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Abstract 

Stetsenko, V., On almost bad Boolean bases, Theoretical Computer Science 136 (1994) 419-469. 

As known, there is a dependence of the formula complexity of explicit sequences of Boolean functions 
on the basis chosen. This paper is devoted to a description of bases for which one could hope to 
obtain nonlinear lower bounds on the formula complexity of such sequences most probably. 

1. Introduction 

It is well known that there are great difficulties with proving nonlinear lower bounds 

on the circuit complexity of  explicit sequences of  Boolean functions. We are currently 

able to prove only very weak lower bounds on circuit size except in very weak compu- 
tational models. However it is not our purpose to go into a detailed discussion of  this 

state o f  affairs. The reader is referred to [3, 6, 8, 13] for such a comprehensive dis- 
cussion. One can only observe that the difficulty in proving that an explicit sequence 

has high circuit complexity seems to lie in the very nature o f  the circuit model of  

computation. One way to make some progress on this is to limit the capabilities o f  the 

circuit model. In this way it has been possible to achieve some interesting results. First 
of  all, it is, o f  course, the lower bounds obtained by Razborov [9] and subsequently by 

Andreev [2] (also see [1]) for the monotone circuit model are almost exponential. But 

progress was mainly achieved for circuit models over incomplete bases, i.e., in reality 

for the computational models which are not universal computers. However hopes that 

such models can lead to a clear situation in the general case are not realized. It seems 

that there is a greater difference between a complete basis and any incomplete one 
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than we now think. So it is important to study circuit models over complete bases in 

the first order. Today, in our opinion, a formula over a complete basis is one of  the 

most promising models. Firstly, in this case we already have a number o f  examples 
of  nonlinear lower bounds and so there is material for studying. Secondly, although 

among circuit models the formula over a complete basis has an especially simple def- 

inition and, hence, may be more amenable to combinatorial analysis, it is an universal 

computer, and so one could hope that in this case we will succeed in obtaining some 
new ideas which may lead the way to lower bounds for more powerful circuit models. 

It is this class of  computational models that is considered in this paper. 
Now, suppose we wish to obtain a nonlinear lower bound on the formula complexity 

of  an explicit sequence of  Boolean functions. It is known, however, that the formula 

complexity of  such a sequence can depend essentially on the basis chosen (for example, 
see [12]), so the following natural question arises: "What are the bases are, for which 

we could hope to prove the most possible the nonlinear lower bounds?". Our purpose 
is to give an answer to this question. 

2. Bad and almost bad Boolean bases 

A function f : {0, 1}" ~ {0, 1} is called a Boolean function ( o f n  variables). Denote 
by P2 the set of  all Boolean functions and by P~ the set of  all Boolean functions of  

n variables. Let B be a finite subset of  P2. Formulas over B are built as usual from 

variables and functions of  B. Each formula over B represents a Boolean function in 

a natural way. We mean by a basis an arbitrary finite subset B of  P2 such that any 
Boolean function can be represented by a formula over B. For f in P: and a basis B, 
define the complexity of  f in BL~(f)  to be the number of  occurrences of  variables 

in the smallest formula over B representing f .  
Analysis o f  all known methods of  obtaining nonlinear lower bounds on the com- 

plexity of  Boolean functions shows that here we achieve success more often in case 

o f  the de Morgan basis. The question arises whether this basis is special. 

Let Bt and Be be two bases. 

Bt precedes B2 (B1 Y B2) if there is a constant c > 0 (depending only on Bi and 
B:)  such that for any Boolean function f 

LBI(f) <~ cL82(.['). 

Bi and B2 are equivalent (Bi = B2) if BI ~ B2 and B2 _~ Bt, and nonequivalent 
otherwise. 

Later we will not distinguish between equivalent bases. 

