Asymptotic behavior for a reaction-diffusion equation with inner absorption and boundary flux

Sining Zheng*, Fengjie Li, Bingchen Liu

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China

Received 4 November 2005; accepted 10 November 2005

Abstract

This paper deals with a reaction-diffusion equation with inner absorption and boundary flux of exponential forms. The blow-up rate is determined with the blow-up set, and the blow-up profile near the blow-up time is obtained by the Giga–Kohn method. It is observed that the blow-up rate and profile are independent of the nonlinear absorption term.

Keywords: Blow-up rate; Blow-up profile; Asymptotic behavior; Reaction-diffusion

1. Introduction

Consider the following reaction-diffusion equation with inner absorption and boundary flux of exponential forms

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \Delta u - ae^{pu}, \quad (x, t) \in \Omega \times (0, T), \\
\frac{\partial u}{\partial \eta} &= e^{qu}, \quad (x, t) \in \partial \Omega \times (0, T), \\
u(x, 0) &= u_0(x), \quad x \in \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \); constants \(a, p \geq 0, q > 0 \); \(u_0(x) \geq 0 \) in \(\Omega \) and \(\frac{\partial u_0}{\partial \eta} = \exp\{qu_0\} \) on \(\partial \Omega \).

Eq. (1.1) can be used to describe, for example, heat propagations in solid media with nonlinear absorptions and nonlinear boundary flux [1–9]. The existence and uniqueness of local solutions to (1.1) is known by the standard theory [10].

The special case of (1.1) without inner absorption

\[
\begin{align*}
\frac{\partial u}{\partial t} &= u_{xx}, \quad (x, t) \in (0, 1) \times (0, T), \\
u_x(0, t) &= 0, \quad u_x(1, t) = e^{q(t)}, \quad t \in (0, T)
\end{align*}
\]

(*) Supported by National Natural Science Foundation of China.

* Corresponding author.

E-mail address: snzheng@dlut.edu.cn (S. Zheng).
was studied by Deng [11]. The blow-up rate of (1.2) was presented as
\[c \leq (T - t)^{\frac{2}{p}} \exp[u(1, t)] \leq C, \] (1.3)
while the blow-up profile was given as
\[(T - t)^{\frac{2}{p}} \exp[u(1 - y\sqrt{T - t}, t)] \rightarrow z_0(y) \text{ as } t \rightarrow T \] (1.4)
uniformly on any interval \([0, K]\), where \(z_0(y)\) is the unique positive bounded solution to the corresponding stationary problem of (1.2).

The similar reaction-diffusion equation problem
\[
\begin{align*}
\{ u_t &= u_{xx} - \lambda u^p, \quad (x, t) \in (0, 1) \times (0, T), \\
 u_x(0, t) = 0, u_x(1, t) &= u^q(1, t), \quad t \in (0, T)
\end{align*}
\] (1.5)
with \(p, q > 1\) and \(\lambda > 0\) has been well studied; see [12–14]. The blow-up criterion of (1.5) is \(2q - 1 > p\), or \(2q - 1 = p, \lambda < q, u_0 > v\) with \(v\) being any maximal stationary solution [12,13]. Recently, Rossi [14] obtained the blow-up rate for (1.5) under the additional condition \(u''_0(x) - \lambda u^p_0(x) \geq \delta_0 > 0\) in \((0, 1)\) that if \(p < 2q - 1\), or \(p = 2q - 1\) with \(\lambda < q\), there exist positive constants \(c, C\) such that
\[c \leq \max_{[0,1]} u(\cdot, t)(T - t)^{\frac{1}{2q-1}} \leq C \text{ as } t \rightarrow T. \]
The blow-up profile was obtained there as well for \(p < 2q - 1\).

In this paper, we will extend all these results to problem (1.1). We give the critical exponent for (1.1), and then the blow-up rate and blow-up set. In particular, we will determine the blow-up profile near the blow-up time. We will follow the methods of [11,15]. Due to the absorption term included in (1.1), some technical difficulties should be overcome.

2. Critical exponent

We begin with the critical exponent of (1.1). Let \(\varphi_0\) be the first eigenfunction of
\[\Delta \varphi + \lambda \varphi = 0 \text{ in } \Omega; \quad \varphi = 0 \text{ on } \partial \Omega \]
with the first eigenvalue \(\lambda_0\), normalized by \(\|\varphi_0\|_\infty = 1\). It is well known that [16] \(\varphi_0 > 0\) in \(\Omega\), and there are positive constants \(c_i (i = 1, 2, 3, 4)\) and \(\varepsilon_0\) such that \(c_1 \leq -\frac{\partial \varphi_0}{\partial \eta} \|\varphi_0\| \leq c_2 \leq \max_\Omega |\nabla \varphi_0| = c_4, |\nabla \varphi_0| \geq \frac{1}{2} \) on \(\{x \in \Omega : \text{dist}(x, \partial \Omega) \leq \varepsilon_0\}\), and \(\varphi_0 \geq c_3\) on \(\{x \in \Omega : \text{dist}(x, \partial \Omega) \geq \varepsilon_0\}\).

