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Microtubule-Targeting Agents (MTAs) constitute a class of drugs largely used for cancer treatment in adults
and children. In cancer cells, they suppress microtubule dynamics, and induce cell death via themitochondrial
intrinsic pathway. To date, links between mitochondria and microtubule network disturbance in MTAs
mechanism of action are not obvious. The aim of the present contribution is to provide elements that could
answer to the question: how far are mitochondria essential to anticancer chemotherapy that targets the
microtubule cytoskeleton? We review the main molecular candidates to link microtubule alteration with the
apoptotic mitochondrial pathway control. Involvement of direct targeting of mitochondria in MTA efficacy is
also discussed. Furthermore, we line up current evidence and emerging concepts on the participation of both
mitochondria and microtubule in MTA neurotoxic side effects. To decipher the interconnections between the
mitochondrial and themicrotubule networks may help to improve cancer cell response to chemotherapy. This
article is part of a Special Issue entitled: Bioenergetics of Cancer.
ergetics of Cancer.
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1. Introduction

Improvement of anticancer therapeutic strategies is often limited by
a poor knowledge of molecular mechanisms underlying carcinogenesis
and cell response to treatment. Although carcinogenesis is a very
complex process, it can be divided into two crucial steps: 1) appearance
of oncogene mutations in a group of cells, leading to 2) disorderly cell
proliferation. This uncontrolled cell division, joined to neo-angiogenesis
induction, is responsible for tumor formation, growth and spreading. As
the microtubule network is highly involved in cell proliferation, it
appeared to be a preferential target for cancer therapy. For that matter,
great efforts have been devoted to discover drugs that affect
microtubules. Nowadays, the so-called Microtubule-Targeted Agents
(MTAs) constitute a class of anticancer drugs largely used in the clinics.
Among them, taxanes and Vinca alkaloids are powerful inhibitors of
microtubule dynamics and apoptosis inducers, used to treat solid
tumors and malignant hemopathies. The therapeutic success of MTAs
accounts for the development of new microtubule-targeting com-
pounds by pharmaceutical companies, which has been – and is still –
intense and fruitful.

The aim of the present contribution is to answer the question: how
far are mitochondria essential to anticancer chemotherapy that
targets the microtubule cytoskeleton? First, we briefly summarized
the cellular effects of MTAs on microtubule dynamics, and their
functional consequences. Then, as MTA anticancer effectiveness has
been related to the apoptotic mitochondrial pathway, we lined up the
main molecular candidates to link microtubule alteration with
apoptosis control; and we discuss the direct effects of MTAs on
mitochondria. We also reviewed current evidence and emerging
concepts of both mitochondria and microtubule role in MTA
neurotoxic side effects. Lastly, we considered MTAs as tools to study
the influence of microtubule dynamics on mitochondrial dynamics.

2. MTA family ofmolecules, a reference in anticancer chemotherapy

Microtubules are cytoskeletal hollow filaments present in most
eukaryotic cells that result from polymerization of α/β tubulin
polymers. In mammalian cells, microtubules are polarized structures
nucleated at the centrosomewhere theminus end is anchored. The plus
end grows to the cell periphery and constantly explores the cytoplasm,
making microtubule highly dynamic polymers. Indeed, a fundamental
property of microtubules is to exhibit a dynamic instability, which is
characterized by a succession of slow polymerization and rapid
depolymerization phases. The switch from microtubule growth or
pause to shrinkage is known as “catastrophe”, and the switch from
shrinkage to growth or pause is named “rescue” [1]. This dynamic
behavior is of particular importance in the regulation of many cellular
functions by the microtubule cytoskeleton, as being the support for cell
division, shape changes, motility and cell differentiation such as
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formation of neuronal outgrowths. Thus, far from being considered as
mere architectural elements, microtubules are key determinants of
cellular events and functionalities. Only a few microtubule-governed
cellular processes require an overall remodeling of the cytoskeleton
network, but all depend on a tightly regulated microtubule dynamics.

Microtubule-Targeted Agents (MTAs) remain benchmark clinical
treatments displaying high cytotoxic efficiency and are still widely used
against a broad spectrumof children's and adult's tumors. They recently
received a revival of interest as potent anti-angiogenic and vascular-
disrupting agents [2]. Research and development are still in progress to
discover more active and less toxic compounds (for extensive reviews,
see [3,4]). Attempts to improve the intracellular drug concentration and
a more specific targeting of tumor cells are especially under intense
investigations, and the emerging field of nanotechnologies actively
participates to this quest [5]. The MTA family is composed of more than
30 compounds, historically classified in destabilizing and stabilizing
agents, according to their binding site on tubulin or microtubules [3,6].
Destabilizing agents inhibit microtubule polymerization in vitro; they
include the Vinca alkaloids such as vinblastine or vincristine that bind to
the so-called “Vinca” tubulin domain, as well as nocodazole or
combretastatins that bind to the “colchicine” tubulin domain. Stabilizing
agents enhance tubulin polymerization and microtubule stabilization;
they include taxanes, such as paclitaxel or docetaxel, and Epothilones.
Although the distinction in destabilizing and stabilizing agents is useful
for structure–activity studies, it is no more used in cellular and in vivo
studies since both classes have been shown to commonly disturb
microtubule dynamics, without changing the overall microtubule mass
in a large range of concentrations [7].