Bl strictly precedes Bz(BI -< B2) iff B1 _~ B2 and B1 ~ Be. 
Denote by B0 the de Morgan basis and by Bl the Jull binary one (i.e., the basis 

consisting all o f  16 Boolean funtions of  two variables). As it is shown in [12] B ~_ B0 

for any basis B. In other words, formulas over the de Morgan basis are the most 
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complicated. Also from [7] we know that 

L e o ( f )  = O((Ls~(f ) )  ~) for all f C P2 where ~ - log 3 10 = 2 .095{+}.  

On the other hand it is known that the function xt @ . . .  @xn requires a formula of  
complexity at least n 2 over B0 but at most n over BI [5]. (@ denotes sum modulo 2.) 

This shows that although the basis B1 differs from B0, it differs very little from B0 in 
the sense that it gives very little advantage over B0 in representing Boolean functions 

by formulas. We know that in fact there are examples of  nonlinear lower bounds in 

case of  B1 [4]. Now it seems natural to investigate bases which differ very little from 

the Morgan basis in order to prove nonlinear lower bounds in case of  these bases. To 
be more precise, consider the definition: 

a basis B is called premaximal  if B ~ B0 and there is no basis B ~ such that 

B -< B ~ -< B0. 

This definition is our variant of  formalization of  the property "'to differ reD' little 

f rom the de Morgan basis'". In support of  our way one can say that the full binary 
basis is premaximal [11]. At present, we do not know which bases are premaximal, 

besides this basis. However we know what kind of  all premaximal bases must be and 

what bases the nearest neighborhood of  the de Morgan one consists of. It turns out that 
these bases consist of  so-called s-functions and Boolean functions represented by read- 

once formulas over the de Morgan one. Because of  the peculiar role o f  the s-functions, 
it is desirable to obtain a better view of  their discription, since using their peculiarities 

could give a posibility to obtain new methods o f  proving nonlinear lower bounds on 

the complexity o f  Boolean functions. Such a discription is given below. Since we use 
essentially some results from [12] we start with them. 

For any Boolean function f ,  all functions obtained from f by replacing vari- 

ables xi~ . . . .  ,Xim by at . . . . .  ( 7  m ~ {0, 1} are called its subfunctions and is denoted by 
c~ ] ,...,c~m f xq , . . . , X i m  . 

It is also convenient to assume that any function itself is its subfunction, we will 

say that a subfunction of  f is its proper one if it differs from f .  
An essential variable x of  f is called a distinguished one if both the subfunctions 

oj.x and lfx depend essentially on all their variables except fictitious ones o f  f .  

Lemma 2.1 (Subbotovskaya [12]). For any basis" B, B -~ Bo if[" there is a funct ion in 

B such that at least one o f  its subJunctions depends" esssentially on more than one 
variable and has a distinguished variable. 

We say that the formula F is read-once if  none of  its essential variables occurs 
more than once in F. 

Lemma 2.2 (Lupanov). For two bases BL and B2,BI ~_ B2 if each f ~ B2 can be 
represented by a read-once Jormula over Bt. 

Lemma 2.3 (Subbotovskaya [12]). The Boolean Junction f can be represented by a 

read-once formula over Bo ~ff" none o f  its subJunctions which depends essentially on 
more than one variable has a distinguished variable. 
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Now we introduce a basic conception of  this paper. 
A Boolean function o f  at least two variables f is called an s-function if 

(i) f depends essentially on all its variables, 

(ii) f has at least one distinguished variable, and 
(iii) f has no proper subfunction depending essentially on more than one variable, 

which has a distinguished one. 
By induction on the number of  variables, we can easily prove the following lemma. 

Lemma 2.4. Any  Boolean f imction q f  more than one variable, which depends essen- 

tially on all its variables and has a distinguished variable, has an s-function as its 

sub function. 

A direct conclusion of  Lemma 2.1 is the following result. 

Lemma 2.5. For any s-function g we have 

BoU {g} ~ B0. 

Now using that conjunction, disjunction, negation and the constants O,1 can be rep- 
resented by read-once formulas over any basis we can easily show the following. 

Lemma 2.6. A basis B is" equivalent to Bo (flJ" each function in B can be represented 

by a read-once Jormula over Bo. 