In [17], the authors studied the critical exponents for the coupled system corresponding to (1.1). By taking \(a_1 = a_2, \alpha_1 = \beta_1, \alpha_2 = \beta_2 = 0, p = q\) with \(u_0 = v_0\) in (1.1) of [17], we have the following conclusion on the critical exponent for (1.1) directly.

Theorem 2.1. (i) If \(2q < p\), the solutions of (1.1) are globally bounded.
(ii) If \(2q > p\), the solutions of (1.1) blow up in finite time for large initial data.
(iii) For \(2q = p\), if \(a \geq 2^p \left(\frac{\lambda_0^4 + 3c_1^2}{c_1^2}\right)\), the solutions are globally bounded; if \(a \leq \frac{p}{4c_2^2} \min \left\{\frac{c_2^2}{4}, \lambda_0 c_3^2\right\}\), the solutions blow up in finite time for large initial data. \(\square\)

3. Blow-up rate and set

In what follows, we deal with radial solutions of (1.1) with \(\Omega = B_R = \{|x| < R\} \subset \mathbb{R}^n, \partial B_R = S_R\). Firstly, consider the lower bound of the blow-up rate.

Theorem 3.1. Let \(u\) be a solution of (1.1) with blow-up time \(T\) and \(\Delta u_0(x) - \alpha e^{mu_0(x)} \geq 0\). If \(2q > p\), or \(2q = p\) with \(a \leq \frac{p}{4c_2^2} \min \left\{\frac{c_2^2}{4}, \lambda_0 c_3^2\right\}\), then there is a constant \(C_1\) such that
\[\max_{\bar{B}_R} u(\cdot, t) \geq \log C_1(T - t)^{-\frac{1}{2q}}, \quad t \in (0, T). \] (3.1)
Proof. Define \(M(t) = \max_{B_R} u(\cdot, t) \) for \(t \in [0, T) \). Clearly, \(M(t) \) is increasing in \([0, T)\) due to the comparison principle with \(\Delta u_0(x) - ae^{pu_0(x)} \geq 0 \).

For \(0 \leq z < t < T \), by Green’s identity,
\[
\begin{align*}
\int_B u(x, t) &= \int_B \Gamma(x, t, \xi, t) u(\xi, t) d\xi - \int_B \int_B \Gamma(x, t, \xi, \tau) u(\xi, \tau) e^{pu(\xi, \tau)} d\xi d\tau \\
&\quad \quad + \int_B \int_{S_R} \Gamma(x, t, \xi, \tau) e^{pu(\xi, \tau)} dS_{\xi} d\tau - \int_B \int_{S_R} u(\xi, \tau) \frac{\partial \Gamma}{\partial \eta_{\xi}}(x, t, \xi, \tau) dS_{\xi} d\tau,
\end{align*}
\]
where \(\Gamma \) is the fundamental solution of the heat equation. We employ \(C \) to denote positive constants independent of \(t \), which may change from line to line. It is known that [18, 19]
\[
\int_B \int_{S_R} \Gamma(x, t, \xi, \tau) dS_{\xi} d\tau \leq C \sqrt{t - z}, \quad 0 \leq z < t < T;
\]
\[
|\Gamma(x, t, \xi, \tau)| \leq \frac{C}{(t - \tau)^\beta} \frac{1}{|x - \xi|^{n - 2 + \beta}}, \quad 0 < \beta < 1;
\]
\[
|\frac{\partial \Gamma}{\partial \eta_{\xi}}(x, t, \xi, \tau)| \leq \frac{C}{(t - \tau)^\beta} \frac{1}{|x - \xi|^{n + 1 - 2\beta - \alpha}}, \quad \alpha \in (0, 1), \beta \in \left(1 - \frac{\alpha}{2}, 1\right).
\]
So, we have for (ii) and the second part of (iii) of Theorem 2.1,
\[
\begin{align*}
\int_B u(x, t) &\leq C e^{qM(t)} \sqrt{t - z} + CM(t) \sqrt{t - z} + M(z) \\
&\leq 2C e^{qM(t)} \sqrt{t - z} + M(z),
\end{align*}
\]
which means that \(M(t) \) \(\leq 2C e^{qM(t)} \sqrt{t - z} + M(z), \) \(0 \leq z < t < T \). We can choose \(z < t < T \) such that \(M(t) - M(z) = C_0 > 0 \). Then
\[
C_0 \leq 2C \sqrt{T - z} \exp(qM(z) + qC_0),
\]
which implies (3.1). \(\square \)

Next, consider the upper bound of the blow-up rate for radial solutions, where \(\Omega = B_R \) and \(c_1 = c_2 \). Denote \(u(x, t) = u(r, t) \) with \(r = |x| \).

