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Where to look for solving the gauge hierarchy problem?
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A mass of the Higgs boson close to 126 GeV may give a hint that the standard model of particle physics
is valid up to the Planck scale. We discuss perspectives for the solution of the gauge hierarchy problem
at high scales. Scenarios with an ultraviolet fixed point have predicted a Higgs boson mass very close to
126 GeV if the fixed point value of the quartic scalar coupling is small. In this case the top quark pole
mass should be close to 172 GeV.

© 2012 Elsevier B.V. Open access under CC BY license.
The ATLAS and CMS Collaborations at the LHC have announced
evidence for a mass of the Higgs boson in the range of 125–
126 GeV [1,2]. A mass in the vicinity of 126 GeV has been pre-
dicted [3] within models of non-perturbative renormalizability of
gravity [4,5] which lead to a small value of the quartic scalar cou-
pling near the Planck scale. In this Letter we ask if a Higgs boson
mass around 126 GeV, if confirmed, could give hints for the energy
scale where a possible solution of the gauge hierarchy problem
could be found.

1. Fine tuning problem and anomalous mass dimension

The Fermi scale of weak interactions, 〈ϕ〉 = ϕ0 = 175 GeV, is
more than sixteen orders of magnitude smaller than the Planck

scale in gravity, M = (8πG N )− 1
2 = 2.4 × 1018 GeV. Within any

unified theory of all interactions the small ratio ϕ0/M calls for
an explanation – this is the gauge hierarchy problem [6]. There
is widespread belief that the solution of this problem should be
found at energy scales not too far from the Fermi scale. Often this
is motivated by the so-called fine tuning problem that states that
in a unified model the parameters have to be tuned with high pre-
cision in any order of perturbation theory and that such a situation
is not natural. Supersymmetry or the absence of a fundamental
scalar as in technicolor can avoid this fine tuning.

It has been shown [7] long ago, however, that the need of
fine tuning in every order is purely a shortcoming of the per-
turbative expansion series. It is absent in renormalization group
improved perturbation theory or within functional renormaliza-
tion [8]. This can be seen most easily in a setting where the Higgs
doublet ϕ is supplemented by a singlet scalar field χ whose ex-
pectation value is responsible for the Planck mass. (We consider
here for simplicity a single field χ – the generalization to several
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fields being straightforward.) The relevant terms in the effective
potential for ϕ and χ are

U = 1

2
λ
(
ϕ†ϕ

)2 + γ
(
ϕ†ϕ

)
χ2 + Uχ (χ), (1)

with dimensionless couplings λ and γ . (Terms m2ϕ†ϕ or νϕ†ϕχ
can be absorbed by a redefinition of χ .) We choose conventions
for χ such that its expectation value equals the reduced Planck
mass, 〈χ 〉 = M . Electroweak symmetry breaking occurs for γ < 0,
and the gauge hierarchy needs the explanation of a tiny value of γ
(for real positive ϕ0)

ϕ0

M
=

√
−γ

λ
. (2)

The running of λ and γ with the logarithm of some appropriate
scale k obeys, with t = ln(k/χ),

∂tλ = βλ

(
λ,h, g2),

∂tγ = Aμ

(
λ,h, g2)γ . (3)

Here h stands for Yukawa couplings of ϕ to quarks and leptons –
we only keep the dominant coupling of the top quark – and g
stands for gauge couplings. The one-loop expressions read

βλ = 3

4π2

(
λ2 + h2λ − h4), (4)

Aμ = 3

8π2

(
λ2 + h2), (5)

where we omit the contribution from gauge couplings for simplic-
ity of the presentation. Higher loops add higher order terms to βλ

and Aμ but do not change the structure of the flow equations (3).
The crucial feature is the vanishing of ∂tγ = βγ for γ = 0, such

that βγ is governed by the “anomalous mass dimension” Aμ . This
is a consequence of the essentially second order character of the
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zero-temperature electroweak phase transition – say as a function
of γ . For an exact second order transition the transition point at
γ = 0 must be a fixed point, such that βγ (γ = 0) = 0 [7,9,10].
An exact fixed point would correspond to an additional symme-
try – namely “low energy dilatation symmetry” where distances
and low energy fields as ϕ are scaled according to their dimension
(including anomalous dimension), while χ is kept fixed. This en-
hanced symmetry for γ = 0 singles out this particular point and
makes the value γ = 0 “natural” in a technical sense [10].