It is now largely accepted that cytotoxic (i.e. pro-apoptotic)
concentrations of MTAs suppress microtubule dynamics. [8–11]. An
extensive decrease in microtubule dynamics prevents the normal
alignment of chromosomes, activates the spindle assembly checkpoint,
which results in the cell blockade in mitosis [12]. It should here be
noticed that a moderated suppression of microtubule dynamics, which
did not allow the accumulation of cells inmitosis, is also associatedwith
apoptosis induction in tumor cells [13–15]. Thus, it remains unclear
whether and how the mitotic arrest is coupled to the activation of the
apoptotic machinery [16,17]. Elsewhere, microtubule dynamics sup-
pression correlates with cell locomotion alteration, as described in
fibroblasts treated with paclitaxel and nocodazole [18,19]. Surprisingly,
the increase in microtubule dynamics by low concentrations of
vinflunine and paclitaxel has been also shown to inhibit endothelial
cellmigration, resulting inMTAanti-angiogenic activities [20]. This effect
was correlated with the inhibition of interphase microtubule functions,
resulting in inhibition of adhesion site dynamics and formation of long-
lived stress fibers [21]. Interestingly, whatever the concentration
studied, MTAs disorganize the network of microtubule+end tracking
proteins (+TIPs). Among them, the end binding (EB) family of proteins
specifically forms comet-like accumulation at the ends of growing
microtubules. As they ensure microtubule growth, EB proteins are
crucial regulator of microtubule dynamics [22]. Taxanes, Vinca alkaloids
and Epothilones commonly disrupt EB protein distribution in cancer,
endothelial and neuronal cells [21,23] (and personal data), which may
account for MTAs' main effects on interphase and mitotic microtubule
dynamics.

3. Anticancer effectiveness of MTAs: mitochondria come into play

MTAs, including the newest in clinical trials, have shown a high
ability to induce apoptosis [24–28]. This programmed and tightly
regulated cell death was first identified in 1993, by Bhalla et al. [29], as
the mechanism responsible for the anti-tumor cytotoxic effects of
paclitaxel in human myeloid leukemia cells [14]. Since then, their
effectiveness, even in the clinics, has been well correlated to apoptosis
extent in all tumor cells. It should be noted that, even though MTAs
can induce cell death in endothelial cells, it is dispensable for their
anti-angiogenic and anti-vascular properties at low doses [30,31]. This
section will thus be focused on apoptotic actors necessary to MTA
anticancer activity in tumor themselves, giving clues to understand
how can microtubule dysfunction be a necessary step in apoptosis
induction.

3.1. Intrinsic pathway induction by MTAs: what to learn for
onco-pharmacology?

From the numerous intracellular apoptotic signals, two major
routes can be discerned: the mitochondrial pathway, known as the
intrinsic pathway, and the death receptor pathway, so-called extrinsic
pathway. Although MTAs have been shown to modify expression
levels of death receptors and their ligands, the extrinsic pathway is
generally excluded from MTA-induced apoptosis [32–34]. MTA
effectiveness is largely accepted as a consequence of caspase
activation through the intrinsic apoptotic pathway [35]. Of note, the
anticancer activity of novel improved pharmacological features of
MTAs, such as hydrophilic paclitaxel derivative or paclitaxel loaded
poly(L-lactic acid) microparticles, is evaluated by measuring their
impact on mitochondria [36,37]. It points out how these organelles
are crucial in the appraisal of microtubule-targeted chemotherapy
success.