Likewise we can show that the following lemma is true. 

Lemma 2.7. For any basis" B -< Bo there is an s-function g such that 

B _~ B0 U {,q} -< B0. 

Now if we assume that the basis B in Lemma 2.7 is premaximal, we will easily 

obtain the next necessary condition for premaximal bases. 

Lemma 2.8. Each premaximal  basis is" equivah, nt to a basis oJ" the type B0 U {,q} 

where g is an s-function. 

The proof of  next lemma is given in [11]. 

Lemma 2.9 (Stetsenko [1 1]). I f  for  a basis B and a finite set o f  s-functions B,,, 

Bo U B~ -< B -< Bo 

then B consists o f  s-functions among which at least one is not in B.,. and Boolean 

Junctions represented by read-once formulas  over Bo. 

3. Main Theorem 

As we have seen in the previous section, the s-functions enter, in an important 

manner, into the discription o f  the nearest neighborhood of  the de Morgan basis. The 

following result gives a convenient discription o f  s-functions. 
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Theorem 3.1. The f o l l o w & f  are, up to renamings and negation o f  variables, all the 

possible s-functions: 

XtX2" ' ' xnVYlY2" ' '£n ,  n >~ 2, 

x l ( x : V x 2 . . . V x , ~ ) V x 2 . . . x , , ,  n >1 3, 

XI(X 2 V X3" ' 'Xn)  V Y 2 Y 3 " ' ' X n ,  n ~> 3, 

X I(x3x  4 ~/X 5) V X2(X 3 V X4X 5) ,  

Xl (X2 ~/X3 ) ~/X3X4 • 

To be more precise, define an equivalence relation on P~ in the following way. 
Let Q,, be a group of  all transformations of  the type 

{'~0( ~1 ~. f l(xl . . . . .  x,,) H .-2 ~x~(1) . . . . .  x~(,)) 

where f l , f 2  E P~,~o, ~l . . . . .  ~,, ~ {0, 1} and ~ is a permutation o f  indices. For 

f l , f 2  E P~ we will say that f l  is one-type to f2  and denote by j l  - i  f 2  if there 
is t E Q, such that .[t = t ( f2) .  

Obviously this relation retains the property "to be an s-function". Our final aim 
is to show that for each n = 2,3 . . . .  the list in Theorem 3.1 is a system of  distinct 
representatives of  s-functions w.r.t. -~ .  

4. Basic properties of  read-once Boolean functions 

In this section we consider properties of  Boolean functions which can be represented 

by read-once formulas over B0. For the sake of  brevity, we will call such functions 
read-once. 

First of  all, let us note that each of  subfunctions o f  a read-once function is itself 
read-once. 

o- 
Let xi and X/ be essential variables of  f C P~, and let cr C {0, 1}. We write xi 

x i ( f )  if Xi is a fictitious variable of  ~fx,. 
Later we will often use the following simple lemma. 

Lemma 4.1. Let xi, Xi be essential variables o f  Boolean junctions f and [/'xk (x~. 

d(ffbrs j rom xi and xi). Then xi ~ x i ( f )  implies xi ~ Xi([f~k ) for  any a E {0, 1}. 

Proof. If  xi ~ x / ( f ) ,  then, by definition, 

~0./-~,xl = ~lj'.,,.,i, 

so 

aOvfxiv/xk = °-lr.fx£xlxk . 

I The result was announced in [10]. 
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Obviously we can rewrite the second equality as 

o'o ('~fxk):,-,..~j ~l(~fxk )x,.,~/ , 

which, according to the definition, means xi Z~ xj(~fxk).  [] 

Let of be a Boolean function having at least two essential variables, and let xi be 
one of  them. 

A constant a q {0, 1 } is called a ramming value of  xi in f if there is an essential 

variable X/ o f  f such that X i ~+ x j ( f )  and non ramming otherwise. 

Obviously xi is a distinguished variable of  f iff xi has no ramming value in f .  

