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Abstract

We propose a parametrization for two-body nonleptonicB meson decays, in which the various topologies ofamplitudes are
counted in terms of powers of the Wolfenstein parameterλ ∼ 0.22. The weak phases and the amplitudes are determine
comparing this parametrization with available measurements. It is possible to obtain the phaseφ3 from theB → Kπ data up to
theoretical uncertainty ofO(λ2) ∼ 5%. The recently measuredB0

d
→ π0π0 branching ratio implies a large color-suppressed

penguin amplitude, and that the extraction of the phaseφ2 from theB → ππ data may suffer theoretical uncertainty more th
the expected one,O(λ2) ∼ 5%.
 2004 Elsevier B.V. Open access under CC BY license.
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One of the major missions inB physics is to de-
termine the weak phases in the Kobayashi–Mask
ansatz for CP violation[1]. The phaseφ1 can be ex-
tracted from the CP asymmetry in theB → J/ψKS

decays in an almost model-independent way, wh
arises from theB-B̄ mixing. The application of the
isospin symmetry to theB → ππ decays[2] and to
the B → ρπ decays[3] has been considered as g
ing a model-independent determination of the ph
φ2. However, this strategy in fact suffers the theor
ical uncertainty from the electroweak penguin, wh
is expected to be about 5–10%. The phaseφ3 can be
extracted in a theoretically clean way from the mod
involving only tree amplitudes, such asB → πD [4]
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andB → KD [5,6]. The difficulty is that one of the
modes, such asB0

d → π−D+ or B+ → K+D0, has a
very small branching ratio and is not experimenta
feasible[7]. The alternative modesB → K∗D [8] and
Bc → DsD [9] improve the feasibility only a bit. It ha
been pointed out that theB± → K±(D0 → f ) and
B± → K±(D̄0 → f ) amplitudes, withD̄0 → f being
a doubly-Cabibbo suppressed decay, exhibits a st
interference[7,10,11]. For this strategy, the stron
phase difference betweenD0 → f andD̄0 → f is a
necessary input. Another possibility is to measure
B → D∗V decays for the vector mesonV = ρ, K,
. . . , since an angular analysis involves many obse
ables, which are sufficient for extractingφ3 model-
independently[12].

Instead of resorting to theoretically clean mod
which are usually experimentally difficult, one cons
ers the modes with higher feasibility and tries to co
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strain the decay amplitudes and the weak phases.
problem is that available measurements are usually in
sufficient to make the constraint, and theoretical inp
are unavoidable. For example, one adopts the (im
nary) tree-over-penguin ratio obtained from the per
bative QCD (PQCD) formalism[13–17] or from the
QCD-improved factorization (QCDF)[18], so that the
phaseφ2 can be extracted from the CP asymmetr
of the B0

d → π+π− decays. One may also emplo
symmetries to relate the amplitudes of the relev
modes, such asSU(3) [19] andU -spin [20], in order
to reduce the number of free parameters. However
theoretical calculations are subject to subleading
rections, and the symmetry relations are broken w
unknown symmetry breaking effects. For these str
gies to work, the theoretical uncertainty must be un
control.

In this Letter we shall propose counting rules
the various topologies of amplitudes[21] in two-body
nonleptonicB meson decays in terms of powers of t
Wolfenstein parameterλ ∼ 0.22[22]. The relative im-
portance among the topological amplitudes has b
known from some physical principles: helicity su
pression (color transparency) implies that tree ann
lation (nonfactorizable) contributions are smaller th
leading factorizable emission contributions. Here we
shall assign an explicit power ofλ to each topology
such that the relative importance becomes quan
tive. This assignment is supported by the known Q
theories[16,18,23,24], and differs from that assume
in [22]. We drop the topologies with higher powe
of λ until the number of free parameters are eq
to the number of available measurements. The w
phases and the decay amplitudes can then be so
by comparing the resultant parametrization with
perimental data. Afterwards, it should be examin
whether the solved amplitudes obey the power co
ing rules. If they do, the extracted weak phases
fer only the theoretical uncertainty from the neglec
topologies. If not, the inconsistency could be regar
as a warning to QCD theories for two-body nonle
tonicB meson decays. For example, the long-dista
rescattering effect has been neglected in PQCD
in QCDF. If this effect is important, the hierarch
among the various topological amplitudes will be de
stroyed[25]. The comparison of our parametrizati
with data can tell whether the above assumption is
liable [26].
As shown below, dropping the electroweak pe
guin amplitude, the phaseφ2 can be extracted from
theB → ππ data. In principle, the theoretical unce
tainly of the ignored amplitudes is aroundO(λ2) ∼
5%, the same as in the extraction based on the iso
symmetry [2]. Similarly, the phaseφ3 can be bes
determined from theB → Kπ data up to the uncer
tainty from the neglect of theO(λ3) ∼ 1% tree anni-
hilation and color-suppressed electroweak amplitudes
Note that the determination of the phaseφ1 from the
B → J/ψK(∗) decays also bears about 1% theor
cal uncertainty. Certainly, a CP asymmetry is anO(λ)