3.1.1. The lethal cascade
Mitochondrial membrane permeabilization is the central gate in

turning on/off apoptosis, as it allows the release of a large panel of
pro-apoptotic proteins [38,39], that activates downstream signaling
cascades and leads to the final execution of cell death. An early and
transient hyperpolarization of the mitochondrion has been reported
withMTAs, which is, in tumor cells, followed by theΔΨmcollapse and
the release of pro-apoptotic factors [17,30]. The subsequent activation
of the caspase cascade is the non-return point to cell biochemical
destruction and phenotypic changes in MTA-induced apoptosis
[35,40–43]. In response to paclitaxel- or epothilone-treatment, the
massive cytochrome c release from mitochondria triggers the
formation of the multi-factor complex apoptosome, which leads to
an early increase in caspase-9 activity. Accordingly, the caspase-9
specific inhibitor (z-LEHD-fmk) effectively protects cells from MTA-
mediated apoptosis [42–44]. Overexpression of Apaf-1, the adaptor
molecule of the apoptosome, has been shown to enhance paclitaxel-
induced apoptosis [45]. In situations where activation of caspase-9 is
disturbed, overexpression of the downstream effector caspase-3
restores sensitivity to MTAs in resistant cancer cells [46]. Smac/Diablo
and Omi/Htra2 peptides are also released from mitochondria during
their permeabilization, and favor caspase activity by preventing action
of the inhibitor of apoptosis proteins (IAPs) [39,47]. Inhibition of IAPs
can, in vitro, modulate the efficacy of antineoplastic agents. Smac/
DIABLO peptide enhanced the induction of apoptosis and long term
antiproliferative effects of paclitaxel in breast cancer cells [48,49].
Combination of paclitaxel with a recombinant adenovirus encoding
Smac/DIABLO also produced greater levels of apoptosis in ovarian
carcinoma cells [50]. In addition, ectopic Smac/DIABLO sensitized
drug-resistant epithelial ovarian cancer cells to paclitaxel-induced
apoptosis [51]. Thus, an increase in Smac/DIABLO activity seems to be
a promising strategy to improve MTA treatment, including in drug-
resistant cancer, but a clinical approach is still lacking.

3.1.2. Bcl-2 family members
Much effort has been directed toward elucidating the mechanism of

mitochondrialmembrane permeabilization, and, while still discussed, it
is now largely accepted that this process is under the control of the Bcl-2
family members. The Bcl-2 family is composed of up to 30 proteins that
can be divided into 3 groups: one of Bcl-2-like survival factors and two
others of cell death promoting factors named Bax-like and BH3-only
[52]. The relative levels of anti- andpro-apoptotic clans inmitochondrial
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membranes arbitrate cell life or death decision. MTAs modulate both
expression levels and activity of pro-apoptotic members of the Bcl-2
family. Up-regulation of the Bad, PUMA, Bax and/or Bak has been
observed after treatment with paclitaxel, epothilone B as well as with
Vinca alkaloids [15,53–55]. As expected, Bcl-XS, Bax or Bad over-
expression sensitizes cancer cells to paclitaxel and vincristine [56–58].
In addition, MTAs trigger Bax activation through its conformational
change [54,59] that allowsN-terminal domain exhibition and Bax stable
insertion into the outer mitochondrial membrane [60,61]. MTAs also
initiate Bim translocation from microtubules to mitochondria, as
discussed in the next section. Lastly, the late cleavage of Bid into a
functional fragment (tBid) has been proposed to be a signal amplifica-
tion loop which could be required for an optimal release of
mitochondrial factors following MTA treatment [62,63].

In parallel, Bcl-2-like anti-apoptotic proteins can be post-transla-
tionally inactivated by hyperphosphorylation induced by a large panel
of MTAs [15,64–68]. It has initially been thought to be a marker of
mitosis rather than an apoptosis-related signal, but both the extent and
the duration of the mitosis-associated Bcl-2 hyperphosphorylation is
likely to distinguish a pre-apoptotic cell from one destined to divide
[69]. Treatments with MTAs also decrease expression levels of Bcl-XL

and Bcl-2 to activate the intrinsic pathway [70–72]. Overexpression of
the anti-apoptotic proteins Bcl-2 and Bcl-XL are involved in resistance of
cancer cells tomicrotubule-targeted chemotherapy [73–76]. Thus, Bcl-2
and/or Bcl-XL antisense strategies have been developed, and were first
reported to mediate an increase in docetaxel- and paclitaxel-sensitivity
in vitro and inmice xenografts [33,77–79]. ABT-737, a BH3-mimetic that
antagonizes Bcl-2, Bcl-XL, and Bcl-w, increased MTA pro-apoptotic
effects in a variety of tumor cell lines, including breast cancer cells with
acquired resistance to paclitaxel [80–82]. Similarly, A-385358, a small
molecule with relative selectivity for binding to Bcl-XL potentiated the
activity of paclitaxel in non-small-cell lung cancer cells, in vitro and in
vivo [83]. In 2003, a phase II clinical trial of oblimersen (antisense
oligonucleotides targeting Bcl-2) in combination with docetaxel
validatedprogression into phase III for patientswith advanced hormone
refractory prostate cancer. However, Bcl-2 inhibition did not always
succeed in enhancing treatment effectiveness [84–87]. Furthermore, it
should be used with caution in combination with MTAs since works
showed that Bcl-2 down-regulation is responsible for an unexpected
resistance to paclitaxel and vinflunine in ovarian cancer cells [17,88].
Accordingly, Bcl-2 overexpression can increase non-small cell lung
cancer sensitivity to docetaxel [89]. Similarly, prostate cancer cells can
adapt to antisense RNA targeting Bcl-xL, leading to a paradoxal
resistance to docetaxel and vinblatine [90]. This dual role of “prosurvi-
val”mitochondrial proteins points out the need for further investigation
to elucidate their real contribution in MTA treatment effectiveness and
their potential as target for clinical antisense strategies.