Let X = {xl . . . . .  x~}. A collection of  {ill . . . . .  tim} of  non empty, disjoint subsets of  

X such that X fll U ' . .  U /~m is called a partition of X. 

Let 7r = {ill . . . . .  tip} and zc' = {fl  . . . . .  fi~q} be two partitions o f  X. It is said that n 

precedes ~ ' (n_~z ' )  if each fl;,i E {1 . . . . .  q} is contained in some flj, j E {1 . . . . .  p}. 
Also it is said that 7r and ~z ~ are comparable if  n _~ n'  or 7r'_~ n and uncomparable 
otherwise. 

It is well known that ~ is a partial ordering on the set of  all partitions of  X. We 
will always w r i t e X = A t ~ B  i f X = A U B  a n d A A B = ( 3 .  

The following almost obvious fact will be often used later on. 

Lemma 4.2. ~ ~ ~ iff there are 

ill, fii, . . . . .  fii,(i ~ {1 . . . . .  q}, il . . . . .  i, E {1 . . . . .  p})  

and disjoint sets 

ul . . . . .  uk, tl . . . . .  tk (2 ~< k ~< p )  

such that 
~ j ,  . , o 

(i) fl~ = uj ~uk  and fii, = ulUtl  . . . . .  fli~ = ukUtk ,  
(ii) uy¢(3 ,  t y A f i ~ = O  and u j A f i ~ = O  .for al l  

{1 . . . . .  q}, r ¢ i .  
j E {1 . . . .  ,k} and r E  

Remark.  Note that if 7r and ~' are uncomparable, then we have the equalities 

' U  ~Ju, and fl~, u'lUt 1 . . . . .  fi, u, Ut,. as in Lemma 4.2 ]i z HI  

Besides at least one set ti and at least one set t~ is non empty. Later we will always 

assume that all Boolean functions depend essentially on all their variables and differ 
J?om any constant. 

A Boolean function f ( £ )  is called 

(i) a v-function if f ( 2 ) =  f 1 ( 2 1 ) V f 2 ( 2 2 ) ,  and 
(ii) a A-function if f ( 2 )  = f1(21)  A f2(22) 
where {{2,}, {22}} is a partition of  {2}. 
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Denote by Kv and KA the class of  all V-functions and the class of  all A-functions, 
respectively. We will also denote by D c ( f )  the disjunction of  all prime implicants of  

f .  (All unexplained notions can be easily found, for example, in [13].) 

Lemma  4.3. The classes Kv and KA are disjoint. 

Proof.  Suppose Kv C3 KA ~; (3. Then there is f ( 2 )  such that 

f ( £ )  = . f(2,)  V J(x2)  - - . f ' ( Y l )  A ft(Y2) 

where {2} = {2,}6{22} = {y l}O{y2} .  Since the sets {2,}, {22} and the sets {-vl}, 
{Y2} are disjoint, we have 

D I D~(f )  = Dc( f l  ) V Dc( f2)  ~ ( f l )  A D~(.f~) 

Here Dc( f ' l )A  D~(f~) means an expression obtained after removing the parentheses. 
Let Ki and Kj be two elementary conjunctions in Dc( f l )  and D,.(f2) respectively. 

Then there are elementary conjunctions K[, K~ in D~.(f'l) and K[', Kj' in D~(f'2) such 
that Ki = K'K~ and Kj = K'K~'. Consider the elementary conjunction K[Kj ' belonging 

D / D I to c( , f l )A c( f2)  = D~(f ) .  It is easy to see that K(K! ' belongs to neither D~(f l )  
l .1 

I / f  nor Dc(f2), and so KiK j cannot belong to D~.(f l)V De(f2 )  = De(f) .  Thus we have 
a contradiction. [] 

We now introduce the most important concept which is a convenient instrument in 
our research. 

Suppose that g(xl . . . . .  x,,) and K~j denote either xl V . . .  Vx,, and Kv or Xl ...x,, and 
KA respectively. 