quantity itself. Precisely speaking, the above deter
nation ofφ2 andφ3, involving the data of CP asym
metries, in fact carries the uncertainly ofO(λ) ∼ 20%
andO(λ2) ∼ 5%, respectively. Because theB → ππ ,
Kπ measurements are not yet complete, we shall d
more topologies in order to match the currently av
able data. In this simple demonstration, we obse
that the amplitudes solved from theB → Kπ data
more or less obey the hierarchy inλ. That is, an almos
model-independent determination ofφ3 is promising.
The solution from theB → ππ analysis is, unfortu
nately, not consistent with the power counting rul
indicating that the extraction ofφ2 may suffer theoret
ical uncertainty larger than stated above. Hence, o
work casts a doubt to the strategy based on the iso
symmetry[2] and gives a warning to the QCD calc
lations of theB → ππ modes[17,18,27].

We start with theB → Kπ decays. The branchin
ratio of a two-body nonleptonicB meson decay is
written as

(1)B(B → M1M2) = τB

16πmB

∣∣A(B → M1M2)
∣∣2,

where the light-meson massesmπ andmK have been
neglected, and theB meson mass and theB meson
lifetimes take the valuesmB = 5.28 GeV, τB± =
1.674× 10−12 s,τB0 = 1.542× 10−12 s. The effective
Hamiltonian for the flavor-changingb → s transition
is [28]

Heff = GF√
2

∑
q=u,c

V ∗
qsVqb
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×
[
C1(µ)O

(q)

1 (µ) + C2(µ)O
(q)

2 (µ)

+
10∑
i=3

Ci(µ)Oi(µ)

]
,

with the Cabibbo–Kobayashi–Maskawa (CKM) m
trix elementsV and the operators

O
(q)
1 = (s̄iqj )V −A(q̄j bi)V −A,

O
(q)

2 = (s̄iqi)V −A(q̄j bj )V −A,

O3 = (s̄ibi)V −A

∑
q

(q̄j qj )V −A,

O4 = (s̄ibj )V−A

∑
q

(q̄j qi)V −A,

O5 = (s̄ibi)V −A

∑
q

(q̄j qj )V +A,

O6 = (s̄ibj )V−A

∑
q

(q̄j qi)V +A,

O7 = 3

2
(s̄ibi)V −A

∑
q

eq(q̄j qj )V +A,

O8 = 3

2
(s̄ibj )V −A

∑
q

eq(q̄j qi)V +A,

O9 = 3

2
(s̄ibi)V −A

∑
q

eq(q̄j qj )V −A,

(3)O10 = 3

2
(s̄ibj )V−A

∑
q

eq(q̄j qi)V −A,

i, j being the color indices. For the characteris
scaleµ ∼

√
mbΛ̄ ∼ 1.5 GeV involved in two-bodyB

meson decays[16], Λ̄ = mB − mb being theB meson
andb quark mass difference, the values of the Wils
coefficients are

C1 = −0.510, C2 = 1.268,

C3 = 2.7× 10−2, C4 = −5.0× 10−2,

C5 = 1.3× 10−2, C6 = −7.4× 10−2,

C7 = 2.6× 10−4, C8 = 6.6× 10−4,

(4)C9 = −1.0× 10−2, C10 = 4.0× 10−3.