3.2. Proteins released from the microtubule to mitochondria: at the
doorsteps of MTA effectiveness?

While the main effects of MTAs on both the intrinsic apoptotic
signaling cascade and the microtubule network are now quite well
understood, clear links are still lacking between the two events. Since
apoptosis and proliferation are closely related [91], effects of MTAs on
proteins that control both phenomena have been studied for years.
Cell cycle is a tightly regulated process, and its disturbance by MTAs
may participate in the mitochondrial apoptotic pathway initiation.
Therefore, studies on how cell cycle checkpoints modulate the
intrinsic pathway are of major interest, and extensively reviewed
[27]. The present section will be focused on protein candidates that
could build molecular bridges between microtubules and the
apoptotic machinery. Indeed, microtubules serve as scaffolds for
different signaling molecules, extending the list of biological process-
es regulated by themicrotubule network in cells. Amongmicrotubule-
linked components, regulators of the apoptotic process such as p53
and Bim may be released from microtubules towards mitochondria.
Since polymerizing and depolymerizing MTAs display the common
property of suppressing microtubule dynamics, it probably explains
why the involvement of the microtubule-transported factors in
apoptosis is similar amongst these anticancer drugs.

3.2.1. p53, the multifaceted molecule
Different lines of evidence indicate that p53 up-regulation and

activation are required for maximal cell sensitivity to Taxanes, Vinca
alkaloids and Epothilones [15,54,71,92–96]. The role of p53 in apoptosis
mediated by microtubule disturbance is reinforced by recent data
showing that overexpression of themicrotubule-associated protein Tau
rendered neuroblastoma cells resistant to apoptosis by mechanisms
involving reduction of p53 level [97]. MTA concentration seems to be
critical, as low doses of paclitaxel increase p53 protein levels, whereas
high doses do not affect or even inhibit these levels [72,98,99]. Similarly,
low doses of vinflunine up-regulate p53, while high doses increase p53
to a lower extent [17]. The concentration-dependent activation of this
transcription factor may result from its microtubule-governed trans-
port. Indeed, its dynein-dependent transport to thenucleus is thought to
be a consequence of microtubule dynamics suppression by both
stabilizing and depolymerizing agents [92,95,100,101]. High concentra-
tions of MTAs probably induce too extensive damages to microtubules,
which can no more serve as tracks for p53 trafficking. Once in the
nucleus, p53 transcriptional properties are activated, leading to
modulation in gene targets such as p53 itself or p21 and, more
interestingly, members of the Bcl-2 family [36,102,103]. Under MTA
treatment, p53 induction has been shown to down-regulate Bcl-2 and
up-regulate Bax [15,71,104,105]. Recently,we identified a novel binding
site of p53 on the Bcl-2 promoter, responsible for the transcriptional
down-regulation of Bcl-2 by vinorelbine in breast carcinoma cells [104].
The BH3-only members PUMA and Noxa can also be up-regulated
following p53 induction [54,106,107], but the role of MTA-mediated
disturbance of microtubule dynamics in this process remains to be
characterized.

Besides its ability tomodulate the pro-apoptotic/anti-apoptotic ratio
in favor of apoptosis, p53 induces apoptosis through a transcription-
independent mechanism. In response to various pro-apoptotic stimuli,
including MTAs, p53 rapidly moves to the mitochondria in cellular and
mice models [15,93,108–111]. Once at the mitochondrion, p53
primarily associated with the outer mitochondrial membrane, but a
small subfraction may be located within the mitochondrial matrix
[108,111–113]. The mitochondrial p53 participates in the apoptotic
cascade by inducing the mitochondrial outer membrane permeabiliza-
tion through direct activation of Bax-like and BH3-only proteins, and by
forming inhibitory complexes with Bcl-2-like members [106,114]. The
p53-targeted drug pifithrin-μ, which blocks the interaction of p53 with
Bcl-XL [115], inhibits a part of vinorelbine-induced apoptosis [104],
supporting a role for the mitochondrial p53 in MTA pro-apoptotic
properties.While somekey stepshavebeen invoked to explain howp53
translocation from microtubules can be triggered [74,115], the exact
role of MTA-induced damages of microtubule dynamics is still an
unexplored field.