Possible effects which may turn the transition away from sec-
ond order are due to running couplings. They are small and can be
neglected. The largest such effect is a minimal scale of electroweak
symmetry breaking induced by quark–antiquark condensates. This
is triggered by the running of the strong gauge coupling. (More
precisely, one has an exact Gaussian fixed point for γ = 0 and
vanishing g , h, λ. Small dimensionless couplings of the standard
model correspond to “marginal” deviations from the exact fixed
point. The structure ∂tγ = Aμγ is preserved in the presence of
marginal couplings. However, once the SU(3)-gauge coupling grows
large it can no longer be considered as marginal.)

If γ (k) is small at some scale k0 larger than ϕ0, the flow equa-
tions (3), (5) tell us that γ will remain small for all scales k
below k0 down to the Fermi scale. This statement is not affected
by higher order corrections to Aμ and βλ . There is no fine-tuning
problem order by order in perturbation theory if one expands the
flow equation as appropriate for renormalization gauge improved
perturbation theory [7]. It is sufficient to find an explanation for a
small value of γ at some arbitrary scale k within the validity of the
flow equations (3). Thus the solution for the gauge hierarchy prob-
lem may be found in the TeV range or in the range of 1018 GeV.
The requirement of naturalness does not tell us anything about the
scale k where the solution is to be found.

Possible “high energy solutions” of the gauge hierarchy prob-
lem involve momentum scales of the order of χ where particles
beyond the ones of the standard model are supposed to play a
role. In this range of scales both Aμ and βλ , as well as the beta-
functions for the other couplings of the standard model, may differ
substantially from the “low energy flow” (4), (5). For example, it is
conceivable that the scale χ corresponds to the transition from a
higher dimensional world to an effective four-dimensional descrip-
tion. In this case χ−1 is a typical length scale for the additional
“internal dimensions” and an “infinite number of particles” can
contribute to Aμ and βλ for k > χ .

The zero-temperature electroweak phase transition is of second
order also within such an extended short distance theory. Indeed,
an exact second order phase transition shows continuity of the or-
der parameter independently of the scale at which one “looks”
at the theory. The second order character of a phase transition
does not depend on the effective degrees of freedom used at a
given scale. For example, the short distance theory could involve
a large space of couplings. In this case the second order character
of the transition implies a hypersurface in the space of couplings
for which ϕ0 vanishes. The flow of couplings that are precisely on
this hypersurface will remain on the hypersurface. We may now
denote by γ some characteristic deviation from the hypersurface,
that will lead to ϕ0 �= 0. The flow of γ has to vanish for γ = 0 and
will typically be characterized by an anomalous dimension accord-
ing to Eq. (3). Only the value of Aμ will differ between the short
distance theory and the standard model. (This argument remains
valid as well if the short distance theory has less parameters than
the standard model.)

We emphasize in this context that the dilatation symmetry as-
sociated to the second order phase transition is easily seen only
for an appropriate choice of parameters. Indeed, γ should measure
a distance from the critical hyperface in coupling constant space.
Consider some other (very small) coupling η not related to this
distance, with flow equation ∂tη = B . For any linear combination
α = c1γ + c2η, ci �= 0, the beta-function βα = ∂tα involves a con-
stant term, such that α = 0 is not stable with respect to the flow.
For an inappropriate choice of parameters one could then naively
infer additional tuning problems. This situation often occurs in
grand unified theories where γ can be a complicated function of
couplings that are specified by other criteria, as multiplying invari-
ants with respect to a grand unified symmetry.

2. High scale attraction

Speculations about possible high energy solutions often invoke
a fixed point. This fixed point corresponds to a vanishing flow of
(dimensionless renormalized) couplings for scales k larger then χ .
It may be called “ultraviolet fixed point”, in distinction to the
“approximate infrared fixed point” for k � χ . For any (perturba-
tively or non-perturbatively) renormalizable theory containing the
standard model, the second order character of the electroweak
phase transition guarantees the presence of a fixed point both
for the ultraviolet and the infrared regime. However, the spec-
trum of effectively massless excitations typically differs between
the ultraviolet and infrared fixed points, such that the anomalous
dimension Aμ for the ultraviolet fixed point differs from Eq. (5).
The ultraviolet fixed point may be used to render a perturbatively
non-renormalizable theory non-perturbatively renormalizable. An
interesting candidate is the “asymptotic safety” scenario for gravity
[4,5].

