubule.

(B) An image plane close to the plasmamembrane in cells coexpressing SpH-B2AR and FLAG-B2AR (labeled with Alexa555), exposed to isoproterenol for 5 min,

and imaged by fast dual-color confocal microscopy. Arrows denote the FLAG-B2AR-containing membrane derived from the endosomal tubule that fuses.

(C) Fluorescence trace of the B2AR-containing membranes from the endosome in movie S4, showing the spike in SpH-B2AR fluorescence (fusion) followed by

rapid loss of fluorescence.

Scale bars represent 1mm. See also Figure S1 and Movie S3 and Movie S4.
(e.g., in Figure 1E and in Movie S2). Fluorescence traces across

the endosome and the tubule confirmed that DOR was not

detectable in these B2AR tubules, suggesting that B2AR was

specifically sorted into these tubular domains (e.g., in Figure 1F).

When linear pixel values frommultiple sorting events were quan-

tified, B2ARwas enriched�50% in the endosomal domains from

which tubules originate, compared to the endosomal membrane

outside these domains (Figure 1G). Thus, these experiments

resolve, for the first time, individual events that mediate sorting

of two signaling receptors in the endosomes of live cells.
B2AR-ContainingEndosomal TubulesDeliver Receptors
to the Cell Surface
To test whether these tubules mediated recycling of B2AR, we

visualized direct delivery of receptors from these tubules to the

cell surface. In endosomes containing internalized B2AR and

DOR, these tubular domains pinched off vesicles that contained

B2AR but not detectable levels of DOR (Figure 2A andMovie S3).

To reliably assess if these vesicles traveled to the surface and

fused with the plasma membrane, we combined our current

imaging with a method that we have used previously to visualize

individual vesicle fusion events mediating surface receptor

delivery (Yudowski et al., 2006). Briefly, we attached the pH-

sensitive GFP variant superecliptic pHluorin to the extracellular
domain of B2AR (SpH-B2AR) (Miesenböck et al., 1998). SpH-

B2AR is highly fluorescent when exposed to the neutral pH at

the cell surface, but is quenched in the acidic environments of

endosomes and intracellular vesicles. This allows the detection

of individual fusion events of vesicles containing B2AR at the

cell surface (Yudowski et al., 2009). In cells coexpressing SpH-

B2AR and B2AR labeled with a pH-insensitive fluorescent dye

(Alexa-555), vesicles derived from the endosomal tubules traf-

ficked to the cell surface and fused, as seen by a sudden

increase in SpH fluorescence followed by loss of fluorescence

due to diffusion (Figure 2B, and Movie S4). A fluorescence trace

from movie S4 confirmed the fusion and loss of B2AR fluores-

cence (Figure 2C). Also, Rab4 and Rab11, which function in

endosome-to-plasma membrane recycling (Zerial and McBride,

2001; Maxfield and McGraw, 2004), were localized to the

domains containing B2AR (Figure S1). Together, this indicates

that the B2AR-containing endosomal tubules mediate delivery

of B2AR to the cell surface.
B2AR-Containing Tubules Are Marked by a Highly
Localized Actin Cytoskeleton
We next examined whether the B2AR-containing microdomains

were biochemically distinct from the rest of the endosomal

membrane. We first focused on actin, as the actin cytoskeleton
Cell 143, 761–773, November 24, 2010 ª2010 Elsevier Inc. 763



Figure 3. B2AR Tubules Are Marked by a Highly Localized Actin Cytoskeleton

(A) Cells coexpressing fluorescently labeled B2AR and actin-GFP exposed to isoproterenol for 5 min. The boxed area is enlarged in the inset, with arrowheads

indicating specific concentration of actin on B2AR endosomal tubules.

(B) Time lapse series from an example endosome with B2AR and coronin-GFP. Coronin is detectable on the endosomal tubule (arrows) and on the vesicle (arrow-

heads) that buds off the endosome.

(C) A trace of linear pixel values across the same endosome, normalized to maximum fluorescence, shows coronin on the endosomal domain and the vesicle.

(D) Example structured illumination image of a B2AR endosome showing specific localization of coronin to a B2AR tubule (arrowheads).

(E) Electronmicrograph of an HRP-positive endosome (arrow) showing actin filaments (labeled with 9 nm gold, arrowheads) along a tubule. The right panel shows

an enlarged view.