Theorem 3.2. Let \(u(r, t) \) be a solution of (1.1) with blow-up time \(T \) and
\[
u''(r) + \frac{n - 1}{r} u'_{00}(r) - ae^{pu_0(r)} \geq \delta_0 > 0, \quad u_0'(r) \geq 0, \quad r \in [0, R).
\]

If \(2q > p \), or \(2q = p \) with \(a \leq \frac{q}{4} \min\left\{\frac{1}{4}, \lambda_0 c_3^2/c_2^2\right\} \), then there is a constant \(C_2 > 0 \) such that
\[
u(R, t) \leq \log C_2(T - t)^{-\frac{3}{2q}}, \quad t \in [0, T).
\]

Proof. We know \(u_t > 0 \) and \(u_r \geq 0 \) for \((r, t) \in [0, R) \times [0, T) \) by the comparison principle [19] with (3.2). Set \(J(x, t) = \sqrt{u_t} - \epsilon u_r, (x, t) \in B_R \times [0, T) \). Let \(\epsilon > 0 \) be small such that
\[
J(x, 0) = \sqrt{u_t(0, r) - \epsilon u_r(0, r)} \geq 0, \quad x \in \bar{B}_R,
\]
\[
J_t - \Delta J + \frac{1}{2} ae^{pu} J = \frac{1}{4} u_t^{\frac{3}{2}} u_r^2 + \frac{1}{2} \epsilon ae^{pu} u_r + \epsilon \frac{n - 1}{r^2} u_r \geq 0.
\]

By the comparison principle (see Theorem 2.1 of [19, p. 145]), we have \(J \geq 0 \), and hence
\[
 u_t(R, t) \geq \varepsilon^2 u_r^2(R, t) = e^{2qu(R, t)}, \quad t \in [0, T).
\] (3.4)

Integrating (3.4) from \(t \) to \(T \), we get (3.3) immediately. \(\square \)

Now we deal with the blow-up set of (1.1).

Theorem 3.3. Under the conditions of Theorem 3.2, the blow-up set of (1.1) consists of \(S_R = \{ |x| = R \} \). Moreover, there exist suitable positive constants \(A, B \) such that
\[
 u(x, t) \leq \log[A(R^2 - |x|^2)^2 + B(T - t)]^{-\frac{1}{4q}}, \quad (x, t) \in B_R \times [0, T).
\]

Proof. Set \(w(x, t) = w(r, t) = \log[A(R^2 - r^2)^2 + B(T - t)]^{-\frac{1}{4q}}, r = |x| \) with
\[
 B \leq \min \left\{ C_2^{-2q}, \frac{4(n + 1)}{R^2 + 4(n + 1)T} \exp[-2q\|u_0\|_\infty] \right\}, \quad 4(n + 1)R^2 A \leq B.
\]
A simple computation shows
\[
 w_t - w_{rr} - \frac{n - 1}{r}w_r \geq 0, \quad -ae^{pu} = u_t - u_{rr} - \frac{n - 1}{r}u_r, \quad (r, t) \in [0, R] \times (0, T),
\]
\[
 w|_{r=R} = \log B^{-\frac{1}{2q}}(T - t)^{-\frac{1}{2q}} \geq u|_{r=R}, \quad t \in [0, T),
\]
\[
 w|_{r=0} \geq \log(A R^4 + B T)^{-\frac{1}{2q}} \geq u_0(r), \quad r \in [0, R).
\]
By the comparison principle, we have \(w \geq u \) in \(B_R \times (0, T) \). \(\square \)

4. Blow-up profile

Throughout this section, we always assume that \(2q > p \) and \(\Omega = (0, 1) \). Introduce the similarity variables,
\[
 w(y, s) = (T - t)^{\frac{1}{2q}} e^{s(y, t)}, \quad y = \frac{1 - x}{\sqrt{T - t}}, \quad s = \frac{x}{\sqrt{T - t}}.
\] (4.1)

Then \(w \) solves the following system:
\[
 \begin{cases}
 w_y = w_{yy} - \frac{1}{w} w_y^2 - \frac{y}{2} w_y - \frac{1}{2q} w - ae^{-ks} w^{p+1}, \\
 w_y(0, s) = -w^{q+1}(0, s), \quad w_y(e^{\frac{s}{2}}, s) = 0, \\
 w(y, -\log T) = T^{\frac{1}{2q}} e^{u_0(1 - \sqrt{T}) y}.
 \end{cases}
\] (4.2)

in \(\{(y, s) | 0 < y < e^{s/2}, \quad s > -\log T \} \) with \(k = 1 - \frac{p}{2q} > 0 \).