Let us now suppose that for the ultraviolet fixed point the
anomalous mass dimension Aμ turns out to be large. Then the
fast running of γ towards small values in the vicinity of the fixed
point could lead to a natural solution of the gauge hierarchy prob-
lem [9]. For constant Aμ the solution

γ (k) = γ (k0)

(
k

k0

)Aμ

(6)

could yield γ (χ) ≈ 10−32 even if one starts with γ (k0) ≈ 1 for
some scale k0 sufficiently above χ . We may call this scenario
“high scale attraction”. In the general language of the renormaliza-
tion group the deviation from the transition between broken and
unbroken electroweak gauge symmetry can be parametrized by a
dimensionless parameter γχ2/k2. This is a relevant parameter for
k � χ where Aμ is small. For constant χ it would become irrele-
vant if Aμ > 2 for some new ultraviolet fixed point. On the other
hand, for k � χ one often finds a situation where χ is replaced by
a k-dependent expectation value χ(k) ∼ k. Then Aμ > 0 is suffi-
cient to turn the distance from the critical surface to an irrelevant
parameter.

High scale attraction is analogous to the solution of the flat-
ness problem in inflationary cosmology. While the critical density
Ω = 1 corresponds to an unstable fixed point of the time evolution
of a Friedman universe, it is a stable fixed point for inflationary
cosmology. The deviation Ω −1 turns from an irrelevant parameter
during inflation to a relevant one for the time after inflation. Simi-
larly to inflation, there needs to be an end of high scale attraction.
One of the marginal or relevant deviations from the ultraviolet
fixed point may generate a mass for some of the particles, e.g. by
dimensional transmutation. (This mass scale is associated to χ in
our setting.)

The task for a realization of high scale attraction is to find
a fixed point with a sufficiently large Aμ . For models close to
the standard model a fixed point with large enough Yukawa cou-
pling h could be a candidate [11], but no solution of this type
has been found yet. It is not necessary that the scalar doublet ϕ
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remains a fundamental field for the description of the ultraviolet
fixed point. Interesting candidates for new fixed points have been
found [12] for non-perturbatively renormalizable four-fermion in-
teractions, but large values of Aμ have not been observed. As
mentioned above, the ultraviolet fixed point could be associated
with asymptotic safety for gravity. For any realistic model of this
type it is indeed necessary that the zero-temperature electroweak
phase transition is essentially of second order. A reliable computa-
tion of the anomalous mass dimension Aμ in this context would
be highly appreciable. Even less is known about the properties of
possible ultraviolet fixed points in a higher dimensional setting.
We conclude that so far the search for a solution of the gauge hi-
erarchy by high scale attraction has remained inconclusive.

A fixed point for which γ becomes an irrelevant coupling can
be associated with the concept of “self-tuned criticality”. In the
language of critical statistical physics this means that the critical
system has no relevant parameter which must be tuned in order
to realize criticality. (Deviations from a fixed point are all irrelevant
or marginal.) A two-dimensional example is the low temperature
phase in the Kosterlitz–Thouless phase transition [13]. In four di-
mensions, self-tuned criticality has been observed for a theory
with scalar fields coupled to gauge fields [14]. We see therefore
no strong counterindication why high scale attraction could not be
realized.

3. Prediction of Higgs boson mass

Since from purely theoretical considerations we have no indica-
tion at what scale k the solution of the gauge hierarchy problem
should be found, one may look for hints from experiments. A low
scale solution at scales in the TeV range or somewhat higher could
lead to a multitude of possible signatures at high energy colliders
or for high precision experiments. No such signal has been found
up to now. The issue is more complicated for high scale solutions.
If the gauge hierarchy finds an explanation at a scale k ≈ χ the
standard model may be valid up to the Planck scale. Then no direct
or indirect signatures of additional particles beyond the standard
model are expected. There is, however, one salient characteristic
of high scale attraction, namely that the running of the couplings
of the standard model follows the perturbative β-functions over a
very large range of scales. As long as no details of a possible high
scale solution are known the only constraints or predictions for the
effective low energy theory arise from the running of couplings be-
tween the scales k = χ and k = ϕ0. This typically results in bounds
or predictions for the Higgs boson and top quark masses.