See also Movie S5 and Movie S6.
is required for efficient recycling of B2AR but not of TfR (Cao

et al., 1999; Gage et al., 2005), and as it has been implicated in

endosome motility (Stamnes, 2002; Girao et al., 2008) and

vesicle scission at the cell surface (Yarar et al., 2005; Perrais

and Merrifield, 2005; Kaksonen et al., 2005). Strikingly, in cells

coexpressing B2AR and actin-GFP, actin was concentrated on

the endosome specifically on the tubular domains containing

B2AR (Figure 3A). Virtually every B2AR tubule observed showed
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this specific actin concentration on the tubule (n = 350). As with

actin, coronin-GFP (Uetrecht and Bear, 2006), an F-actin binding

protein, also localized specifically to the B2AR-containing

tubules on endosomes (Figure 3B), confirming that this was

a polymerized actin cytoskeleton. Coronin was also observed

on the B2AR-containing vesicle that was generated by dynamic

scission of the B2AR tubule (Figure 3B and Movie S5). Fluores-

cence traces of the linear pixels across the tubule and the vesicle



confirmed that coronin pinched off with the B2AR vesicle

(Figure 3C).

We also used two separate techniques to characterize actin

localization on these tubules beyond the �250 nm resolution

offered by conventional microscopy. First, we first imaged the

localization of coronin on endosomes containing B2AR tubules

using structured illumination microscopy (Gustafsson et al.,

2008), which resolves structures at �100 nm spatial resolution.

3D stacks obtained using this high-resolution technique

confirmed that coronin was specifically localized on the endoso-

mal tubule that contained B2AR (Figure 3D and Movie S6).

Second, we examined the morphology of actin on endosomal

tubules at the ultrastructural level by pre-embedding immunoe-

lectron microscopy. Actin was clearly labeled as filaments lying

along tubules extruded from endosomal structures (Figure 3E).

Actin Is Dynamically Turned over on the B2AR-
Containing Endosomal Tubules
We then tested whether the actin filaments on these tubules

were a stable structure or were dynamically turned over. When

cells expressing actin-GFP were exposed to latrunculin, a drug

that prevents actin polymerization, endosomal actin fluores-

cence became indistinguishable from the ‘‘background’’ cyto-

plasmic fluorescence within 16–18 s after drug exposure (e.g.,

in Figure 4A). When quantified across multiple cells, endosomal

actin fluorescence showed an exponential loss after latrunculin

exposure, with a t1/2 of 3.5 s (99% Confidence Interval = 3.0 to

4.1 s) (Figure 4B), indicating that endosomal actin turned over

quite rapidly. As a control, stress fibers, which are composed

of relatively stable capped actin filaments, were turned over

more slowly in these same cells (e.g., in Figure S2A). Endosomal

actin was lost in >98% of cells within 30 s after latrunculin, in

contrast to stress fibers, which persisted for over 2 min in

>98% of cells (Figure S2B). Rapid turnover of endosomal actin

was also independently confirmed by fluorescence recovery

after photobleaching (FRAP) studies. When a single endosomal

actin spot was bleached, the fluorescence recovered rapidly

within 20 s (Figure 4C). As a control for more stable actin fila-

ments, stress fibers showed little recovery of fluorescence after

bleaching in this interval (Figure 4C). Exponential curve fits

yielding a t1/2 of 8.26 s (99% CI = 7.65 to 8.97 s), consistent

with rapid actin turnover (Figure 4D). In contrast, only part of

the fluorescence (�30%) was recovered in stress fibers in the

same cells by 20 s, with curve fits yielding a t1/2 of 50.35 s

(99% CI = 46.05 to 55.54 s). These results indicate that actin is

dynamically assembled on the B2AR recycling tubules.

Considering the rapid turnover of actin, we next explored the

machinery responsible for localizing actin at the tubule.

The Arp2/3 complex is a major nucleator of dynamic actin poly-

merization that has been implicated in polymerization-based en-

dosome motility (Stamnes, 2002; Girao et al., 2008; Pollard,

2007). Arp3, an integral part of the Arp2/3 complex useful for

visualizing this complex in intact cells (Merrifield et al., 2004),

was specifically concentrated at the base of the B2AR tubules

on the endosome (e.g., in Figure 4E and fluorescence trace in

Figure 4F, Movie S7). Every B2AR tubule observed had a corre-

sponding Arp3 spot at its base (n = 200). Surprisingly, however,

we did not see N-WASP andWAVE-2, canonical members of the
twomain families of Arp2/3 activators (Millard et al., 2004), on the

endosome (Figure 4G). Similarly, we did not see endosomal

recruitment of activated Cdc42, as assessed by a previously

characterized GFP-fusion reporter consisting of the GTPase

binding domain of N-WASP (Benink and Bement, 2005)