3.2.2. Bim goes for a walk to mitochondria
BH3-onlymember of the Bcl-2 family, Bim is involved in inhibition of

metastasis formationand in the pro-apoptotic responseof tumor cells to
chemotherapy [116–121]. Bim expression level increases dramatically
after paclitaxel treatment [99,122] and gene silencing experiments
showed that its up-regulation is a critical regulator of apoptosis in
cancer cells [122–124]. While Bim can be localized at mitochondria
without cell death stimuli in some cellular models, number of studies
showed that it is sequestered by microtubules via its interaction with
the dynein light chain DLC1/LC8 of the motor complex or via a direct
interaction with microtubules [125,126]. Interestingly, Bim-deficient
lymphocytes are less sensitive to paclitaxel-mediated perturbations of
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the microtubule network, which underscores the importance of Bim in
mediating apoptosis induced by agents that target microtubules [127].
During treatment with paclitaxel, Bim may act as a sensor of
cytoskeleton integrity, since it is unleashed from microtubules and
translocates to mitochondria [123]. In support to this hypothesis, the
plant toxin called persin has been shown to induce Bim release by acting
as amicrotubule-stabilizing agent in breast cancer cells [128]. Similarly,
the HIV-1 Tat protein activated apoptosis in host cells by triggering Bim
translocation to mitochondria in response to microtubule stabilization
[127]. We also showed that epothilone B induced Bim accumulation to
mitochondria, leading to apoptosis in human neuroblastoma cells [93].
Since then, works have confirmed that MTAs freed Bim from micro-
tubules and enriched mitochondria in this pro-apoptotic protein
[129,130].

Bim sequestration from dynein may be released through its
phosphorylation by JNK, as described with UV treatment [116,131].
Such a kinase can be activated by MTAs [27]. However, it may also be
argued that Bim translocation triggered by MTAs results from
disturbance of microtubule dynamics or structure. Indeed, microtu-
bule destabilization by Gadd45a led to Bim release without activation
of JNK [132]. Among the different hypotheses, the enhanced
generation of mitochondrial reactive oxygen species (ROS) by MTAs
[35,41,133–136] has been shown to be responsible for Bim accumu-
lation to mitochondria in neuroblastoma cells [93]. Thus, the
mitochondrial compartment itself can initiate the signaling dialog
with the microtubule network, which results in apoptosis and thus
participates in MTA efficacy.
4. Direct effects of MTAs on mitochondria: where do we stand?

In parallel with their effects on the microtubule network, MTAs can
also activate the apoptotic pathway through a direct action on
mitochondria. Incubation of mitochondria isolated from tumor cells
with either Taxanes, Vinca alkaloids or Epothilones provokes cyto-
chrome c release [137]. In contrast, other classes of anticancer drugs
such as 5FU or doxorubicin were not able to permeabilize membranes
from isolated mitochondria [138] (and personal data). MTAs induce an
early ΔΨm collapse and a subsequent large amplitude swelling of
isolated mitochondria [88,136,138,139]. The mitochondrial membrane
permeabilization is inhibitable by cyclosporine [138], consistently with
the permeability pore-dependent Ca2+ loss from isolatedmitochondria
induced bypaclitaxel and nocodazole [139,140]. Paclitaxel has also been
shown to significantly increase the cytochrome oxidase-mediated ROS
production by purified mitochondria [136]. Interestingly, the pro-
apoptotic effects of paclitaxel can be enhanced by improving its specific
delivery to mitochondria using a mitochondria-specific nanocarrier
system (DQAsomes) [141].

Then, it raises the question of the potential target(s) of MTAs in
mitochondria. Tubulin, that was found to be strongly associated with
mitochondrial membranes in both purified organelles and whole cells
[139,142,143], was the first candidate proposed to explain the specific
effect of MTAs on isolated mitochondria. The mitochondrial tubulin
subfraction is enriched in class III β-tubulin (TUBB3), but, in contrast
with the cytoskeletal form, its overexpression does not correlate with
cell resistance to MTAs [144]. An association has been reported
between the mitochondrial tubulin and VDAC [142,145], the major
outer membrane pore that is likely involved in the release of pro-
apoptotic factors by MTAs from the intermembrane space to cytosol.
The current knowledge on the MTA-induced intrinsic pathway has
rejuvenated the study from Evtodienko et al. [146], which suggested
the involvement of either mitochondria-bound tubulin per se and/or
contacts between mitochondria and microtubules in regulation of
mitochondrial membrane permeability [146]. More than 10 years
later, the C-terminal tail of tubulin has been proposed tomodulate the
VDAC opening and the mitochondrial respiration rate [145].
Bcl-2 has also been identified as a potential target for paclitaxel by
phage display and a chemical approach [147,148]. Recently, Ferlini et
al. revealed that, in ovarian cancer cells, paclitaxel directly targeted
Bcl-2 in the loop domain [149]. As a result, paclitaxel changed the role
of Bcl-2 from inhibitor to enhancer of the mitochondrial membrane
permeabilization, facilitating apoptosis. This process may explain why
the down-regulation of Bcl-2 is responsible for an unexpected
resistance to MTAs in different tumor cell types and cancer patients
[17,66,88,89]. Finally, the two hypotheses have joined when the
association between the tubulin and Bcl-2 has been revealed, by co-
immunoprecipitation from mitochondrial lysates and with purified
proteins [17,88,150]. Such a complex that gathers tubulin, Bcl-2 and
VDAC could be both a direct target for MTAs and a regulator of the
mitochondrial membrane permeability. Thus, while the mitochondri-
al targets of MTAs are probably not all defined, it is reasonable to think
that these anti-tumor agents display crucial anti-mitochondrial
properties involved in their efficacy.