L e m m a  4.4. Each ./'unction . / E  K~j can be uniquely represented up to permuting 
terms in the jbrm 

f (£) = g(R1 (vl ) . . . . .  Rp( gp ) ) 

where R1 . . . . .  R r are fimetions satisfying 
(i) each R i depends" essentially on all its variables', and differs from an)' constant, 

(ii) no Ri belongs to 1(.,i, 
(iii) {{~7i} ] i E {1 . . . . .  p}} is a partition of{2} .  

The above representation is called a g-representation and we will always regard the 
above equality as a g-representation o f f .  

It is sometimes necessary to consider Kv and KA at the same time. In this case 
we will denote one of  them by Kg and the other by K¢,o, and will talk about g- and 
q>representations respectively. As a matter of  fact, it does not matter what kind of  
notation we use for these classes. It is only important to denote them by different 
symbols. 
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P r o o f  of  L e m m a  4.4. The existence is obvious. For the uniqueness, suppose to the 

contrary that 

. f (£)  = #(RI(~, )  . . . . .  Rp(~p) ) ,  

f ( ~ ' )  = #(R"I  (~'~"1) . . . . .  R'q(~'q )) ( ] ) 

are two different g-representations of  f .  

There are the two possibilities: 

~z, = {{f,i} ]i  ~ {1 . . . . .  p}} and ~2 = {{~i~'i}li¢ {1 . . . . .  q}} 

are different or 

7el = { V , } I i  ~ {l . . . . .  p~} and ~z2 = { { ~ i } l i  ~ {1 . . . . .  q}} 

are equal. 

Let us consider each of  them. 
Case 1:re1 = {{/~i} [i ~ {1 . . . . .  p}} ~ rr2 = {{v;.i} ]i C {1 . . . . .  q}}. Without  loss o f  

generality, one can assume ~zl~ < ~z2. Then in the notation o f  Lemma 4.2 

{~,~} = {ti,}U .--  ~ {fi~} mad {~7,} = {t~lfu {tl} . . . . .  {~,} = {tik}U{tk} 

for some i C {1 . . . . .  q}. Since R~0~,j) differs from any constant for all j E {1 . . . . .  q}, 

there are 51 . . . . .  5i I,:~i+l . . . . .  :~,/ such that 

#(R'j(aj),x) #(x, R'ga, )) =.~ 

for all j ~ {1 . . . . .  i -  1 , i +  1 . . . . .  q}. 

By replacing v~'l . . . . .  t~';i I,~;'i~1 . . . . .  ~'q in (1) by ~1 . . . . .  Y i - I , ~ i + I  . . . . .  0~q we obtain 

R'(14'i) = g(Ri,(f i l , f i ,  ) . . . . .  Ri,.(Ft*,fik )) 

where /~[ . . . . .  /~k are parts o f  ~1 . . . . .  ~k respectively. 
Therefore R~ ¢ KCj (because {t~j) :/13 for all j ¢ {1 . . . . .  k} and k ~> 2) which con- 

tradicts (ii). Thus Case 1 is impossible. 

Case 2: rrl = {{t~i} li E {1 . . . . .  p}} - rr2 - {{~'i} ]i ~ {1 . . . . .  q}}. In this case we 
have 

fC~)  = g(R'l(~,) . . . . .  R'p(/~p)). (2) 

Obviously 

Ri(~,) ¢ Rl(~i) (3) 

at least for one i ¢ {1 . . . . .  p},  since we have assumed that these #-representations are 
different. 
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It follows from (2) by associatively and commutativity of  g(x,y)  that 

, q (R i (~  i ), S ( u ) )  = g(Ri(~i), T(t~)) 

with some functions S and T different from any constant. This implies R , (g , )=  

,q(Ri(f,i), T(~))  as above. Since Ri differs from any constant, T(/~) must be equal 

to a E {0, 1} such that g (a , x )=  g ( x , a ) = x .  Hence Ri(f,i)= R~(gi) which contradicts 

(3) so Case 2 is also impossible. 