(data not shown). All three proteins were readily detected at

lamellipodia and filopodia as expected, indicating that the

proteins were functional in these cells. While we cannot rule

out a weak or transitory interaction of these activators with

Arp2/3 at the endosome, the lack of enrichment prompted us

to test for alternate Arp2/3 activators. Cortactin, an Arp- and

actin- binding protein present on endosomes, has been

proposed to be such an activator (Kaksonen et al., 2000; Millard

et al., 2004; Daly, 2004). Cortactin-GFPwas clearly concentrated

at the base of the B2AR tubule on the endosome (Figure 4G), in

a pattern identical to Arp2/3. When quantified (>200 endosomes

each), every B2AR tubule wasmarked by cortactin, while none of

the endosomes showed detectable N-WASP, WAVE-2, or

Cdc42. Similarly, the WASH protein complex, which has been

recently implicated in trafficking from the endosome (Derivery

et al., 2009; Gomez and Billadeau, 2009; Duleh and Welch,

2010), was also clearly localized to B2AR tubules (Figure 4G).

Together, these data suggest that an Arp2/3-, cortactin- and

WASH-based machinery mediates dynamic actin assembly on

the endosome.

B2AR-Containing Tubules Are a Specialized Subset
of Recycling Tubules on the Endosome
Since the traditional view is that the endosomal tubules that

mediate direct recycling to the plasma membrane are a uniform

population, we next tested whether these tubules were the same

as those that recycle bulk cargo.When B2AR recycling was visu-

alized along with bulk recycling of TfR, endosomes containing

both cargo typically extruded three to four tubules containing

TfR. Strikingly, however, only one of these contained detectable

amounts of B2AR (Example in Figure 5A, quantified in Figure 5B).

This was consistent with fast 3D confocal live cell imaging of

B2AR in endosomes, which showed that most endosomes

extruded only one B2AR containing tubule, with a small fraction

containing two. When quantified, only 24.4% of all TfR tubules

contained detectable B2AR (n = 358 tubules).

B2AR Tubules Are a Kinetically and Biochemically
Distinct from Bulk Recycling Tubules
When the lifetimes of tubules were quantified, the majority

(>80%) of B2AR tubules lasted more than 30 s. In contrast, the

majority of TfR tubules devoid of B2AR lasted less than 30 s

(Figures 5B and 5C, Movie S8). Each endosome extruded

several tubules containing TfR, only a subset (�30%) of which

were marked by actin, coronin, or cortactin (Figures 5D and

5E, arrows). Time-lapse movies indicated that the highly tran-

sient TfR-containing tubules were extruded from endosomal

domains that were lacking cortactin (Figure 5E, arrows), while

the relatively stable B2AR containing tubules were marked by

cortactin (Figure 5E, arrowheads). Importantly, the relative

stability of the subset of tubules was conferred by the actin cyto-

skeleton, as disruption of actin using latrunculin virtually abol-

ished the stable fraction of TfR tubules (Figures 5B and 5C).
Cell 143, 761–773, November 24, 2010 ª2010 Elsevier Inc. 765



Figure 4. Actin on B2AR Tubules Is Dynamic and Arp2/3-Nucleated

(A) Cells expressing actin-GFP imaged live after treatment with 10 mM latrunculin for the indicated times, show rapid loss of endosomal actin. A time series of the

boxed area, showing several endosomal actin loci, is shown at the lower panel.

(B) The change in endosomal and cytoplasmic actin fluorescence over time after latrunculin normalized to initial endosomal actin fluorescence (n = 10). One-

phase exponential curve fits (solid lines) show a t1/2 of 3.5 s for actin loss (R2 = 0.984, d.f = 23, Sy.x = 2.1 for endosomal actin, R2 = 0.960, d.f = 23, Sy.x =

1.9 for cytoplasmic). Endosomal and cytoplasmc actin fluorescence becomes statistically identical within 15 s after latrunculin. Error bars denote SEM.

(C) Time series showing FRAP of representative examples of endosomal actin (top) and stress fibers (bottom).

(D) Kinetics of FRAP of actin (mean ± s.e.m) quantified from 14 endosomes and 17 stress fibers. One-phase exponential curve fits (lines), show a t1/2 of 8.26 s for

endosomal actin (R2 = 0.973, d.f = 34, Sy.x = 4.8) and 50.35 s for stress fibers (R2 = 0.801, d.f = 34, Sy.x = 3.9).
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Together, these results suggest that sequence-dependent

recycling of B2AR is mediated by specialized tubules that are

kinetically and biochemically distinct from the bulk recycling

tubules containing only TfR.

