
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Algebra 308 (2007) 751–763

www.elsevier.com/locate/jalgebra

Parametrizations of toric varieties over any field ✩

Anargyros Katsabekis, Apostolos Thoma ∗

Department of Mathematics, University of Ioannina, Ioannina 45110, Greece

Received 21 March 2006

Available online 26 September 2006

Communicated by Paul Roberts

Abstract

The columns of an integral matrix D give rise to the toric variety VK(ID) and also provide a parametriza-
tion of a subset of VK(ID), the so-called toric set ΓK(D). We completely determine the toric set ΓK(D)

over any field. We provide conditions under which VK(ID) is fully parametrized by the columns of D, that
means ΓK(D) = VK(ID). In particular, we prove that normal toric varieties over any field are always fully
parametrized by the columns of an appropriate matrix.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let K[x1, . . . , xn] be the polynomial ring in the variables x1, . . . , xn over any field K . Given
an m × n matrix D = (bi,j ) with integer entries and no zero columns, the associated toric ideal
ID is the kernel of the K-algebra homomorphism

φ :K[x1, . . . , xn] → K
[
t1, . . . , tm, t−1

1 , . . . , t−1
m

]
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given by

φ(xi) = t
b1,i

1 · · · tbm,i
m for all i = 1, . . . , n.

The t1, . . . , tm are called parameters. Often we shall use the abbreviation tbi instead of
t
b1,i

1 · · · tbm,i
m , where bi = (b1,i , . . . , bm,i) for 1 � i � n. The toric ideal ID is binomial, i.e. it

is generated by all the binomials x
u1
1 · · ·xun

n − x
v1
1 · · ·xvn

n ∈ K[x1, . . . , xn], where ui ∈ Z�0,
vi ∈ Z�0 and the (u1 − v1, . . . , un − vn) runs over all vectors in the nullspace kerZ(D) = {w ∈
Zn | Dwt = 0t } of D, see [17]. The set

VK(ID) = {
(u1, . . . , un) ∈ Kn

∣∣ F(u1, . . . , un) = 0, ∀F ∈ ID

}
of zeroes of ID is called toric variety, which is not necessarily normal.

The toric set ΓK(D) is the subset of VK(ID) parametrized by the columns of the matrix D,
i.e. it is the set of points of the affine space Kn which can be expressed in the form

(
tb1 , . . . , tbi , . . . , tbn

)
for some ti in K . Note that different integral matrices, with the property that their nullspaces
coincide, give rise to the same toric ideal and toric variety, but may have different toric sets.

Parametrizations of toric varieties are important either for theoretical reasons, see [1–3,6,7,
11,17,18], or for applications, for example, in Computer Aided Geometric Design, see [4,13]. In
most cases a full parametrization of the toric variety is needed, i.e. the toric set to be equal with
the toric variety. The fact that the toric set can be a proper subset of the toric variety was noted
for the first time by E. Reyes, R. Villarreal and L. Zárate in [16]. Where also they gave conditions
under which a toric set is identical with the toric variety. Their approach is based on the notion
of the Smith normal form of an integral matrix D, that there are unimodular integral matrices
U = (uij ) and Q = (qij ) of orders m and n, respectively, such that

UDQ = diag(λ1, . . . , λs,0, . . . ,0),

where s is the rank of D and the integers λ1, . . . , λs are the invariant factors of D, that is,
λk divides λk+1 and λk > 0 for all k, see [14]. They proved that ΓK(D) = VK(ID) if and only if
the following two conditions are satisfied:

(1) If (yj ) ∈ VK(ID) and yj �= 0 for all j , then
∏

j∈{1,...,n} y
qji

j has a λi -root in K for every
i ∈ {1, . . . , s}.

(2) VK(ID,xj ) ⊂ ΓK(D) for every j ∈ {1, . . . , n}.

Later we studied in [12] the problem of when a toric variety is fully parametrized, over an al-
gebraically closed field, using the torus action on the toric variety and expressing the toric set
as a certain union of toric orbits. We proved that, over an algebraically closed field, every toric
variety is fully parametrized by the columns of an appropriate matrix. In this article we combine
both techniques to arrive at Theorem 3.3, which provides a necessary and sufficient condition
for the equality of a toric set with the toric variety over any field. After that, using the notion of
strongly saturated semigroups, we prove that normal toric varieties are always fully parametrized
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by the columns of appropriate matrices over any field. Usually, toric varieties studied in Alge-
braic Geometry are assumed to be normal, see [8,9,17]. Nevertheless, except from Section 4, all
our results hold for any toric variety.