Let us recall that any formula over B0 is equivalent to a formula containing only 

A, V, variables, and negation of  variables. Because o f  this we can state the following 

fact. 

Lemma 4.5. Each read-once Boolean function depending essentially on at least two 
variables can belong only to either Kv or KA. 

Let f be a Boolean function depending on at least two variables. For an essential 

variable xi of f and a C {0, 1}, let 

¢T Z X i f f  , ! = {xi I xi -+ xJ ( f ) }  

Where no confussion can occur, we omit cr in ~Z~!. 
For any finite set A, denote by IAI the number of  all elements of  A. 

Lemma 4.6. Let f ( 2 )  - g(Rl(g~) . . . . .  Rp(gp)) and I{~}1 /> 2for  some i ~ {1 . . . . .  p}. 
Then ~ xi Z f  C_ {/;i} for all Xl C {~7i} and a E {0, 1}. 

Proof.  Now, assume ,q - V. Since {gj} . . . . .  {gp} are disjoint, we have 

D~(J') = D c ( R I  ) V . . . V D c ( R p ) .  (4) 

The case "Z  ~1 = 0 is trivial. Consider the case ~,./! ¢ 0. It follows immediately from .[  

I{~,}1/> 2 and Ri ~ K~j that Oc(~R~ ~) ¢ 1. We easily see that ¢j-xj is represented by the 

disjunctive normal form obtained from D e ( f )  by replacing D~.(Ri) by D,.(°R~ii). Since 
(1) contains different variables and Dc(~R) rj)(¢ 1) contains only variables from Dc(R,), 
none of  the elementary conjunctions in Dc(~R7 ~j) absorbs elementary conjunction from 

D,.(Rk) for all k ¢ i. Therefore ~f-', depends essentially on vl . . . . .  V~-l, gi+t . . . . .  gp and 
o- :Q so Z t C_ {/~i}. For the case g = A we obtain a proof of  the lemma by dualizing our 

proof. [] 

Lemma 4.7. Let f ( 2 )  be a read-once Boolean function and [{5} [ ~> 2. Then each 
variable has only one ramming value in f .  

Proof.  Lemma 2.3 implies the existence. We will give a proof of  the uniqueness 
by induction on the number of  variables of  f .  The basis of  the induction is trivial. 

Suppose now that f is a read-once Boolean function depending on n (n > 2) variables 
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and the lemma holds for all such functions with the number of  variables less than n. 
By Lemmas 4.5 and 4.4 f can be represented by its g-representation 

f ( ; )  = g ( R l ( ~ , )  . . . . .  R p ( ~ o ) ) .  

Suppose to the contrary that there is xa ~ {2} having two different ramming values o- 1 
and ¢;2 in f .  In the other words, ¢rlZXkl ¢ 0 and eI2zXkf ¢ ~. Let xk ~ {gi},i  C {1,..  ., p}. 
Obviously the case Ri(~i) = x~ k is impossible. Suppose now ]{vi}l ~> 2. According to 
Lemma 4.6, ~,Z)~ c_ {gi} and ~2Z~* c_ {/~i} hence the function Ri with the number of  
variables less than n has two different ramming values which contradicts the induction 

hypothesis. 

5. Some facts about s-functions 

Let us recall from the definition that any s-function depends essentially on at least 
two variables, has a distinguished variable, and has no proper subfunction depending 

essentially on at least two variables with a distinguished variable. 

Lemma 5.1. Let f ( y , 2 ) =  P f l ( Y ) V  y.f2(2) be an s-function with a distinguished 

variable y. Then .f l and .f  2 are different read-once functions depending essentially on 
all their variabh, s. 

Proof.  We first prove that f l  and f2  depend essentially on all their variables. Suppose 
0 

to the contrary that, for example, xi is a fictitious variable of  f l .  Then y - ~  x i ( f )  hence 
y is not a distinguished variable of  f which contradicts an assumption of the lemma. 
Thus f t  and f 2  depend essentially on all their variables. Likewise we can show that 
f l  ~ f2.  We will now show that ./'] and f2 are read-once functions. Suppose to the 
contrary that, for example, ./1 is not a read-once function. Then, by virtue of  Lemma 
4.2, there is a subfunction J"l o f  f l  depending essentially on at least two variables 

with a distinguished variable, and so f is not an s-function (because f ' l  is a proper 
subfunction of  f too). The obtained contradiction proves the statement. 