The relevance of this phenomenon remains difficult to prove in
whole cells, since the direct effects of MTAs on the mitochondrial
network are usually undistinguishable from those resulting from
microtubule modifications. Moreover, results showing that interfer-
ence of paclitaxel with the mitochondrial signaling cascade occurred
upstream of microtubule organization alteration [140] should be
reevaluated by measuring microtubule dynamics, a highly more
sensitive parameter than microtubule architecture. Nevertheless, we
showed that the early production of ROS from mitochondria was
necessary to Bim translocation towards mitochondria, which in turn
triggered apoptosis in human neuroblastoma cells [93]. These data
strongly suggest that some of the most rapid effects of MTAs on the
intrinsic apoptotic pathway may be initiated through a direct action
on mitochondrial integrity. The involvement of MTA-mediated ROS
generation from mitochondria needs to be reconsidered in processes
such as EB protein comet disruption by MTAs (see section 2), which is
thought to result from targeting of the microtubule system, but which
has been recently shown to be triggered by H2O2 [151]. Then, it is easy
to speculate that some alterations of the microtubule dynamics
induced by MTAs could be, at least in part, linked to the drugs' anti-
mitochondrial properties.

5. Mitochondria–microtubule pair: MTAs stir up the trouble in
neuronal system

Chemotherapy-induced peripheral neuropathy (CIPN) is the main
dose limiting side of a large panel of MTAs [152,153]. Most of the time,
peripheral neuropathy reverses if the treatment is stopped. However,
in some cases, recovery from symptoms is incomplete and a long
period of regeneration is required to restore function [154]. This
neurotoxic side effect is still an unsolved clinical issue, so the ways
that cytoskeleton and organelles interplay and how MTAs alter these
relationships in neuronal models are of high importance.

5.1. Animal models of chemotherapy-induced neuropathy: slipping from
microtubule to mitochondrial involvement

Despite intensive efforts in the development of neuroprotective
agents (recently reviewed in [155]), to date, there are no approved
therapies for prevention or treatment of neuropathies triggered by
MTA chemotherapy [152,153,156]. This is partly due to the poor
understanding of mechanisms underlying MTA-induced neurotoxic-
ity, and thus to a lack of a valuable method of standardization in the
clinical measurement of CIPN. As a postulate, it has often been
declared that MTAs similarly affect the microtubule network in cancer
and neuronal cells, but evidence was not always sustained. For
20 years now, animal models of CIPN have been developed (listed in
[157]), attempting to investigate MTAs mechanism of action on the
peripheral nervous system. Most of these models are essentially
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focused on the report of pain-related behavior and only a few go on
further on neurophysiological experiments. While rat models of
vincristine-induced peripheral neuropathy described abnormal mi-
crotubule assemblies and densities as main damages [158,159], these
microtubule profiles were not observed with paclitaxel in rat models
[160]. It has thus been hypothesized that the microtubule network
was likely not the only target of MTAs to be involved in neuron
dysfunctions. In parallel, the deciphering of MTA action progressively
slipped considerations from microtubules to mitochondria. In vitro
data using paclitaxel reported anterograde and retrograde axonal
transport blockade in rat dorsal root ganglia (DRG) and hippocampal
neurons. Then, in vivo studies showed a significant increase in the
incidence of swollen mitochondria in axons after paclitaxel treatment
[160,161]. Similar data were obtained with in vitro culture of DRG, in
which the induction of atypical mitochondria by paclitaxel was
associated with a significant reduction of their functioning and the
loss of mitochondrial membrane potential [162]. Nevertheless, in
these studies, the link between microtubule density and inhibition of
neuronal organelle distribution remained controversial due to
variable paclitaxel injections modes and different administered
concentrations over the time [163,164].