The paper is organized as follows. In Section 2, we consider the action of the algebraic torus
(K∗)m on the Kn, where K∗ = K − {0}. This action decomposes the toric variety into toric
orbits. When K is not algebraically closed there may be infinitely many toric orbits. It is proved,
see Theorem 2.3, that the toric set ΓK(D) is the union of finitely many toric orbits OD(PF ),
where F ∈ ΩD and ΩD is the meet-subsemilattice of the face lattice of the cone Q+D generated
by the faces Fr1(D), . . . ,Frm(D) corresponding to the rows r1, . . . , rm of D.

In Section 3 we introduce the notion of a face complete matrix to study necessary and suf-
ficient conditions for the equality VK(ID) = ΓK(D). It is shown that if the toric set ΓK(D)

coincides with VK(ID), then D is a face complete matrix. The converse is not true. Also we state
and prove the main theorem of this section, Theorem 3.3, which asserts that:

The toric set ΓK(D) coincides with the toric variety VK(ID) if and only if

(1) D is face complete,

(2) for every face F of Q+D and a point (yj ) ∈ VK(ID) ∩ (K∗)EF ,
∏

j∈EF y
qFj i

j , 1 � i � sF ,

has a λFi -root in K where sF is the dimension of the face F , λFi are the invariant fac-
tors of the submatrix DF of D, qFji the elements of a matrix QF satisfying UFDFQF =
diag(λF1 , . . . , λFsF ,0, . . . ,0) and (K∗)EF is the cell corresponding to the face F . The cell
(K∗)EF is the subset {(q1, . . . , qn) ∈ Kn | qi �= 0 if bi ∈ F , qi = 0 if bi /∈ F} of the affine
space Kn.

Finally, in Section 4, we prove that every normal toric variety VK(ID) is fully parametrized,
over any field, by the columns of an appropriate matrix N . This will be done by finding a face
complete matrix N such that all invariant factors of the submatrices NF are all equal to one, for
every face F of Q+D. Note that the form of the matrix N is independent of the field K .

2. Rational polyhedral cones, the torus action and the toric set

Let D be an m × n integral matrix with columns bt
1, . . . ,bt

n. We associate to the toric variety
VK(ID) ⊂ Kn the rational convex polyhedral cone σ = Q+D consisting of all non-negative lin-
ear rational combinations of the vectors b1, . . . ,bn. The dimension of σ is equal to the dimension
of the Q-vector space

spanQ(σ ) := {λ1b1 + · · · + λnbn | λ1, . . . , λn ∈ Q} = QD,

which is equal to rankQ(D). A face F of σ is any set of the form

F = σ ∩ {
x ∈ Qm: cx = 0

}
,

where c ∈ Qm and cx � 0 for all x ∈ σ . Faces of dimension rankQ(D) − 1 are called facets.
The face lattice of σ is the poset L(σ) of all faces of σ , partially ordered by inclusion. A subset

S of L(σ) is called a meet-subsemilattice if (i) σ ∈ S and (ii) for every finite subset {F1, . . . ,Ft }
of S F1 ∩ · · · ∩ Ft belongs to S. Given a meet-subsemilattice S of L(σ), we say that a set
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{F1, . . . ,Ft } ⊂ S generates S if every element in S, except possibly σ , is the intersection of a
subset of {F1, . . . ,Ft }. The set of all facets of σ generates L(σ), see [9].

Two cones σ1 ⊂ Ql , σ2 ⊂ Qm are rationally affine equivalent if there is a rational affine
transformation π : Ql → Qm such that π |spanQ(σ1) is one-to-one and π(σ1) = σ2. Note that if the
cones σ1 and σ2 are rationally affine equivalent, then there is a bijection between the face lattices
L(σ1) and L(σ2) preserving the ordering.

The affine space Kn is decomposed into 2n coordinate cells

(
K∗)E := {

(q1, . . . , qn) ∈ Kn
∣∣ qi �= 0 for i ∈ E, qi = 0 for i /∈ E

}
,

where E runs over all subsets of {1, . . . , n}. We will use the symbol PE for the point
(δE

1 , . . . , δE
n ) ∈ Kn, where δE

i = 1 if i ∈ E and δE
i = 0 if i /∈ E.