Below the scale χ Eqs. (4), (5) become valid, together with a
similar equation for the running of the top quark Yukawa coupling
(omitting again contributions from gauge couplings)

∂th = βh = 9

32π2
h3. (7)

The system of flow equations (4), (7) leads to a partial infrared
fixed point for the ratio λ/h2 [9,10,15](

λ

h2

)
= x0 = (

√
65 − 1)/8. (8)

Indeed, with x = λ/h2 − x0 and flow variable s defined by ∂s/
∂t = h2, Eqs. (4) and (7) can be combined to

∂x

∂s
= 3

4π2
x

(
x + 2x0 + 1

4

)
(9)

and we observe a vanishing flow of x for x = 0.
However, there is only a finite range of running between χ and

ϕ0 such that the fixed point is not reached precisely. It is rather
replaced by an infrared interval [10] with upper and lower bounds
λmin and λmax. This infrared interval is the image of the interval
of allowed values of λ at the scale χ . Any well-defined realistic
model requires λ(χ) to be positive – more precisely electroweak
symmetry breaking at high scale ∼ χ must be avoided. (Effective
potentials with a metastable vacuum and ϕ0 = 175 GeV seem hard
to be realized in a full treatment beyond perturbation theory if the
true vacuum has ϕ0 ≡ 1018 GeV.) On the other end we only re-
quire λ(χ) < ∞. The renormalization flow maps λ(χ) to λ(ϕ0) –
the interval [λmin, λmax] being the image of [0,∞]. This renormal-
ization map is highly non-linear. A substantial range of small λ(χ)

is mapped to a value very close to λmin, whereas the range of large
λ(χ) corresponds to the close vicinity of λmax. (For ϕ0/χ → 0 the
infrared interval would shrink to one point given by Eq. (8).)

The infrared interval depends on the top quark mass mt =
h(ϕ0)ϕ0 in two ways: First, the partial fixed point (8) as the “cen-
tral value” of the interval involves h and therefore mt . Second, the
interval shrinks faster during the renormalization flow for larger h
[10]. All characteristic features of the infrared interval remain valid
in the presence of gauge couplings – only the numerical values of
λmin and λmax are modified. For a top quark pole mass of 171 GeV
and including effects from gauge couplings and two loops one
finds [3] for the mass of the Higgs scalar that corresponds to λmin
and λmax

mmin = 126 GeV, mmax = 174 GeV. (10)

Including three-loop running and assuming a top quark pole mass
of 173 GeV one finds mmin = 129 GeV [16,17]. The uncertainty of
these values amounts to a few GeV.

Extrapolating the running couplings from the Fermi scale to-
wards shorter distance scales an interval of the type (10) follows
from the requirement of validity of perturbation theory and pos-
itiveness of λ [18], with the concept that new physics has to set
in for scales smaller than χ if mH is found outside the interval
(10). In our setting the infrared interval arises as a prediction of
the Higgs boson mass for a scenario of high scale attraction with
validity of the standard model up to the Planck mass. In the fol-
lowing we will argue further that a large class of such models
predicts the Higgs boson mass to be very close to the lower bound
at mmin.

Consider a scenario with a high scale fixed point where λ = 0,
as advocated in the context of non-perturbative renormalizability
of gravity in Ref. [3]. (For such a fixed point also γ and Uχ in
Eq. (1) may vanish such that the effective potential could be iden-
tically zero.) For k below χ the particles with mass ∼ χ , which
are supposed to be responsible for the existence of the ultravio-
let fixed point, decouple from the flow such that Eq. (4) becomes
valid. Due to the term ∼ −h4 the quartic coupling starts to deviate
from the fixed point value λ = 0 and increases as k is lowered. It
will then be attracted towards the lower bound of the infrared in-
terval, resulting in λ(ϕ0) = λmin and mH = mmin. An experimental
finding of mH near 126 GeV can be taken as a strong indication
in this direction. The scenario remains valid for a high energy
fixed point with a small nonzero value of λ. More generally, the
prediction mH = mmin results whenever λ(χ) is sufficiently small.
A whole range of small quartic couplings at the scale χ is mapped
to λ(ϕ0) ≈ λmin by the renormalization flow, resulting in a rather
robust prediction.