The above characteristic scale has been confirmed b
the dynamical penguin enhancement exhibited in
B → V P data[24]. The Wolfenstein parametrizatio
for the CKM matrix is given by
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




=



1− λ2

2 λ Aλ3(ρ − iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ − iη) −Aλ2 1




(5)=

 O(1) O(λ) O(λ4)

O(λ) O(1) O(λ2)

O(λ3) O(λ2) O(1)


 ,

with the parametersλ = 0.2196 ± 0.0023, A =
0.819± 0.035, andRb ≡ √

ρ2 + η2 = 0.41 ± 0.07
[29]. Note that the productARb ∼ 0.3 should be re-
garded as being ofO(λ), and that|Vub| is in fact
O(λ4). The phasesφ1 andφ3 are defined viaVtd =
|Vtd |exp(−iφ1) and Vub = |Vub|exp(−iφ3), respec-
tively.

Considering all possible topologies of amplitud
theB → Kπ decay amplitudes are given by

(6)A
(
B+ → K0π+) = P

(
1− Pc

ew

P
+ T a

P
eiφ3

)
,

(7)A
(
B0

d → K+π−) = −P

(
1− Pa

ew

P
+ T

P
eiφ3

)
,

√
2A

(
B+ → K+π0)

(8)= −P

[
1+ Pew

P
+

(
T

P
+ C

P
+ T a

P

)
eiφ3

]
,

√
2A

(
B0

d → K0π0)
(9)= P

(
1− Pew

P
− Pc

ew

P
− Pa

ew

P
− C

P
eiφ3

)
,

which satisfy the quadrangle relation

A
(
B+ → K0π+) + √

2A
(
B+ → K+π0)

(10)= A
(
B0

d → K+π−) + √
2A

(
B0

d → K0π0).
The amplitudePew (Pc

ew, Pa
ew) comes from the color

allowed (color-suppressed, annihilation) topolo
through the electroweak penguin operators. The
plitude P includes the emission and annihilatio
topologies through both the QCD and electrowe
penguins:

(11)P = PQCD + euP
c
ew + euP

a
ew,
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with the u quark chargeeu = 2/3. The amplitude
T (C, T a ) comes from the color-allowed (colo
suppressed, annihilation) topology through the t
operators. The penguin contributions from thec quark
loop can be included using the relationV ∗

csVcb =
−V ∗

usVub − V ∗
t sVtb, and the expressions inEqs. (17)–

(20) remain unchanged.
It has been shown in PQCD that a nonfactoriza

amplitudeMnf, a factorizable annihilation amplitud
Fa

(V −A) from the (V − A)(V − A) current, and a
factorizable annihilation amplitudeFa

(V +A) from the
(V − A)(V + A) current are suppressed, compared
the leading factorizable emission amplitudeFe , by the
factors of[30]

Mnf

Fe
∼

[
ln

mB

ΛQCD

]−1

∼ λ,

F a
(V −A)

F e
∼ ΛQCD

mB
∼ λ2,

(12)
Fa

(V +A)

F e
∼ 2m0

mB

∼ λ0,

respectively, wherem0 is the chiral enhancemen
scale, and the CKM matrix elements and the Wils
coefficients are excluded. We list the power count
rules for the Wilson coefficients inEq. (4)

O(1): a1,

O(λ): a2,1/Nc,

O
(
λ2): C4,C6, a4, a6,

O
(
λ3): C3,C5,C9, a3, a5, a9,

O
(
λ4): C10,

(13)O
(
λ5): C7,C8, a7, a8, a10,

with a1 = C2 + C1/Nc, a2 = C1 + C2/Nc , ai = Ci +
Ci+1/Nc for i = 3, 5, 7, 9, andai = Ci +Ci−1/Nc for
i = 4, 6, 8, 10.

According to Eqs. (12) and (13), we assign the
powers ofλ to the following ratios of the variou
topological amplitudes:

T

P
∼ VusV

∗
ub

VtsV
∗
tb

a1

a4,6
∼ λ,

Pew

P
∼ a9

a4,6
∼ λ,

C

T
∼ a2

a1
∼ λ,
T a

T
∼ Fa

(V −A)

F e
∼ Mnf

Fe

C1

a1Nc

∼ λ2,

P c
ew

P
∼ a8,10

a4,6
∼ Mnf

Fe

C9

a4,6Nc

∼ λ3,

(14)
Pa

ew

P
∼ Fa

(V +A)

Fe

a8,10

a4,6
∼ Mnf

Fe

C9

C4,6Nc

∼ λ3.