A Kinetic Model for Sorting of B2AR into a Subset
of Endosomal Tubules
The relative stability of B2AR tubules suggested a simple model,

based on kinetic sorting, for how sequence-dependent cargo

was sorted into a specific subset of tubules and excluded from

the transient TfR-containing bulk-recycling tubules. We hypoth-

esized that B2AR diffuses more slowly on the endosomal

membrane relative to bulk recycling cargo. The short lifetimes

of the bulk-recycling tubules would then create a kinetic barrier

for B2AR entry, while this barrier would be overcome in the

subset of tubules stabilized by actin.

To test the key prediction of this model, that B2AR diffuses

more slowly than TfR on the endosomal membrane, we directly

measured the diffusion rates of B2AR and TfR using FRAP.When

B2AR or TfR was bleached on a small part of the endosomal

membrane, B2AR fluorescence took significantly longer to

recover than TfR (Figure 5F). When quantified, the rate of

recovery of fluorescence of B2AR (t1/2 = 25.77 s, 99% CI 23.45

to 28.6 s) was �4 times slower than that of TfR (t1/2 = 6.21 s,

99%CI 5.49 to 7.17 s), indicating that B2AR diffuses significantly

slower on the endosomal membrane than TfR (Figures 5F and

5G). Neither B2AR or TfR recovered within the time analyzed

when thewhole endosomewas bleached (Figure 5H), confirming

that the recovery of fluorescence was due to diffusion from the

unbleached part of the endosome and not due to delivery of

new receptors via trafficking. Further, B2AR on the plasma

membrane diffused much faster than on the endosome (t1/2 =

6.45 s, 99% CI 5.62 to 7.66 s), comparable to TfR, suggesting

that B2AR diffusion was slower specifically on the endosome

(Figure 5H).

We next tested whether the diffusion of B2AR into endosomal

tubules was slower than that of TfR, by using the rate of increase

of B2AR fluorescence as an index of receptor entry into tubules.

B2AR fluorescence continuously increased throughout the dura-

tion of the tubule lifetimes (Figure S3A). Further, in a single tubule

containing TfR and B2AR, TfR fluorescence reached its

maximum at a markedly faster rate than that of B2AR (Fig-

ure S3B). Together, these results suggest that slow diffusion of

B2AR on the endosome and stabilization of recycling tubules

by actin can provide a kinetic basis for specific sorting of

sequence-dependent cargo into subsets of endosomal tubules.

Local Actin Assembly Is Required for B2AR Entry
into the Subset of Tubules
Because actin stabilizes the B2AR-containing subset of tubules,

the model predicts that endosomal actin would be required for
(E) Example endosomes in live cells coexpressing B2AR and Arp3-GFP showing

(F) Trace of linear pixel fluorescence of B2AR and Arp3 shows Arp3 specifically

(G) Example endosomes from cells coexpressing B2AR and N-WASP-, WAVE2-

somes, while cortactin and WASH were concentrated at the B2AR tubules (arrow

Scale bars represent 1 mm. See also Figure S2 and Movie S7.
sequence-dependent concentration of B2AR into these tubules.

Consistent with this, B2AR was no longer concentrated in endo-

somal tubules when endosomal actin was acutely removed

using latrunculin (e.g., in Figure 6A). When the pixel fluorescence

along the limiting membrane of multiple endosomes was quanti-

fied, B2AR was distributed more uniformly along the endosomal

membrane in the absence of actin (Figures 6B and 6C). We

further confirmed this by comparing the variance in B2AR fluo-

rescence along the endosomal perimeter, irrespective of their

orientation. B2AR fluorescence was significantly more uniform

in endosomes without actin (Figure 6D), indicating that actin

was required for endosomes to concentrate B2AR in microdo-

mains. Less than 20% of endosomes showed B2AR-containing

tubules in the absence of endosomal actin, in contrast to control

cells where over 75% of endosomes showed B2AR-containing

tubules (Figure 6E). Further, cytochalasin D, a barbed-end

capping drug that prevents further actin polymerization but

does not actively cause depolymerization, also inhibited B2AR

entry into tubules (Figure 6E) and B2AR surface recycling

(Figure S4A). Neither TfR tubules on endosomes (Figure 6E)

nor TfR recycling (Figure S4B) was inhibited by actin depolymer-

ization, consistent with a role for actin specifically in sequence-

dependent recycling of B2AR (Cao et al., 1999). Further, deple-

tion of cortactin using siRNA (Figure 6F) also inhibited B2AR

entry into tubules (Figures 6G and 6H). This inhibition was

specific to cortactin depletion, as it was rescued by exogenous

expression of cortactin (Figure 6H). Together, these results indi-

cate that a localized actin cytoskeleton concentrates sequence-

dependent recycling cargo into a specific subset of recycling

tubules on the endosome.
B2AR Sorting into the Recycling Subdomains
Is Mediated by Its C-Terminal PDZ-Interacting Domain
We next asked whether this actin-dependent concentration of