A logical alternative would be a fixed point with large values
of h and λ, as investigated in [9,11]. Large values of λ(χ) are all
mapped to the upper bound of the infrared interval and result
in mH ≈ 174 GeV. This seems to be excluded by the LHC–Higgs
bounds. Thus for any scenario with an ultraviolet fixed point a
zero or small value λ∗ seems indicated. The measured value of



576 C. Wetterich / Physics Letters B 718 (2012) 573–576
the Higgs boson mass provides for essential information about the
properties of a possible ultraviolet fixed point.

4. Prediction of top quark mass

The scenario of high scale attraction, together with a transi-
tion to the standard model near the Planck scale and λ(χ) close to
zero, provides also information about the mass of the top quark.
First, on a phenomenological level the identification of the mea-
sured Higgs boson mass with mmin restricts the value of the top
quark pole mass. (Recall that mmin depends on h and therefore
on mt .) For mmin = 126 GeV one infers a top quark pole mass close
to 171.5 GeV. For a given measured Higgs boson mass this can
be taken as a prediction of the scenario. The presently quoted top
quark mass of 173 GeV is somewhat higher, but uncertainties are a
few GeV [17]. A precise measurement of the top quark pole mass
can therefore be used for a possible falsification of our scenario
and merits experimental and theoretical effort.

On a more theoretical level our scenario of high scale attrac-
tion entails a lower bound for the top quark mass [3]. Indeed,
for λ(χ) = 0 one also needs the beta-function βλ to be nega-
tive or zero at this scale. For positive βλ(χ) the quartic coupling
λ(k) would turn negative for k < χ , thus inducing high scale elec-
troweak symmetry breaking, in contrast to ϕ0 = 175 GeV. A neg-
ative βλ requires the Yukawa couplings h(χ) to be sufficiently
large as compared to the gauge couplings g(χ). (The gauge cou-
plings make a positive contribution to βλ .) This provides for a
lower bound for the top quark pole mass, given by the condition
βλ(χ) = 0. This lower bound is close to the experimental measured
value of mt . On the other hand, a value of mt substantially above
the lower bound would imply a value of mmin that is larger than
the observed value of the Higgs boson mass. An experimental up-
per bound on mH translates to a phenomenological upper bound
for mt , supplementing the theoretical lower bound.

A particularly interesting set of “initial conditions” at the scale
χ is

λ(χ) = 0, βλ(χ) = 0. (11)

The two conditions predict two parameters of the standard model,
namely

mH = 126 GeV, mt = 171.5 GeV, (12)

where we associate χ to a scale close to the reduced Planck mass.
For an ultraviolet fixed point one has necessarily βλ(k) = 0 for
k � χ . It is not trivial how this translates to βλ(k) = 0 for a value
of k close to χ where only the particles of the standard model are
effectively massless. In principle, the decoupling of heavy particles
could lead to a jump of βλ(k) between k � χ and k � χ . The con-
dition βλ(χ) = 0 amounts therefore to a property of smoothness
of the running of λ for k larger or smaller than χ . In other words,
the particles decoupling at the scale χ should only give a small
contribution to βλ . (This would be the case if their contribution
is ∼ λ, as for the graviton which decouples effectively due to the
gravitational interaction becoming very small.)

Of course, the measurement of the two parameters mH and mt

can only be used for a possible falsification of our scenario, not for
a confirmation. One can think of many alternative models where
parameters can be adjusted in order to reproduce the correct val-
ues for mH and mt . For example, a similar range for mH and mt has
been found from the requirement that the Higgs potential should
have two minima [19]. It seems worthwhile to reduce the uncer-
tainties, both for the measured values of the Higgs boson mass and
the top quark pole mass. On the theoretical side one may explore
possible modifications from “intermediate scales” that only mildly
influence the running of couplings. This concerns a possible grand
unification at a scale only somewhat below the Planck mass, as
well as effects of an intermediate scale related to B − L violation
that governs the size of the neutrino masses.

We conclude that experimental hints towards a high scale solu-
tion of the gauge hierarchy problem are necessarily much weaker
than the possibilities of direct or indirect detection of new par-
ticles for a low scale solution. Nevertheless, an agreement of the
observed Higgs boson and top quark masses with the lower bound
of the infrared interval may point towards a high scale solution
with a small value of the quartic scalar coupling at the unification
scale, possibly zero and corresponding to a fixed point. It seems
worthwhile to remain open minded about the scale where the
gauge hierarchy problem may be solved and to devote an increased
theoretical effort into ideas for high scale attraction.
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