For the latter three ratios, we present the po
counting rules derived from both the factorizable a
nonfactorizable contributions, which are of the sa
order of magnitude. Compared to the power coun
rules in[22] based on the conventional scaleµ ∼ mb,
Pc

ew/P is down by one more power ofλ due toa10 ∼
O(λ5) in PQCD.

Whether a factorizable amplitude or a nonfact
izable amplitude is important depends on the
cay modes. In theB → Kπ case,C mainly comes
from the factorizable color-suppressed diagrams, s
there is a strong cancellation between a pair of n
factorizable diagrams. The factorizable and nonf
torizable annihilation contributions toT a , Pc

ew, and
Pa

ew are of the same order of magnitude as shown
Eq. (14). In the B → Dπ decays,C, being of the
same order of magnitude asT , mainly comes from the
nonfactorizable color-suppressed diagrams, since
above cancellation does not exist[15,31]. For T a in
theB → Dπ case, the nonfactorizable diagrams do
inate, because of

(15)
Mnf

Fe

C2

a1Nc

∼ λ2 � Fa
(V −A)

F e

a2

a1
∼ λ3.

Employing the reparametrizations

P − Pa
ew → P, Pew + Pa

ew → Pew,

(16)Pc
ew − Pa

ew → Pc
ew,

we arrive at the most general parametrization of
B → Kπ decay amplitudes

(17)A
(
B+ → K0π+) = P

(
1− Pc

ew

P
+ T a

P
eiφ3

)
,

(18)A
(
B0

d → K+π−) = −P

(
1+ T

P
eiφ3

)
,

√
2A

(
B+ → K+π0)

(19)= −P

[
1+ Pew

P
+

(
T

P
+ C

P
+ T a

P

)
eiφ3

]
,
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(20)

√
2A

(
B0

d → K0π0)
= P

(
1− Pew

P
− Pc

ew

P
− C

P
eiφ3

)
.

There are totally 6 independent amplitudes, nam
11 unknowns, because an overall phase can alway
removed. Hence, we choose the amplitudeP as a pos-
itive real value. Plus the weak phaseφ3, the 12 un-
knowns are definitely more than the 9 experimen
inputs: the branching ratios and the direct CP as
metries of the four modes, and the mixing-induc
CP asymmetry of theB0

d → K0π0 mode. Dropping
the O(λ3) terms,T a/P and Pc

ew/P , we have 8 un-
knowns. Then the data of the direct CP asymme
in the B+ → K0π± decays should be excluded f
consistency. Hence, we have 8 experimental inp
and thus all unknowns can be solved exactly ass
ing the phaseφ1 is already known from the mea
surement of the mixing-induced CP asymmetry in
B → J/ψK(∗) modes. The determination ofφ3 from
this parametrization is then accurate up to the theo
ical uncertainty ofO(λ2) ∼ 5%.

We emphasize the consequence from the diffe
power counting rules in[22] and in this work: the
smallerPc

ew is crucial for claiming that the determina
tion of φ3 from theB → Kπ data is accurate up to 5%
theoretical uncertainty. Following the counting rul
in [22], both C and Pc

ew will be included atO(λ2),
such that the 10 unknowns are more than the 9 av
able measurements. In this case we cannot solve fC

andPc
ew exactly, and have to rely on symmetry re

tions to reduce the number of unknowns. It is then d
ficult to estimate the involved theoretical uncertain
Using the counting rules inEq. (14), which are sup-
ported by the PQCD calculation, we include onlyC

at O(λ2), and the number of unknowns can be eq
to the number of measurements. Solving forC, and
assuring that the solution obeys our counting rule
a self-consistency check, the uncertainty from the
glected topologies is under control.