receptors into endosomal tubules depended on the PDZ-inter-

acting sequence present in the B2AR cytoplasmic tail that medi-

ates sequence-dependent recycling (Cao et al., 1999; Gage

et al., 2005). To test if the sequence was required, we used

a mutant B2AR (B2AR-ala) in which the recycling sequence

was specifically disrupted by the addition of a single alanine

(Cao et al., 1999). Unlike B2AR, internalized B2AR-ala was not

able to enter the tubular domains in the endosome (e.g., in

Figure 6I, quantified in Figure 6J), or recycle to the cell surface

(Figure S4). To test if this sequence was sufficient, we used

a chimeric DOR construct with the B2AR-derived recycling

sequence fused to its cytoplasmic tail, termed DOR-B2 (Gage

et al., 2005), which recycles much more efficiently than DOR

(Figure S4). In contrast to DOR, which showed little concentra-

tion in endosomal tubules, DOR-B2 entered tubules (Figures 6I

and 6J) and recycled in an actin-dependent manner similar to

B2AR (Figure S4D). Together, these results indicate that the
Arp3 at the base of B2AR tubules (arrowhead in the inset).

on the endosomal tubule.

, cortactin-, or WASH-GFP. N-WASP and WAVE2 were not detected on endo-

heads).
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Figure 5. B2AR Is Enriched Specifically in a Subset of Endosomal Tubules that Are Stabilized by Actin

(A) A representative example of an endosome with two tubules containing TfR, only one of which is enriched for B2AR.

(B) The number of tubules with B2AR, TfR, and TfR in the presence of 10 mM latrunculin, per endosome per min, binned into lifetimes less than or more than 30 s,

quantified across 28 endosomes and 281 tubules.

(C) The percentages of B2AR, TfR, and TfR + latrunculin tubules with lifetimes less than or more than 30 s, normalized to total number of tubules in each case.

(D) An example endosome containing TfR and coronin, showing that coronin is present on a subset of the TfR tubules. Arrowheads indicate a TfR tubule that is

marked by coronin, and arrows show a TfR tubule that is not.

(E) Time lapse series showing TfR-containing tubules extruding from endosomal domains without detectable cortactin. Arrowheads indicate a relatively stable

TfR tubule that is marked by coronin, and arrows denote rapid transient TfR tubules without detectable cortactin.

(F) Frames from a representative time lapsemovie showing FRAP of B2AR (top row) or TfR (bottom row). The circlesmark the bleached area of the endosome. TfR

fluorescence recovers rapidly, while B2AR fluorescence recovers slowly.

(G) Fluorescence recovery of B2AR (red circles) and TfR (green diamonds) on endosomes quantified from 11 experiments. Exponential fits (solid lines) show that

B2AR fluorescence recoverswith a t1/2 of 25.77 s (R
2 = 0.83, d.f = 37, Sy.x = 6.3), while TfR fluorescence recoverswith a t1/2 of 6.21 s (R

2 = 0.91, d.f = 30, Sy.x = 7.1).
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PDZ-interacting recycling sequence on B2AR was both required

and sufficient to mediate concentration of receptors in the actin-

stabilized endosomal tubular domains.

As PDZ-domain interactions have been established to indi-

rectly link various integral membrane proteins to cortical actin

(Fehon et al., 2010), we tested whether linking DOR to actin

was sufficient to drive receptor entry into endosomal tubules.

Remarkably, fusion of the actin-binding domain of the ERM

protein ezrin (Turunen et al., 1994) to the C terminus of DOR

was sufficient to localize the receptor (termed DOR-ABD) to

endosomal tubules (Figure 6J). The surface recycling of B2AR,

DOR-B2, and DOR-ABD were dependent on the presence of

an intact actin cytoskeleton (Figure S4), consistent with previous

publications (Cao et al., 1999; Gage et al., 2005; Lauffer et al.,

2009). Further, transplantation of the actin-binding domain was

also sufficient to specifically confer recycling to a version of

B2AR lacking its native recycling signal (Figure S4F). These

results indicate that the concentration of B2AR in the actin-stabi-

lized recycling tubules is mediated by linking receptors to the

local actin cytoskeleton through PDZ interactions.