In order to discuss the asymptotic behavior of the solution near the blow-up time, we need four lemmas. First, consider the corresponding stationary solution of (4.2), which solves
\[
 v'' - \frac{1}{v} v'^2 - \frac{y}{2} v' - \frac{1}{2q} v = 0, \quad y > 0 \quad \text{and} \quad v'(0) = -v^{q+1}(0).
\] (4.3)

Lemma 4.1. There is a unique positive bounded solution of (4.3),
\[
 V(y) = \exp \left\{ \frac{1}{2q} \int_0^y e^{\xi^2} \left[\int_0^\xi e^{-\eta^2} d\eta - \sqrt{\pi} \right] d\xi + \frac{1}{q} \log \left(\frac{\sqrt{\pi}}{2q} \right) \right\}
\] (4.4)
satisfying \(|V_y| < CV \), where \(C \) is a positive constant.
Proof. Let \(h(y) = \log v(y) \). Then \(h \) satisfies
\[
h'' - \frac{y}{2} h' - \frac{1}{2q} = 0, \quad y > 0 \quad \text{and} \quad h'(0) = -e^{h(0)}.
\]
If \(|v'| < C \), where \(C \) is a positive constant, then \(|h'| \leq C \). Thus, we have
\[
h'(y) = \frac{1}{2q} e^{\frac{y^2}{4}} \left[\int_0^y e^{-\frac{\xi^2}{4}} d\xi - \sqrt{\pi} \right] \quad \text{and} \quad h'(0) = -\frac{1}{2q} \sqrt{\pi},
\]
and hence (4.4) follows. \(\square \)

Second, we give some estimates on \(w \).

Lemma 4.2. If \(w \) is defined by (4.2), and (3.2) holds, then there exists some constant \(C > 0 \) such that \(w, |w_y|/w, |w_{yy}| \leq C, |w_x| \leq C(1 + y) \).

Proof. From Theorem 3.2, we know that \(w \) is positive and bounded. By (3.2) and the comparison principle, \(u_x, u_{xx} \geq 0 \), and hence
\[
-w_y = e^{-\frac{y^2}{4}} u_x(x, t) w \leq e^{-\frac{y^2}{4}} u_x(1, t) w \leq C_y w,
\]
that is \(|w_y|/w \leq C\). Similarly to the proof for Proposition 1 of [15], we get \(|w_{yy}| \leq C\). Therefore,
\[
|w_x| = \left| w_{yy} - \frac{1}{w} w^2 y - \frac{1}{2q} w - ae^{-ks} w^{p+1} \right| \leq C(1 + y).
\]

Lemma 4.3. Assume \(w \) is defined by (4.2), and (3.2) holds, \(\{s_j\} \) is an increasing sequence such that \(s_j \to +\infty \) and \(s_{j+1} - s_j \to +\infty \) as \(j \to +\infty \). Then \(w(y, s) = w(y, s + s_j) \) converges to a limit \(w_\infty(y, s) \) uniformly on compact subsets of \([0, +\infty) \times (-\infty, +\infty) \), and for any integer \(m \), \((w_j)_y(y, m) \to (w_\infty)_y(y, m) \) a.e. in \([0, +\infty) \). Also either \(w_\infty(y, s) \equiv 0 \), or \(w_\infty(y, s) > 0 \) on \([0, +\infty) \times (-\infty, +\infty) \).

Proof. Since \(w, |w_y| \) and \(|w_x| \) are bounded on compact subsets by Lemma 4.2, there is a subsequence of \(\{w_j\} \) converging to some \(w_\infty \) uniformly on compact subsets. Since \(|w_y| \) is also bounded, a diagonal argument yields a subsequence (still denoted by \(\{s_j\} \)) such that \(w_j(y, m + s_j) \to (w_\infty)_y(y, m) \) a.e. for each integer \(m \).