The measurement of the time-dependent asym
try in theB0

d → KSπ0 decay still suffers a large erro
To demonstrate our method, we reduce the numbe
unknowns by further dropping theO(λ2) terms,C/P ,
arriving at

(21)A
(
B+ → K0π+) = P,
(22)A
(
B0

d → K+π−) = −P

(
1+ |T |

P
eiφ3eiδT

)
,

√
2A

(
B+ → K+π0)

(23)= −P

(
1+ |Pew|

P
eiδew + |T |

P
eiφ3eiδT

)
,

(24)
√

2A(B0
d → K0π0) = P

(
1− |Pew|

P
eiδew

)
,

whereδT andδew denote the strong phases ofT and
Pew, respectively. TheB → Kπ decay amplitudes in
Eqs. (21)–(24)are the expansion up to the power ofλ,
at which the determination ofφ3 suffers the theoretica
uncertainty ofO(λ) ∼ 20%.

We shall solve for the 6 unknowns:P , |Pew|, |T |,
φ3, and the strong phasesδew and δT , from the 6
experimental inputs[32,33],

Br
(
B± → K0π±) = (20.6± 1.4) × 10−6,

Br
(
B0

d → K±π∓) = (18.2± 0.8) × 10−6,

Br
(
B± → K±π0) = (12.8± 1.1) × 10−6,

Br
(
B0

d → K0π0) = (11.5± 1.7) × 10−6,

A
(
B0

d → K±π±) = −(10.2± 5.0)%,

(25)A
(
B± → K±π0) = −(9.0± 9.0)%.

The B± → K0π± and B0
d → K0π0 modes indeed

have very small direct CP asymmetries, consis
with the parametrization inEqs. (21)–(24).The bounds
on the various amplitudes and phases can be de
unambiguously fromEq. (25).

The allowed ranges of the ratiosT/P andPew/P

are exhibited inFigs. 1 and 2, respectively. The
prescription for deriving the two figures is briefl
explained below. The data for each branching ratio
for each CP asymmetry are expressed as a set, w
elements are the central value with+1× error bar, 0×
error bar, and−1× error bar. For a combination of th
element from each set, we solve the coupled equati
and the solution is represented by a dot in the fig
Scanning all the combinations, we obtain the range
the figures. The central values of the solutions are

|T |
P

= 0.23, δT = −13◦,

(26)
|Pew|
P

= 0.50, δew = −88◦.

The above result ofT/P is in agreement with the
PQCD prediction,T/P ∼ 0.20 exp(−27◦i) [16,32,34,
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Fig. 1. The allowed range ofT /P determined from theB → Kπ data.

Fig. 2. The allowed range ofPew/P determined from theB → Kπ data.
is
tion
des s
35], while the central values of|Pew|/P and of δew
differ from the PQCD prediction,|Pew|/P ∼ 0.2 and
δew ≈ δT , respectively. The latter PQCD prediction
consistent with the almost model-independent rela
between the electroweak penguin and tree amplitu
obtained in[25,36]. The ratio|Pew|/P = 0.5 and the
nearly 90◦ phase betweenPew andP in the above fit
have been speculated in[27,37,39]. We also derive
the allowed ranges 0.06< |T |/P < 0.72 and 0.22<

|Pew|/P < 0.70, implying that the extracted ratio
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|T |/P and |Pew|/P deviate a bit from the powe
counting rules inEq. (14). Hence, theB → Kπ data
are indeed puzzling, especially from the viewpo
of the dramatically different strong phasesδew and
δT shown in Figs. 1 and 2. Because of the larg
central values of|Pew|/P and ofδew, a strong hint of
new physics has been claimed in[27,38,39]. A more
convincing examination of the self-consistency c
be made by solving for the amplitudeC, when more
complete data are available. At last, the central va
and the allowed range of the phaseφ3 are given by

(27)φ3 = 102◦, 26◦ < φ3 < 151◦,

respectively, with the theoretical uncertainty of abo
20%.