DISCUSSION

Even though endocytic receptor sorting was first appreciated

over two decades ago (e.g., Brown et al., 1983; Farquhar,

1983; Steinman et al., 1983), our understanding of the principles

of this process has been limited. Amajor reason for this has been

the lack of direct assays to visualize signaling receptor sorting in

the endosome. Here we directly visualized, in living cells, endo-

somal sorting between two prototypic members of the largest

known family of signaling receptors for which sequence-specific

recycling is critical for physiological regulation of cell signaling

(Pippig et al., 1995; Lefkowitz et al., 1998; Xiang and Kobilka,

2003). We resolve sorting at the level of single trafficking events

on individual endosomes, and define a kinetic and affinity-based

model for how sequence-dependent receptors are sorted away

from bulk-recycling and degrading proteins.

By analyzing individual sorting and recycling events on single

endosomes, we demonstrate a remarkable diversity in recycling

pathways emanating from the same organelle (Scita and Di

Fiore, 2010). The traditional view has been that recycling to the

plasma membrane is mediated by a uniform set of endosomal

tubules from a single endosome. In contrast to this view, we

demonstrate that the recycling pathway is highly specialized,

and that specific cargo can segregate into specialized subsets

of tubules that are biochemically, biophysically, and functionally

distinct. Receptor recycling plays a critical role in controlling the

rate of cellular re-sensitization to signals (Lefkowitz et al., 1998;

Sorkin and von Zastrow, 2009), and recent data suggest that

the sequence-dependent recycling of signaling receptors is

selectively controlled by signaling pathways (Yudowski et al.,

2009). The physical separation between bulk and sequence-

dependent recycling that we demonstrate here allows for such
(H) Fluorescence recovery of B2AR (blue triangles) and TfR (green diamonds) on

surface (red circles) quantified from 12 experiments. B2AR fluorescence on the s

Error bars denote SEM. Scale bars represent 1 mm. See also Figure S3 and Movi
selective control without affecting the recycling of constitutively

cycling nutrient receptors. Further, such physical separation

might also reflect the differences in molecular requirements

that have been observed between bulk and sequence-depen-

dent recycling (Hanyaloglu and von Zastrow, 2007).

Endosome-associated actin likely plays a dual role in endoso-

mal sorting, both of which contribute to sequence-dependent

entry of cargo selectively into special domains. First, by stabi-

lizing the specialized endosomal tubules relative to the much

more dynamic tubules that mediate bulk recycling, the local actin

cytoskeleton could allow sequence-dependent cargo to

overcome a kinetic barrier that limits their entry into the bulk

pathway. Supporting this, we show thatmost endosomal tubules

are highly transient, lasting less than a few seconds (Figures 5B

and 5C), which allows enough time for entry of the fast-diffusing

bulk recycling cargo, but not the slow-diffusing sequence-

dependent cargo (Figures 5F and 5G), into these tubules.

A subset of these tubules representing the sequence-dependent

recycling pathway is stabilized by the presence of an actin cyto-

skeleton (Figures 5B and 5C). This stabilization allows time for

B2AR to diffuse into these tubules (Figure S3), which eventually

pinch off membranes that can directly fuse with the plasma

membrane (Figure 2). Interestingly, inhibition of actin caused

a decrease in the total number of tubules by approximately

25% (Figure 5B), suggesting that the actin cytoskeleton plays

a role in maintaining the B2AR-containing subset of tubules,

and not just in the sorting of B2AR into these tubules.

Second, a local actin cytoskeleton could provide the

machinery for active concentration of recycling proteins like

the B2AR, which interact with actin-associated sorting proteins

(ERM and ERM-binding proteins) through C-terminal sequences

(Weinman et al., 2006; Wheeler et al., 2007; Lauffer et al., 2009;

Fehon et al., 2010), in specialized recycling tubules. Consistent

with this, the C-terminal sequence on B2AR was both required

and sufficient for sorting to the endosome and for recycling,

and a distinct actin-binding sequence was sufficient for both

receptor entry into tubules and recycling (Figure 6 and Figure S4).

PDZ-interacting sequences have been identified on several

signaling receptors, including multiple GPCRs, with different

specificities for distinct PDZ-domain proteins (Weinman et al.,

2006). Further, actin-stabilized subsets of tubules were present

even in the absence of B2AR in the endosome. We propose

that, using a combination of kinetic and affinity-based sorting

principles, discrete Actin-Stabilized SEquence-dependent

Recycling Tubule (ASSERT) domains could thus mediate effi-

cient sorting of sequence-dependent recycling cargo away

from both degradation and bulk recycling pathways that diverge

from the same endosomes.