Let S be a subset of the cone σ , then ES := {i ∈ {1, . . . , n} | bi ∈ S}. Note that Eσ =
{1, . . . , n}. Given a face F of σ , we shall denote the point PEF by PF . Also for a point y =
(y1, . . . , yn) ∈ Kn and t = (t1, . . . , tm) ∈ Km we denote by (yt)D the point (y1tb1 , . . . , yntbn) ∈
Kn. The m-dimensional algebraic torus (K∗)m acts on the affine n-space Kn via

(y, t) 	→ (yt)D.

The orbit of a point y ∈ VK(ID) is denoted by OD(y) and called toric orbit. The affine toric
variety VK(ID) is the union of toric orbits.

When the field K is algebraically closed, the toric orbits are in order-preserving bijection
with the faces of σ , see [9,10,15]. The orbit corresponding to the face F is the orbit of the
point PF . In this case the torus action does not depend on the matrix D, i.e. different matrices,
with the property that their nullspaces coincide, give the same toric orbits, see [8]. When K is
not algebraically closed the torus action depends on the matrix D, see Example 2.4, but it is still
true that every point of VK(ID) belongs to a cell (K∗)EF , for a face F of Q+D, since K is a
subset of its algebraic closure K̄ . It is possible for the same cell (K∗)EF to contain more than
one orbit.

Example 2.1. There exist toric varieties over a non-algebraically closed field K and a torus action
on them providing infinitely many toric orbits.

Consider the 2 × 3 matrix

D =
(

2 0 1
0 2 1

)

and the toric variety VQ(ID) ⊂ Q3. The toric ideal ID ⊂ Q[x1, x2, x3] is generated by the
binomial x2

3 − x1x2. The points of the toric variety are in the four cells (K∗)∅, (K∗){1},
(K∗){2}, (K∗){1,2,3}. To each square-free non-zero integer a correspond three distinguished or-
bits OD(a,0,0),OD(0, a,0),OD(a, a, |a|) on VQ(ID). Every point of VQ(ID), except from
(0,0,0), belongs to exactly one of those for an appropriate square-free a ∈ Z.

Definition 2.2. We associate to every row ri = (bi,1, . . . , bi,n) of the matrix D a face Fri
(D) of

σ in the following way:

(i) if ri has at least one negative entry we define Fri
(D) = σ ,
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(ii) if every entry of ri is non-negative we define Fri
(D) to be the face of σ defined by ci =

(0,0, . . . ,1, . . . ,0), where the 1 is in the ith-position.

Note that Fri
(D) is a face since cibj = bi,j � 0. Also if every entry of ri is positive, then

Fri
(D) = {0}. The orbit corresponding to the face Fri

(D) is the orbit of the point PFri (D) with
coordinates gi,j = 0 if bi,j > 0 and gi,j = 1 if bi,j = 0, since bi,j > 0 implies that bj /∈ Fri

(D)

and bi,j = 0 implies that bj ∈Fri
(D).

For projective toric varieties determined by lattice polytopes the parameters ti , such that the
corresponding faces Fri

(D) are facets of the cone σ , are called facet variables, see [4,5]. A more
algebraic approach to the same idea is what K. Eto calls lattice divisors, see [7].

The following theorem determines the toric set of any integral matrix D.

Theorem 2.3. Let K be any field and D an m×n integral matrix with rows r1, . . . , rm. The toric
set is a union of finitely many toric orbits

ΓK(D) =
⋃

F∈ΩD

OD(PF ),

where ΩD is the meet-subsemilattice of the face lattice L(σ) of the cone σ = Q+D generated
by the faces Fr1(D), . . . ,Frm(D).

Proof. Let {bt
1, . . . ,bt

n} be the set of columns of D. First we will prove that ΓK(D) ⊂⋃
F∈ΩD

OD(PF ). Let y ∈ ΓK(D), then y = (ub1, . . . ,ubn) for some u = (u1, . . . , um) ∈ Km.