We emphasize that our fitting differs from th
global fitting based on the QCDF approach[18,41].
For example, the penguin contributions have been s
into the factorizable type depending on a transit
form factor, the nonfactorizable type depending
the imaginary infrared cutoffρH for an end-point
singularity, and the annihilation type depending on
imaginary infrared cutoffρA in QCDF. Taking into
account only theB → PP modes, such asB → Kπ

andππ , the fitting result of the phaseφ3 ∼ 110◦ [42]
is close to that extracted in this work. Our method a
differs from those based on the isospin relations[43],
with which some combinations of theB → Kπ

branching ratios can be described by the function
the parametersPew/T , T/P and the relative stron
phases. TheSU(3) flavor symmetry is then employe
to fix Pew/T andT/P . Finally, only the strong phase
and the weak phaseφ3 are treated as unknowns, a
determined by the data. The conclusion is similar:
B → Kπ data favorφ3 � 90◦. Our approach does no
rely on theSU(3) symmetry, and the ratiosPew/T and
T/P are treated as unknowns. Including theB → V P

modes in the QCDF fitting, the value ofφ3 could be
smaller than 90◦ [41]. Using the parametrization fo
theB → V P modes based onSU(3) flavor symmetry,
an phaseφ3 < 90◦ was also obtained[44]. In a
forthcoming paper we shall apply our parametrizat
to theB → V P modes, and make a comparison w
the above works.

Next we apply our method to theB → ππ decays.
Considering all possible topologies of amplitud
their decay amplitudes are given by
√

2A
(
B+ → π+π0)

(28)= −T

[
1+ C

T
+

(
Pew

T
+ Pc

ew

T
+ Pa

ew

T

)
eiφ2

]
,

(29)A
(
B0

d → π+π−) = −T

(
1+ T a

T
+ P

T
eiφ2

)
,

√
2A

(
B0

d → π0π0)

(30)

= T

[(
P

T
− Pew

T
− Pc

ew

T
− Pa

ew

T

)
eiφ2

− C

T
+ T a

T

]
,

which satisfy the triangle relation
√

2A
(
B+ → π+π0)

(31)= A
(
B0

d → π+π−) + √
2A

(
B0

d → π0π0).
In the above expressions the amplitudeP has been de
fined inEq. (11), and the annihilation contributionT a

comes only from the nonfactorizable diagrams. Ba
onEqs. (12)–(14), we assign the power counting rul
to the following ratios of the topological amplitudes

P

T
∼ VtdV

∗
tb

VudV ∗
ub

a4,6

a1
∼ λ,

C

T
∼ λ,

Pew

T
∼ λ2,

T a

T
∼ Mnf

Me

C2

a1Nc

∼ λ2,

(32)
Pc

ew

T
∼ Pa

ew

T
∼ λ4.

Employing the reparametrizations

T + T a → T , C − T a → C,

(33)Pew + Pc
ew + Pa

ew → Pew,

the most general parametrizations of theB → ππ

decay amplitudes are written as

(34)

√
2A

(
B+ → π+π0) = −T

[
1+ C

T
+ Pew

T
eiφ2

]
,

(35)A
(
B0

d → π+π−) = −T

(
1+ P

T
eiφ2

)
,

(36)

√
2A

(
B0

d → π0π0) = T

[(
P

T
− Pew

T

)
eiφ2 − C

T

]
.

There are 4 independent amplitudes, namely, 8 p
meters including the phaseφ2, which are more than
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the available measurements. Neglecting theO(λ2)

term, Pew/T , the resultant expressions are the sa
as in[22]:

(37)
√

2A
(
B+ → π+π0) = −T

(
1+ |C|

T
eiδC

)
,

(38)A
(
B0

d → π+π−) = −T

(
1+ |P |

T
eiφ2eiδP

)
,

(39)

√
2A

(
B0

d → π0π0) = T

( |P |
T

eiφ2eiδP − |C|
T

eiδC

)
,

for which we have 6 unknownsT , |C|, |P |, δC , δP and
φ2. Similarly, we have removed the strong phase ofT ,
and assumed it to be real and positive.

In this case we have to exclude the data of the di
CP asymmetry in theB+ → π+π0 decay, and 6 ex
perimental inputs are relevant: the three CP-avera
branching ratios, the direct and mixing-induced
asymmetries inB0

d → π+π−, and the direct CP asym
metry in B0

d → π0π0. At this level of accuracy, ou
parametrization is equivalent to that based on
isospin triangle[2,47], in which the electroweak pen
guin contribution to theB+ → π+π0 decay is also ig-
nored. We mention that the electroweak penguin a
plitude has been included in the isospin analysis
the B → ππ decays, and that the CP asymmetry
theB± → π±π0 modes still vanishes[45]. After ex-
tractingφ2 from theB → ππ data andφ3 from the
B → Kπ data, we can check whether they, toget
with φ1 from theB → J/ψK(∗) data, satisfy the uni
tarity constraint, when the data precision improves