It follows from (4.5) that \(-w_j(y, s) / w(y, s) \leq C\). Integrating with respect to \(y \), we have
\[
w(y_1, s) \leq w(y_2, s) e^{C(y_2 - y_1)} \quad \text{for} \quad y_1 < y_2,
\]
and hence \(w_\infty(y_1, s) \leq w_\infty(y_2, s) e^{C(y_2 - y_1)} \). Then \(w_\infty(y, s) \equiv 0 \), or \(w_\infty(y, s) > 0 \). \(\square \)

Introduce the energy function of \(w \) on \([0, R] \) at time \(s \):
\[
E_R[w](s) = \frac{1}{2} \int_0^R \rho w^2 w_y dy + \frac{1}{2q} \int_0^R \rho \log w dy - \frac{1}{q} \int_0^R w^q(0, s) + \frac{a}{p} e^{-ks} \int_0^R w^p dy,
\]
where weight \(\rho = \exp(-\frac{1}{4} y^2) \) and \(k = 1 - \frac{p}{2q} > 0 \).

Lemma 4.4. The limit function \(w_\infty \) in Lemma 4.3 is independent of \(s \), and \(E[w_\infty] \), \(w_\infty \) are independent of the choice of the sequence \(\{s_j\} \).

Proof. We rewrite the equation in (4.2) as
\[
\rho w_x = (\rho w_y)_y - \frac{1}{w} w_y - \frac{1}{2q} \rho w - a \rho e^{-ks} w^{p+1}.
\]
Multiplying both sides of (4.7) by \(w_x / w^2 \) and integrating with respect to \(y \) from 0 to \(s \),
\[
\int_0^s \rho \frac{w^2_x}{w^2} dy = - \frac{d}{ds} E_s[w](s) + G(s),
\]
where E is defined in (4.6) and
\[G(s) = \rho(s) \frac{w'_y(s,s)w_s(s,s)}{w^2(s,s)} + \frac{1}{2} \rho(s) \frac{w'_y(\alpha)}{w^2(\alpha)} + \frac{1}{2q} \rho(s) \log w(s,s) - \frac{ak}{p} e^{-ks} \int_0^s \rho w^p \,dy + \frac{a}{p} e^{-ks} \rho(s) w^p(s,s). \]

By the upper bound of the blow-up rate and (4.1), we have
\[\frac{1}{C_2} \leq \frac{1}{w} \leq e^{\frac{w}{C_2}} \quad \text{and} \quad -\frac{s}{2q} \leq \log w \leq \log C_2. \]

It follows that $|G(s)| \leq C(1 + s)e^{-\frac{s}{2q} - \frac{1}{4}s^2} + C e^{-ks}$, and thus
\[\int_{s_0}^{+\infty} |G(s)| \,ds < +\infty. \tag{4.9} \]

Integrating (4.8), we have
\[\int_0^\beta \int_0^s \rho \frac{w'^2}{w_1} \,dy \,ds = E_a[w](\alpha) - E_\beta[w](\beta) + \int_0^\beta G(s) \,ds \tag{4.10} \]
for any $\alpha < \beta$. Similarly to the proof for Propositions 4 and 5 of [15], together with (4.9) and (4.10), we can prove that w_∞ is independent of s, $E[w_\infty]$ is independent of the choice of the sequence $\{s_j\}$, and so is w_∞, provided $E(0) = -\infty$. \hfill \Box

Now we give the main result of this section.

Theorem 4.1. Let u be a solution of (1.1) with blow-up time T, $\Omega = (0, 1)$, $2q > p$ and (3.2). Then
\[(T - t)^{-\frac{1}{2q}} \exp \left[u(1 - y\sqrt{T - t}, t) \right] \rightharpoonup V(y) \quad \text{as} \quad t \to T \]
uniformly on each set $|y| \leq C$ for any constant $C > 0$, where V is defined in (4.4).

Remark. Let us compare the results of this paper with those without absorptions. If $a = 0$, $q = 1$ and $\Omega = (0, 1)$, then (1.1) becomes (1.2), and the blow-up rate (3.1) and (3.3) is coincident with (1.3) of problem (1.2) obtained in [11]. The blow-up set of (1.1) is the same as that of (1.2). Similarly, (4.11) with $q = 1$ becomes (1.4) related to (1.2). Due to key role of the nonlinear boundary flux in the blow-up process, it is reasonable that the limit $V(y)$ in Theorem 4.1 is not a constant (cf. [11,14]). In this paper, it is interesting to observe that the absorption term in (1.1) does not affect the asymptotic behavior of the solutions at all near the blow-up time. For example, $V = z_0$ (defined in (1.4)) for $q = 1$ and $p < 2$.

References