Set Su = {i | ui = 0}. Since y ∈ VK(ID), it belongs to a cell (K∗)EF for a face F of σ . Consider
the point PF = (δ

EF
1 , . . . , δ

EF
n ) in Kn. Note that if ubi �= 0 then δ

EF
i = 1, while ubi = 0 im-

plies that δ
EF
i = 0. Let v = (v1, . . . , vm) ∈ (K∗)m with coordinates vi = ui if i /∈ Su and vi = 1

if i ∈ Su. Then y = (PFv)D , since if ubj �= 0 then ubj = vbj and therefore δ
EF
j = 1 while if

ubj = 0 then δ
EF
j = 0. Thus y belongs to the OD(PF ). It remains to show that F ∈ ΩD .

Note that bj ∈ F if and only if ubj �= 0 if and only if bj,i = 0 for all i ∈ Su. Thus F =⋂
i∈Su

Fri
(D), which implies that F ∈ ΩD . Consequently y ∈ ⋃

F∈ΩD
OD(PF ).

Conversely consider a point y ∈ OD(PF ) for some F ∈ ΩD . Then y = (PFu)D , for a u =
(u1, . . . , um) ∈ Km, and also, from the definition of ΩD , there is a set S ⊂ {1, . . . ,m} such that
F = ⋂

i∈S Fri
(D). Setting ti = 1 if i /∈ S and ti = 0 if i ∈ S, we have that PF = (tb1 , . . . , tbn)

and therefore y = ((tu)b1, . . . , (tu)bn) ∈ ΓK(D), where tu = (t1u1, . . . , tmum) ∈ Km. �
Theorem 2.3 says that the toric set depends on the matrix D in two respects. First, the rows of

the matrix D determine what orbits belong to the toric set. In [12] there are plenty of examples
of different matrices, that define the same toric variety, and their toric sets are different. Sec-
ond, the columns of the matrix determine the torus action which affects the orbits OD(PF ) and
consequently the toric set.

Example 2.4. We return to Example 2.1. Except from {0} the cone Q+D has two proper faces,
namely F1 = Q+(0,2) and F2 = Q+(2,0). Note that F1 = Fr1(D), F2 = Fr2(D) and F1 ∩
F2 = {0}. Therefore the meet-subsemillatice generated by the faces Fr1(D), Fr2(D) is the whole
face lattice L(Q+D). According to Theorem 2.3 the toric set ΓQ(D) is the union of the four orbits
OD(0,0,0), OD(1,0,0), OD(0,1,0), OD(1,1,1).
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Consider also the matrix

M =
(2 0 1

0 2 1
1 1 1

)
.

The cones σ1 = Q+M , σ2 = Q+D, are rationally affine equivalent, since the projection π : Q3 →
Q2 which is given by π(q1, q2, q3) = (q1, q2) satisfies:

π |spanQ(σ1) is one-to-one and π(σ1) = σ2.

Also the nullspaces of D, M coincide, so they define the same toric variety, i.e. VQ(ID) =
VQ(IM). For the matrix M we have that Fr1(M) = Q+(0,2,1), Fr2(M) = Q+(2,0,1) and
Fr3(M) = σ1. Therefore, again from Theorem 2.3, the toric set ΓQ(M) consist of the toric orbits
OM(0,0,0), OM(1,0,0), OM(0,1,0), OM(1,1,1). But the orbits OM(PF ) and OD(PF ) are
generally different, for example,

OM(1,1,1) =
⋃
a∈Λ

OD

(
a, a, |a|) � OD(1,1,1),

where Λ is the set of all square free non-zero integers.

3. Toric sets and face complete matrices

In this section we will provide equivalent conditions for a toric variety VK(ID) to coincide
with the toric set ΓK(D).

Definition 3.1. A face complete matrix is an m × n integral matrix D with rows r1, . . . , rm such
that: For every facet F of Q+D there exists i ∈ {1, . . . ,m} with Fri

(D) = F .

In [12] it was proved, when K is algebraically closed, that VK(ID) = ΓK(D) if and only if
the matrix D is face complete. Generally, letting K be any field, we have the next proposition.

Proposition 3.2. If VK(ID) = ΓK(D) for some field K , then the matrix D is face complete.