5.2. Inhibition of MTA's neurotoxic effects: do mitochondria need to be
protected?

Many works are attempting to find clinically efficient neuropro-
tectors able to enhance neuronal cell survival. To date, several
neuroprotective agents like thiols, neurotrophic factors and antiox-
idants have been tested in preclinical models and clinical trials for
their ability to prevent CIPN [165,166]. Although several of these
compounds were identified as neuroprotective molecules of interest,
clinical data are still discussed. Mitochondrial dysfunction and
oxidative stress are widely believed to underlie the pathogenesis of
various neurodegenerative diseases [167]. The investigation of
neuroprotective antioxidants was thus rationalized as a promising
strategy to prevent or alleviate mitochondrial damages. Among them,
efficacy of acetyl-L carnitine and more recently alpha lipoic acid to
exert neuroprotective effects against MTAs, in vitro, was associated
with a reduced incidence of swollen and vacuolated mitochondria in
rat C-fiber [161] as well as in sensory DRG neurons [162]. Moreover,
alpha lipoic acid prevented the early loss of membrane potential
differential in mitochondria exposed to paclitaxel, thus preventing
neurons from mitochondrial energetic failure probably through anti-
oxidant activities. An attractive strategy, the mitochondrial protection
might be limited in preventing MTA-mediated CIPN which involves
alteration of other targets such as the microtubule cytoskeleton. In
this context, olesoxime (TRO19622) appeared as a promising drug
candidate to treat the neurotoxic side effects of microtubule-targeted
chemotherapy [168]. This new molecule protected neuronal cells
from MTA-induced neurite shrinkage by restoring both microtubule
dynamics – through EB protein comets maintaining at microtubule
ends – and the microtubule-governed mitochondrial trafficking [23].
Thus, compounds like olesoxime that are able to join these two
properties would hold promise to better prevent and cure patients
suffering from neurodegenerative disorders in which microtubule-
associated axonal transport is defective. Their study may also bring
additional fundamental insights into the molecular mechanisms
underlying neurotoxic properties of MTAs.

6. Influence of microtubule dynamics perturbation on
mitochondrial dynamics: a new field of investigation?

Shortly after their successful use in the clinics, MTAs have been
extensively employed in fundamental research. By modulating micro-
tubule architecture and dynamics, they are appropriate pharmacolog-
ical tools to probe the mitochondria–cytoskeleton interactions.
6.1. How can MTAs modulate the mitochondrial motility?

MTA effects have been especially studied in neuronal cells, in
which mitochondria move throughout the neuronal processes to
contribute to synaptic maintenance. Appropriate positioning of the
mitochondrial network ensures organelle function and is necessary to
cell survival and functionality. As soon as 1978, Chan KY and Bunt AH
used vinblastine to form paracrystal structures and to highlight the
interconnected spatial organization of microtubules and mitochon-
dria in synaptosomes and axon terminals of rat cerebral cortex [169].
A few years later, axonal organelle transport has been shown not to be
totally suppressed after microtubule disruption [170], and to be
partially inhibited by the introduction of agents that specifically
disrupt actin microfilaments [171–173]. In parallel, the discovery and
characterization of microtubule-based motors kinesin and dynein
allowed to better envisage the axonal transport system. Complemen-
tary data, intending to decipher the importance of microtubule-
governed transport among other cytoskeleta, used amodel of neurons
grownwith vinblastine. Results showed that the whole mitochondrial
compartment concentrated into the cell body, suggesting that
microtubules were necessary and sufficient for the transport of
mitochondria in axons [174].

Considering the uncontested role of microtubules as tracks for the
intracellular trafficking of mitochondria, it can be argued that
mitochondrial transport defects could result frommicrotubule dynam-
ics alteration. In support to this, the parkinsonian toxin (MPP+) has
been recently shown to induce an early alteration of microtubule
dynamics and orientation, and a subsequent mitochondrial transport
impairment [175]. Works in tumor cells showed that paclitaxel
increased the speed of mitochondrial movement, whereas colchicine
and nocodazole retarded it [123,176], suggesting that microtubule
stabilization could be necessary to organelle trafficking. Up to now, the
major hypothesis exploredwas the changes inmolecularmotor binding
to the microtubule railways, through tubulin post-translational mod-
ifications (PTMs). Indeed, binding of the motor protein kinesin-1, that
mostly ensures anterograde mitochondrial transport in axons, is
increased by microtubule detyrosination and acetylation [177,178].
These twomajor PTMs correlate with microtubule stabilization and are
induced by paclitaxel and ixabepilone in cancer cells [179,180]. These
data were supported by observations of paclitaxel inhibitory effects on
fast retrograde transport in rat peripheral nerves [163,181]. However,
results are still controversial since a recent work showed that paclitaxel
abolishedkinesin-1 translocation in polarized neurons by increasing the
overall levels of tubulin acetylation, detyrosination and polyglutamyla-
tion [182]. One explanation could be that, while microtubule stabiliza-
tion is necessary for the mitochondrial transport, its over-stabilization
compromises the intracellular trafficking.