Although the converse is not true, a weaker statement is true. 

Lemma  5.2. I f  f ( y , 2 )  = y f l ( X ) V  Yf2(x) where f l and f2 a r e  different Jimctions 
depending essentially on all their variables, then y is' a distinguished variable o f  f .  

The proof  is left to the reader as an easy exercise. 

Lemma  5.3. Let f ( y , 2 ) =  33f1(2)V y f2 (2 )  be an s-function where f l  and f2  are 
d([ferent functions depending essentially on all their variables, and let l{2}1 >~ 2. Then 
the following two cases are the only possible. 

Case 1 : Each variable in {2} has d(ff'erent ramming values in f l and f 2. 
Case 2:  There are x C  {2} and ~C {0,1} such that the functions ~fx l and ~fx l 

depend essentially on all their variables, and are equal. 
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ProoL Suppose to the contrary that there is a variable x i E {-,~} having the same 

ramming value cr in f l  and f2.  Then, by virtue of  Lemma 4.7, xi - # is a ramming 

value neither in f j  nor in f2,  and so the functions e .xi ~ ~i J t and f2  depend essentially 

on all their variables. Assume now that efXl~ ¢#  f 2  ~. Then, by virtue of  Lemma 5.2, 
y is a distinguished variable of  the function e x~ -~ .~ a xs f l = Y f l g y  f 2  which is a proper 
subfunction o f  f ,  hence f is not an s-function which contradicts an assumption of  the 

lemma. Thus aJ"~ = af2~. Therefore we can take xi and # for x and :~ respectively. 
[] 

6. One-type pairs of Boolean functions and a vector V(fi, J2, x) 

It is well known that each function f E P~ can be uniquely represented in the form 

f ( x l  . . . . .  x~) 

- -  x i , f ( x I  . . . . .  Xi--I, O, xi+ 1 . . . . .  Xn) V x i f ( x l  . . . . .  Xi I, 1, Xi_ 1 . . . . .  Xn) (5 )  

for any i E {1 . . . . .  n}. 

So, for each integer i with 1 ~< i ~< n, we can define a bijection 

p n  I n I 
Pi " P~ ~ - 2  x P2 

by representation (5). 

Let us consider the definition. Let ( f l ,  f 2), (gl, g2) 6 P~ x P'~. 

( f l , . f 2 )  ----2 (gl,g2) 

~t E Qn(fl = t(gl) /~ f2  = t(g2)) 

VBt' E Q~(fl  = t ' ( o 2 ) A f 2  - t ' (g l ) ) .  

We will call such pairs o f  Boolean functions an one-type pairs', and will also say that 

( f l ,  f 2 )  is one-type to (Ol, ,q2). 
It is easy to see that - 2  is an equivalence. We can obtain directly from the above 

definitions the following lemma. 

Lemma 6.1. / f  ( f l ,  f2 )  ~2 (gl, g2) t hen  p i l ( . f l ,  f2 )  =1 p f l ( g l , q 2 )  f o r  a l l  i = 

1,2 . . . .  ,n + 1. 

In particular p f  l ( . f  l, f 2) =l P i l ( f  2, f l ). 
Let ( f l , f 2 )  C P~ x P~ with f j  and f2  satisfying the following conditions. 

(i) each of  them is a read-once function depending essentially on all its variables, 
(ii) each of  their variables has a different ramming value in these functions. Let us 

also assume that all variables of  f l  and f2  are labelled by possitive integers as 
indices. 
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Given a pair ( f l ,  f 2 )  as above and a variable xi o f  .fl we now construct a vector 
v(U1, f2 ,  x i )  = (0-1, 02 . . . . .  o"m) and an auxiliary vector of  variables (xq, xi2 . . . . .  xi~ ) in 
the following way. 