The time-dependent CP asymmetry of theB0
d →

π+π− mode is expressed as

A
(
B0

d (t) → π+π−)
≡ B(B̄0

d (t) → π+π−) − B(B0
d (t) → π+π−)

B(B̄0
d (t) → π+π−) + B(B0

d (t) → π+π−)

(40)= −Cππ cos(
Mdt) + Sππ sin(
Mdt),

where the direct asymmetryCππ and the mixing-
induced asymmetrySππ are defined by

(41)Cππ = 1− |λππ |2
1+ |λππ |2 , Sππ = 2 Im(λππ )

1+ |λππ |2 ,

respectively, with the factor,

(42)λππ = e2iφ2
1+ e−iφ2P/T

1+ eiφ2P/T
.

The data are summarized as[46]

Br
(
B± → π±π0) = (5.2± 0.8) × 10−6,

Br
(
B0

d → π±π∓) = (4.6± 0.4) × 10−6,

Br
(
B0

d → π0π0) = (1.97± 0.47) × 10−6,

Cππ = −(38± 16)%,

(43)Sππ = −(58± 20)%.

Since the data of the direct CP asymmetry in
B0

d → π0π0 mode is not yet available, we shall assi
a plausible range to it,

(44)A
(
B0

d → π0π0) = (−50∼ +50)%.

The central values of the measuredB± → π±π0

andB0
d → π±π∓ branching ratios are close to ea

other, implying that eitherC is large and constructiv
in order to enhance theB± → π±π0 modes, orP is
large and destructive (after including the weak ph
φ2) in order to suppress theB0

d → π±π∓ modes[27].
In either case theB0

d → π0π0 branching ratio exceed
the expected order of magnitude,O(10−7). There
exist four solutions associated with each set of d
input: two solutions correspond to the largeC and
P cases, and the other two are the reflections of
first two with respect to theB± → π±π0 side of the
isospin triangle. Note that the relations of the ph
φ2 to the measured quantities have been given in[48]
without numerical results. Here we shall not pres
the central values of the solutions, because the centr
values of the experimental data of theB0

d → π0π0

direct CP asymmetry are not yet available.
The ranges ofP/T and C/T , shown inFigs. 3

and 4, respectively, collect all allowed solutions. The
ranges indicate that the hierarchy inEq. (32) is not
satisfied, since both|P |/T and |C|/T can be as
large as 1, much greater thanO(λ) ∼ 0.22. There
is then no reason for believing that the effect of
electroweak penguin would be as small asO(λ2) ∼
5% according to the relation betweenPew andT [25,
36]. Our analysis implies that the extraction ofφ2 from
theB → ππ data based on the isospin symmetry m
suffer the theoretical uncertainty more than expected
It also casts a doubt to the PQCD (also QCD
calculation of theB → ππ decays. To complete ou
numerical study, we present the allowed range ofφ2
corresponding to the data inEq. (43),

(45)51◦ < φ2 < 176◦.
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Fig. 3. The allowed range ofP/T determined from theB → ππ data.

Fig. 4. The allowed range ofC/T determined from theB → ππ data.
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As explained above, the theoretical uncertainty as
ciated with the above range may not be under cont

When the data become more precise, and when
data of more CP asymmetries, such as the mix
induced CP asymmetry in theB0

d → KSπ0 mode,
are available, the allowed range will shrink, and
theoretical uncertaintycan reduce. Our method the
tells whether theB → Kπ data indicate a solid signa
of new physics. Besides, our parametrization exte
straightforwardly to the other relevant modes, su
as B → K∗π , from which the phaseφ3 can also
be extracted[40]. Considering the overlap of th
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extractions from different modes, the allowed rang
of the decay amplitudes and ofφ3 will shrink too. An
evaluation of the next-to-leading-order corrections
the B → ππ decays in the PQCD framework is no
in progress, whose result will clarify whether the lar
|P | or |C| is understandable. If not, new dynamic
such as the rescattering effect, might be important.
B → ππ decays and the extraction of the phaseφ2
then demand more theoretical effort.
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