Proof. Let {r1, . . . , rm} be the set of rows of D. If F is a face of the cone Q+D, then the
point PF belongs to VK(ID) and therefore, from Theorem 2.3, we conclude that L(Q+D) is
a subset of ΩD . The face lattice L(Q+D) is generated by the facets of Q+D, so every facet
is an intersection of a subset of {Fr1(D), . . . ,Frm(D)}. But the facets are maximal elements of
L(Q+D), therefore for every facet F of Q+D there exists i ∈ {1, . . . ,m} with Fri

(D) = F . �
The converse of Proposition 3.2 is not true in general. In Example 2.1 the matrix D is face

complete, but the toric set ΓQ(D) does not coincide with the toric variety VQ(ID).
Given an m×n integral matrix D with columns bt

1, . . . ,bt
n, we associate to every face F �= {0}

of σ = Q+D a submatrix DF of D with columns all the vectors bt
i such that bi ∈ F . The matrix

Dσ coincides with D. We say that a has a λ-root in the field K if the equation xλ = a has a root
in K . The next theorem generalizes Theorem 2.3 in [16] taking into account all toric orbits and
not only the “big” orbit, i.e. OD(Pσ ).
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Theorem 3.3. Let K be a field and VK(ID) ⊂ Kn a toric variety defined by an integral matrix D.
Then VK(ID) = ΓK(D) if and only if

(1) D is face complete,

(2) for every face F of Q+D and a point (yj ) ∈ VK(ID) ∩ (K∗)EF ,
∏

j∈EF y
qFj i

j , 1 � i � sF ,

has a λFi -root in K where sF is the dimension of the face F , λFi are the invariant factors
of DF , qFji are the elements of a matrix QF satisfying UFDFQF = diag(λF1 , . . . , λFsF ,

0, . . . ,0) and (K∗)EF is the cell corresponding to the face F .

Proof. Assume first that conditions (1) and (2) hold. It is enough to prove that VK(ID) ⊂ ΓK(D).
Let y = (y1, . . . , yn) ∈ VK(ID), then y ∈ (K∗)EF for a face F of Q+D. Consider the point z =
(yi)i∈EF ∈ VK(IDF ) ⊂ Kr , where r is the cardinality of the set EF . Then, taking into account
that every yi �= 0 for all i ∈ EF , we have that z ∈ (K∗)r . Recall that for the toric ideal IDF it
holds IDF = ID ∩ K[xi | bi ∈ F], see Proposition 4.13 of [17]. Applying Theorem 2.3 in [16],
since z ∈ VK(IDF ) ∩ (K∗)r and condition (2) is true, we deduce that z ∈ ΓK(DF ) and therefore
yi = tbi for every i ∈ EF and some t1, . . . , tm in K . Moreover, D is face complete and therefore
the point PF belongs to ΓK(D), which implies that there are s1, . . . , sm in K such that PF =
(sb1 , . . . , sbn). Then the point y can be expressed as ((st)b1 , . . . , (st)bn) and therefore belongs to
ΓK(D), where st = (s1t1, . . . , smtm) ∈ Km.

Assume now that VK(ID) = ΓK(D). Proposition 3.2 assures that D is face complete. Con-
sider now a point a = (aj ) ∈ VK(ID) ∩ (K∗)EF , i.e. aj �= 0 when j ∈ EF and aj = 0 when
j /∈ EF . Since VK(ID) = ΓK(D), we take that aj = tbj for all j ∈ {1, . . . , n}. Thus using the
equality of matrices DFQF = U−1

F diag(λF1 , . . . , λFsF ,0, . . . ,0) we deduce that

∏
j∈EF

a
qFj i

j =
∏

j∈EF

tq
F
j i bj = (

tui
)λFi ,

where ui is the i-row of U−1
F . Consequently the

∏
j∈EF a

qFj i

j has a λFi -root in K , for every
i ∈ {1, . . . , sF }. �

The field R of real numbers is the field most commonly used in geometric modeling and is
where it is especially useful for a toric set to equal its toric variety. In the case K = R we have
the following corollary of Theorem 3.3.

Corollary 3.4. Let VR(ID) ⊂ Rn a toric variety defined by an integral matrix D. Then VR(ID) =
ΓR(D) if and only if

(1) D is face complete,

(2) for every face F of Q+D and a point (yj ) ∈ VR(ID) ∩ (R∗)EF ,
∏

j∈EF y
qFj i

j � 0, for all i

with λFi even, 1 � i � sF , where sF is the dimension of the face F , λFi are the invariant fac-
tors of DF , qFji are the elements of a matrix QF satisfying UFDFQF = diag(λF1 , . . . , λFsF ,

0, . . . ,0) and (K∗)EF is the cell corresponding to the face F .