Elsewhere, microtubule associated protein (MAPs) binding to
microtubules can also influence motor-based axonal transport, mainly
by affecting the attachment and detachment cycle of the motors. In
neurons, tau and MAP4 can control the intracellular trafficking by
reducing the attachment of kinesin to microtubules [183,184]. More
recently Seitz et al. showed a decrease in run-length for both kinesin or
dynein when MAP2c and tau were overexpressed in cells, combined
with a significant decrease in kinesin attachment frequency on taxol-
stabilized microtubules [185]. Then, as paclitaxel has been shown to
increase MAP2 affinity for microtubule [186], it could thus easily be
thought that paclitaxel by regulating MAPs binding could modulate
organelle trafficking.

Lastly, the p150Glued subunit of dynactin is a +TIP (cf part 2) that, in
association with dynein, participates to organelle retrograde transport.
Interestingly, p150Glued interaction with EB1 at microtubule plus-ends
seems to be central in the dynein/dynactin function [187]. Thus, by
significantly disturbing EB1 localization [21,23], MTAs may cause the
loss of both microtubule dynamics and mitochondrial transport, which
together might lead to cancer cell death. Same observations could be
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transposed to the neuronal model as EB family members are crucial for
neurite growth and maintenance, and are tools of choice to precisely
measure plus-end microtubule dynamics by live microscopy [188].
Interestingly, neurotoxic concentrations of paclitaxel have been shown
to induce a decrease in the number and length of EB3 comet tails in
Aplysia neurons [189]. Moreover, paclitaxel significantly disturbed the
microtubule polar orientation, by reducing the percentage of micro-
tubuleswithplus ends facing the axon tip and increasing thosewithplus
ends facing the cell body [189]. All these microtubule modifications
were associated with a severely impaired mitochondrial transport. In
agreement with these data, we showed that paclitaxel and vincristine
suppressed EB1 and EB3 accumulation at microtubule plus-ends, and
significantly reduced the mitochondrial motility in human differentiat-
ed neuronal cells [23].

6.2. Can MTAs disrupt the fission/fusion equilibrium?

Recently, with the emergence of the neuropathology field of
research, studies have flourished suggesting that mitochondrial
dysfunctions are early and causal events in many neurodegenerative
diseases [190] such as amyotrophic lateral sclerosis, Alzheimer's,
Huntington's or Parkinson's diseases. One potential cause of mitochon-
drial dysfunction is the disruption of the highly controlled equilibrium
betweenmitochondrialfission and fusion. Excessive fission or defects in
fusion alter cell functions and viability through impairment of
mitochondrial motility, decrease energy production, and increase of
the oxidative stress [191]. Examples are givenwith studies using taxol at
concentrations responsible for microtubule strong stabilization and
leading to disruption of mitochondrial fission/fusion balance [192] as
well as their ability to fastly move and distribute towards high energy
demand subcellular locations [193]. In these studies, MTAs have been
employed at high concentrations during very short time of exposure
(less than 24 h) to induce microtubule modifications and thus to
analyze mitochondrial dynamicity parameters. There is now a crucial
need in reconsidering the concentrations employed. Indeed, lower
concentrationsmaygive complementary cues to untanglemitochondria
and microtubule interconnections and may help to decipher how the
anti-microtubule properties of MTAs lead to disturbances in mitochon-
drial dynamics. In tumor cells, such moderated concentrations of MTAs
significantly alter microtubule dynamics and induce the mitochondrial
network fragmentation, as an early process associated with their pro-
apoptotic, anti-angiogenic and neurotoxic activities [23]. As previously
shown with BH3-only peptides [194], our recent works suggested that
this process could result from Bim accumulation in mitochondrial
membranes (Savry et al, submitted), by a molecular mechanism that
should be investigated.

7. Conclusion

To conclude, it clearly appears that MTAs are both anticancer drugs
with a high clinical value and very useful tools to analyze the roles
played by the microtubule network in physio/pathological processes.
To decipher the tangle of MTA-induced apoptotic signals is a tricky
exercise and, to date, it is still difficult to determine whether
biochemical events that lead to apoptosis are activated downstream
or upstream inhibition of microtubule dynamics and functions.
However, it becomes clear that crucial molecular links are established
between the microtubule network and the apoptotic machinery, to
ensure the success of the cell death program. In that sense, analysis of
mechanisms responsible for tumor cell resistance to MTAs would also
provide key information about the close connections between
microtubules and the apoptotic machinery. The coexistence of
modifications in the microtubule system and the mitochondrial
signaling cascade in cells resistant to MTAs [17,179,195] strengthens
the need for novel insights into interconnections between the two
compartments to help circumventing this clinical problem. It also
confirmed that the mitochondrion is still a promising therapeutic
target that could improve combinatorial therapy with MTAs and
provide crucial arms to help treating cancers.
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