Our results, therefore, uncover an additional role for actin poly-

merization in endocytic sorting, separate from its role in endo-

some motility. It will be interesting to investigate the mechanism

and signals that control the nucleation of such a spatially local-

ized actin cytoskeleton on the endosome. The lack of obvious
endosomes when the whole endosome was bleached, or of B2AR on the cell

urface recovers with a t1/2 of 6.49 s (R2 = 0.94, d.f = 27, Sy.x = 8.1).

e S8.
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Figure 6. B2AR Enrichment in Tubules Depends on Endosomal Actin and a PDZ-Interacting Sequence on the B2AR Cytoplasmic Domain

(A) Representative fields from B2AR-expressing cells exposed to isoproterenol showing B2AR endosomes before (top panel) or after (bottom panel) exposure to

10 mM latrunculin for 5 min. Tubular endosomal domains enriched in B2AR (arrowheads) are lost upon exposure to latrunculin.

(B) Schematic of measurement of endosomal B2AR fluorescence profiles in the limitingmembrane. The profile wasmeasured in a clockwisemanner starting from

the area diametrically opposite the tubule (an angle of 0�).
(C) B2AR concentration along the endosomal membrane, calculated from fluorescence profiles of 20 endosomes, normalized to the average endosomal B2AR

fluorescence. In the presence of latrunculin, B2AR enrichment in tubules is abolished, and B2AR fluorescence shows little variation along the endosomal

membrane.

(D) Variance in endosomal B2AR fluorescence values measured before and after latrunculin. B2AR distribution becomes more uniform after latrunculin.

(E) The percentages of endosomes extruding B2AR-containing tubules, calculated before (n = 246) and after (n = 106) treatment with latrunculin, or before

(n = 141) and after (n = 168) cytochalasin-D, show a significant reduction after treatment with either drug. As a control, the percentages of endosomes extruding

TfR-containing tubules before (n = 317) and after (n = 286), respectively, are shown.

(F) Cortactin immunoblot showing reduction in protein levels after siRNA.

(G) Representative fields from B2AR-containing endosomes in cells treated with control and cortactin siRNA. Arrowheads denote endosomal tubules in the

control siRNA-treated cells.

(H) Percentages of endosomes extruding B2AR tubules calculated in control siRNA-treated cells (n = 210), cortactin siRNA-treated cells (n = 269), and cortactin

siRNA-treated cells expressing an siRNA-resistant cortactin (n = 250).

(I) Representative examples of endosomes from agonist-exposed cells expressing B2AR, B2AR-ala, DOR, or DOR-B2. Arrowheads denote receptor-containing

tubules on B2AR and DOR-B2 endosomes.

(J) The percentage of endosomes with tubular domains containing B2AR, B2AR-ala, DOR, DOR-B2, or DOR-ABD (n = 246, 302, 137, 200, and 245, respectively)

were quantified.

Scale bars represent 1 mm; and error bars represent SEM. See also Figure S4.
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concentration of the canonical Arp2/3 activators, WASP and

WAVE, suggests a novel mode of actin nucleation involving cor-

tactin. Cortactin can act as a nucleation-promoting factor for

Arp2/3, at least in vitro (Ammer and Weed, 2008), and can

interact with dynamin (Schafer et al., 2002; McNiven et al.,

2000), which makes it an attractive candidate for coordinating

actin dynamics on membranes. Interestingly, inhibition of

WASH, a recently described Arp regulator that is present on

B2AR tubules, has been reported to result in an increase in endo-

somal tubules (Derivery et al., 2009). Although its role in

sequence-dependent recycling remains to be tested, this

suggests the presence of multiple actin-associated proteins

with distinct functions on the endosome.

The simple kinetic and affinity-based principle that we

propose likely provides a physical basis for sequence-depen-

dent sorting of internalized membrane proteins between essen-

tially opposite fates in distinct endosomal domains. Proteins that

bind sequence-dependent degrading receptors and are required

for their degradation (Whistler et al., 2002; Marley and von

Zastrow, 2010) might act as scaffolds and provide a similar

kinetic barrier to prevent them from accessing the rapid bulk-re-

cycling tubules. Entry of these receptors into the involution

pathway might then be accelerated by their association with

the well-characterized ESCRT-associated domains on the vacu-

olar portion of endosomes (Hurley, 2008; Saksena et al., 2007;

Williams and Urbé, 2007), complementary to the presently iden-

tified ASSERT domains on a subset of endosomal tubules.