758 A. Katsabekis, A. Thoma / Journal of Algebra 308 (2007) 751–763
Example 3.5. Consider the 3 × 3 matrix

M =
(2 0 1

0 6 1
1 3 1

)

and the toric ideal IM = (x6
3 − x3

1x2) ⊂ K[x1, x2, x3]. The cone σ1 = Q+M has two facets,
namely H1 = Q+(0,6,3) and H2 = Q+(2,0,1). Also H1 = Fr1(M) and H2 = Fr2(M). There-
fore M is face complete.

Let a = (0, a2,0) ∈ VK(IM) ∩ (K∗)EH1 . Here

UH1 =
(0 0 1

0 1 −2
1 0 0

)
, MH1 =

(0
6
3

)
, QH1 = (1) and λ

H1
1 = 3.

So a ∈ ΓK(D) if and only if a2 has a 3-root in K . For every point a = (a1,0,0) ∈ VK(IM) ∩
(K∗)EH2 we have that a1 always has a λ

H2
1 -root in K , since λ

H2
1 = 1. Finally, consider a point

a = (a1, a2, a3) ∈ VK(IM) ∩ (K∗)Eσ1 , i.e. ai �= 0 for every i ∈ {1,2,3}. In this case

Uσ1 =
(0 0 1

0 1 −1
1 1 −2

)
, Mσ1 = M, Qσ1 =

( 3 −4 3
1 −1 1

−5 7 −6

)
and λ

σ1
1 = λ

σ1
2 = 1.

Obviously a3
1a2a

−5
3 , a−4

1 a−1
2 a7

3 always have 1-roots in K . Consequently, from Theorem 3.3, we
take that ΓK(M) = VK(IM), only in the case that all the elements of K have cube roots, for
example, when K is the field of real numbers R or F3, while the toric set does not coincide
with the toric variety if there are elements in the field K without cube roots, for example, when
K = F7.

Condition (1) in Theorem 3.3 can always be achieved, as we will show in the next proposition.

Proposition 3.6. Let K be any field. For every m × n integral matrix D there exists a face
complete matrix M such that VK(IM) = VK(ID) and the cones σ1 = Q+D, σ2 = Q+M are
rationally affine equivalent.

Proof. Let {r1, . . . , rm} be the set of rows and {bt
1, . . . ,bt

n} the set of columns of D. Let
{F1, . . . ,Fs} be the set of facets of σ1. If

{F1, . . . ,Fs} ⊆ {
Fr1(D), . . . ,Frm(D)

}
,

then D is a face complete matrix. Suppose that

{F1, . . . ,Fs} �
{
Fr1(D), . . . ,Frm(D)

}
and say Fj1, . . . ,Fjk

are the facets not in {Fr1(D), . . . ,Frm(D)}. For every i ∈ {1, . . . , k} the
Fji

is a facet of σ1, so

Fji
= σ1 ∩ {

y ∈ Qm
∣∣ diy = 0

}
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for some di = (di,1, . . . , di,m) ∈ Qm with

diy � 0, ∀y ∈ Q+D.

From the matrix D we create a new (m + k) × n matrix M , by adding the k new rows c(Fji
) =

(gidib1, gidib2, . . . , gidibn) to D, where gi is a common denominator of dib1,dib2, . . . ,dibn

and 1 � i � k. We have that

c(Fji
) = gidi,1r1 + · · · + gidi,mrm,

so kerZ(M) = kerZ(D) and therefore VK(IM) = VK(ID). Consider the projection

π : Qm+k → Qm,

defined by

π(u1, . . . , um,um+1, . . . , um+k) = (u1, . . . , um).

It is easy to see that π is a rational linear transformation such that π |spanQ(σ2) = spanQ(σ1).
Thus the cones σ1, σ2 are rationally affine equivalent and therefore H is a facet of σ2 if and
only if π(H) is a facet of σ1. Let (b′

1)
t , . . . , (b′

n)
t be the columns of M . Note that, for every

q ∈ {1, . . . , n}, bq ∈ Fji
if and only if b′

q ∈ Fc(Fji
)(M). This implies that π(Fc(Fji

)(M)) = Fji
,

for every i = 1, . . . , k. Also π(Frq (M)) = Frq (D) for every q = 1, . . . ,m. Since F1, . . . ,Fs are
all the facets of σ1, we take that the set{

Fr1(M), . . . ,Frm(M),Fc(Fj1 )(M), . . . ,Fc(Fjk
)(M)

}
contains all the facets of σ2. �
4. Saturated groups and normal toric varieties

Given an m × n integral matrix D with columns bt
1, . . . ,bt

n, we shall denote by ZD the
subgroup {l1b1 +· · ·+ lnbn: l1, . . . , ln ∈ Z} of Zm spanned by b1, . . . ,bn. The saturation of ZD,
denoted by Sat(ZD), is the group Zm ∩ QD := {u ∈ Zm | du ∈ ZD for some d ∈ Z∗ = Z − {0}}.
If λ1, . . . , λs are the invariant factors of D, then there is a Z-base {v1, . . . ,vs} of Sat(ZD) such
that {λ1v1, . . . , λsvs} is a Z-base of ZD, see [14]. When ZD = Sat(ZD), i.e. the invariant factors
of D equal 1, the group ZD is called saturated. First we will give a sufficient condition for the
equality ΓK(D) = VK(ID), based on the notion of strongly saturated groups.

Definition 4.1. The group ZD is called strongly saturated if ZDF is saturated for every face F
of the cone Q+D.

Theorem 4.2. If D is a face complete matrix and ZD is strongly saturated, then ΓK(D) =
VK(ID) over any field K .

Proof. From the definitions we have that ZDF = Sat(ZDF ), for every face F of Q+D. Thus all
the invariant factors λFi of DF equal 1 and therefore, from Theorem 3.3, the equality ΓK(D) =
VK(ID) holds. �
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The following lemma will be useful in the proof of Theorem 4.6.

Lemma 4.3. For every toric variety VK(ID) defined by an integral matrix D, there exists a face
complete matrix M such that

(i) VK(ID) = VK(IM),
(ii) ZM is saturated.

Proof. From Proposition 3.6 there exists a face complete matrix N such that VK(ID) =
VK(IN) and the cones Q+D, Q+N are rationally affine equivalent. Since ZNt ⊂ Sat(ZNt)

and rank(ZNt) = rank(Sat(ZNt)), there is a Z-base {u1, . . . ,us} of Sat(ZNt) such that
{λ1u1, . . . , λsus} is a Z-base of ZNt . From the matrix N we create a new matrix M , by adding the
rows {u1, . . . ,us} to N . Note that both M and N are integral matrices with the same nullspace.
Therefore IM = IN = ID . Using the fact that ZNt ⊂ Sat(ZNt) we take the equalities

ZMt = ZNt + (Zu1 + · · · + Zus) = ZNt + Sat
(
ZNt

) = Sat
(
ZNt

)
.

Thus Sat(ZMt) = Sat(Sat(ZNt)), while

Sat
(
Sat

(
ZNt

)) = Sat
(
ZNt

)
.

So ZMt = Sat(ZMt). But the matrices M , Mt have the same invariant factors, which implies
that ZM = Sat(ZM). �
Example 4.4. According to Lemma 4.3 every toric variety is defined by a matrix M which is
face complete and the group ZM is saturated. But there are examples that the group ZM is not
strongly saturated and ΓK(M) �= VK(IM) over some field K .

Consider the matrix

N =
(2 0 1

0 4 1
1 2 1

)

and the toric ideal IN = (x4
3 − x2

1x2) ⊂ R[x1, x2, x3]. The cone Q+N has two facets, namely
H1 = Q+(0,4,2) and H2 = Q+(2,0,1). Also H1 = Fr1(N) and H2 = Fr2(N). Therefore N

is face complete. The invariant factors of N are λ1 = λ2 = 1. Consequently ZN is saturated. In
addition ZN is not strongly saturated, since ZNH1 �= Sat(ZNH1). But

ΓR(N) �= VR(IN),

since (0,−1,0) ∈ VR(IN) and (0,−1,0) /∈ ΓR(N). In fact there is no integral matrix M such
that VR(IM) = VR(ID) and ΓR(M) = VR(ID). Suppose that there is a matrix M with the above
properties and let bt

1, bt
2, bt

3 be the three columns of M . We have that 4b3 = 2b1 + b2, so every
coordinate of b2 is even, which implies that the point (0,−1,0) of VR(ID) is never in the toric
set. Thus there are examples of toric varieties that can never be fully parametrized.