Such diversity at the level of individual trafficking events to the

same destination from the same organelle raises the possibility

that there exists yet further specialization among the pathways

that mediate exit out of the endosome, including in the degrada-

tive pathway and the retromer-based pathway to the trans-Golgi

network. Importantly, the physical separation in pathways that

we report here potentially allows for cargo-mediated regulation

as a mode for controlling receptor recycling to the plasma

membrane. Such amechanism can provide virtually an unlimited

level of selectivity in the post-endocytic system using minimal

core trafficking machineries, as has been observed for endocy-

tosis at the cell surface (Puthenveedu and von Zastrow, 2006).

As the principles of such sorting depend critically on kinetics,

the high-resolution imaging used here to analyze domain kinetics

and biochemistry, and to achieve single-event resolution in living

cells, provides a powerful method to elucidate biologically

important sorting processes in the future.

EXPERIMENTAL PROCEDURES

Constructs and Reagents

Receptor constructs and stably transfected HEK293 cell lines are described

previously (Gage et al., 2005; Lauffer et al., 2009) Transfections were per-

formed using Effectene (QIAGEN) according to manufacturer’s instructions.

For visualizing receptors, FLAG-tagged receptors were labeled with M1 anti-

bodies (Sigma) conjugated with Alexa-555 (Invitrogen) as described (Gage

et al., 2005), or fusion constructs were generated where receptors were

tagged on the N-terminus with GFP. Latrunculin and Cytochalasin D (Sigma)

were used at 10 mM final concentration.

Live-Cell and Fluorescence Imaging

Cells were imaged using a Nikon TE-2000E inverted microscope with a 1003

1.49 NA TIRF objective (Nikon) and a Yokagawa CSU22 confocal head (Sola-
mere), or an Andor Revolution XD Spinning disk system on a Nikon Ti micro-

scope. A 488 nm Ar laser and a 568 nm Ar/Kr laser (Melles Griot), or 488 nm

and 561 nm solid-state lasers (Coherent) were used as light sources. Cells

were imaged in Opti-MEM (GIBCO) with 2% serum and 30 mM HEPES

(pH 7.4), maintained at 37�C using a temperature-controlled incubation

chamber. Time lapse images were acquired with a Cascade II EM-CCD

camera (Photometrics) driven by MicroManager (www.micro-manager.org)

or an Andor iXon+ EM-CCD camera using iQ (Andor). The same lasers were

used as sources for bleaching in FRAP experiments. Structured illumination

microscopy was performed as described earlier (Gustafsson et al., 2008).
Electron Microscopy

EM studies were carried out using MDCK cells because they are amenable to

a previously described pre-embedding processing that facilitates detection of

cytoplasmic actin filaments (Ikonen et al., 1996; Parton et al., 1991), and

because they contain morphologically similar endosomes to HEK293 cells.

Cells were grown on polycarbonate filters (Transwell 3412; Costar, Cam-

bridge, MA) for 4 days as described previously (Parton et al., 1991). To allow

visualization of early endosomes and any associated filaments a pre-embed-

ding approach was employed. Cells were incubated with HRP (Sigma type II,

10mg/ml) in the apical and basolateral medium for 10min at 37�C and then

washed, perforated, and immunogold labeled with a rabbit anti- actin anti-

body, a gift of Professor Jan de Mey (Strasbourg), followed by 9nm protein

A-gold. HRP visualization and epon embedding was as described previously

(Parton et al., 1991; Ikonen et al., 1996).
Image and Data Analysis

Acquired image sequences were saved as 16-bit tiff stacks, and quantified

using ImageJ (http://rsb.info.nih.gov/ij/). For estimating receptor enrichment,

a circular mask 5 px in diameter was used to manually select the membrane

at the base of the tubule or membranes derived from endosomes. Fluores-

cence values measured were normalized to that of the endosomal membrane

devoid of tubules. An area of the coverslip lacking cells was used to estimate

background fluorescence. For estimating linear pixel values along the tubules,

a line selection was drawn along the tubule and across the endosome, and the

Plot Profile function used to measure pixel values. For obtaining the average

value plot across multiple sorting events, the linear pixels were first normalized

to the diameter of the endosome and then averaged. To generate pixel values

along the endosomal limiting membranes, the Oval Profile plugin, with 60

segments, was used after manually selecting the endosomal membrane using

an oval ROI. Lifetimes of tubules were calculated by manually tracking the

extension and retraction of tubules over time-lapse series. Microsoft Excel

was used for simple data analyses and graphing. Curve fits of data were per-

formed using GraphPad Prism. All P-values are from two-tailed Mann-Whitney

tests unless otherwise noted.
SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and eight movies and can be
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