We shall denote by ND the semigroup N{b1, . . . ,bn}. The semigroup ND is called normal
when ND = ZD ∩ Q+D.
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Proposition 4.5. [17] The toric variety VK(ID) is normal if and only if ND is normal.

Theorem 4.6. Let K be any field and D an integral matrix. If the variety VK(ID) is normal, then
there is a matrix M such that VK(IM) = VK(ID) and also ΓK(M) = VK(ID).

Proof. From Lemma 4.3 there is an m×n face complete matrix M such that VK(ID) = VK(IM)

and ZM = Sat(ZM). Since VK(ID) is normal and VK(ID) = VK(IM), we have, from Proposi-
tion 4.5, that NM = ZM ∩Q+M . Thus NM = Zm ∩QM ∩Q+M or NM = Zm ∩Q+M because
Q+M ⊂ QM . Let F be a face of Q+M . We will prove that

NMF = Zm ∩ Q+MF .

Let y ∈ Zm ∩ Q+MF . Then y belongs to Zm ∩ Q+M = NM . This means that there is a relation
y = u1b1 +· · ·+unbn with u1, . . . , un natural numbers, where bt

1, . . . ,bt
n are the columns of M .

Multiplying the last relation with a vector cF defining F and using the fact that cFy = 0, since
y ∈ Q+MF , we take that ui = 0 for every i such that bi /∈ F , therefore y belongs to NMF . So
NMF = Zm ∩ Q+MF .

We claim that ZMF = Sat(ZMF ). From the definition we have that

ZMF ⊂ Sat(ZMF ).

Let x ∈ Sat(ZMF ) = Zm ∩ QMF . Since x ∈ QMF there exist a vector a in NMF such that
x + a ∈ Q+MF . Thus x + a ∈ Zm ∩ Q+MF = NMF and therefore x ∈ ZMF . The preceding
discussion yields that ZM is strongly saturated, so, from Theorem 4.2, the toric variety VK(ID)

coincides with ΓK(M). �
If d is a positive integer and Um,d is the transpose of the matrix with rows the vectors of

Am,d = {
(a1, . . . , am) ∈ Nm

∣∣ a1 + · · · + am = d
}
,

then ΓK(Um,d) is the (m,d)-Veronese toric set and VK(IUm,d
) is the (m,d)-Veronese toric

variety. E. Reyes, R. Villarreal, L. Zárate proved that the Veronese toric varieties, over an al-
gebraically closed field, are fully parametrized by the columns of Um,d , see [16]. Also Veronese
toric varieties are normal and therefore, using Theorem 4.6, we can generalize the previous result
over any field.

Corollary 4.7. A Veronese toric variety is fully parametrized by the columns of an appropriate
integral matrix over any field.

Note that the matrix which fully parametrizes the (m,d)-Veronese toric variety is the trans-
pose of the matrix with rows the vectors of

{
(a1, . . . , am,1) ∈ Nm+1

∣∣ a1 + · · · + am = d
}
.
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Example 4.8. There exist also non-normal toric varieties that satisfy the hypotheses of Theo-
rem 4.2. Consider the matrix

D =
(2 1 0 0 1 2

1 2 2 1 0 0
0 0 1 2 2 1

)
.

The matrix D is not face complete, see [12], and not saturated, since the invariant factors of the
matrix D are 1, 1, 3. But the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 1 2
1 2 2 1 0 0
0 0 1 2 2 1
2 2 1 0 0 1
0 1 2 2 1 0
1 0 0 1 2 2
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

defines the same toric variety VK(ID) and it is face complete, see [12]. For every one of the
13 faces of the cone Q+M different from {0} the corresponding matrices MF have all invariant
factors 1, therefore ZM is strongly saturated. Theorem 4.2 imply that the toric set is the same
with the toric variety. If bt

i denotes the ith column of the matrix M we have that

(1,1,1,1,1,1,1) = b1 + b5 − b6 = 1

2
b1 + 1

2
b4 ∈ ZM ∩ Q+M,

but it does not belong to NM . Therefore the toric variety VK(IM) is not normal.
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