(1) Take xi~ as xi and al as a ramming value of  xi in .[1. (Because of Lemma 4.7 
there is only one ramming value for each variable of  .fl in f l . )  

(2) Take xi2 as the variable in ~Z~!, (consisting of  fictitious variables o ' f~ ' )  with 
the least index, and take a2 as a nonramming value of  xi? in o,fxi. (Since f l  and J'2 

have different ramming values for each of  their variables, < x, f2  depends essentially on 
all its variables. Besides, it is evident that it is a read-once function.) 

(3) Take xi3 as the variable in ~,Z-~,\{xi2} with the least index and 0-3 as a non- 
a~ a I Xi Xi 2 ramming value of  x% in ~2t~ a2~x"~x~'J ~. (Obviously, by virtue of  choosing 0"2, -( .f2 ) 

depends essentially on all its variables.) 
(4) Continue the procedure until ~Z~! is reduced to the empty set. 

Obviously, the length of  17(J'l, f2 ,  xi) is equal to [-~Z~! [ + i. Later we will often 
use this construction. 

For the sake of brevity, instead of  "each component o f  (xiL . . . . .  xi,, ) is replaced by 
each component o f  IT(f1, .f2, xi) respectively" we will say "~IZ~ U {xi} is replaced 

by IT(f1, f2 ,  xi)" (here we mean the above auxiliary vector of  variables). Similarly, 
instead of  "'each variable has d(ffbrent ramming values in f l and f 2 "  we say briefly 

" f l  and f2  have di[ferent ramming values". 
We can now state the lemma. 

Lemma 6.2. Let (.fl ,  f2 ) ,  xi and al be as above, and let ,(41, g2 be fimctions obtained 
respectiveh, J?om f l, f 2  by replacing ~l Z ~" U {xi} bv /7(f l ,  f2,  Xi). Then gl and (42 
are read-once functions depending essentially on all their variables (i.e., the same 
variables as in .f l and in f 2 except the variables f rom ~lZXiU {x,}). 

f 

7. The proof of the main theorem 

First we give a sketch of  the proof• 

Consider the bijections 

• p n +  I n ¢7 
Pi -2 --+ P2 × P2 

discussed above. 

Let {rt . . . .  ,rq} be a partition of  P~ x P~ w.r.t ~2, and let f be an arbitrary s- 
function of  p~+l. "To what classes of  rl . . . . .  rq can P i ( f )  belong ?" is the main 
question for us later on. Now, assume that we already know that p i ( f )  can belong 
only to ri~,-.-,rim- Then from Lemma 6.1 and that the relation ---1 retains the property 
"to be an s-function" we can also see that a system of  distinct representatives of  s- 
functions can be chosen from p i l ( r h  ) . . . . .  p, l(r/ ,o) ,  i f  their number is not very large 
such a choice can be really made. Thus, a new question arises: "In which way can we 
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choose pi such that the number of  pFt(r j~  ) . . . . .  p~- l ( r j , , )  is not very great?" One of  

the answers is the following. 
Let xi be a distinguished variable o f  f .  Let us represent f in the form 

f ( X l  . . . . .  Xn+l) 

= 2 , f ( x l  . . . . .  xi 1, O, xi+l . . . . .  x ,+t  ) v x i . f ( x l  . . . . .  x i -1 ,  1, xi+] . . . . .  X,+l ) .  

According to Lemma 5.1 0j.z, and I fxi  are different read-once functions depending 

essentially on all their variables. Also if they depend on at least two variables, then, 

by virtue of  Lemma 5.3, there are only the two possibilities: 

Case  1: 0fx, and l fx i  have different ramming values, or 
Case  2: there are xi of  o f.~i and l f x i  and a c {0, 1 } such that the functions ~(0fx~ )</ 

and ~(lfx~)x/ depend essentially on all their variables, and are equal. 

Also, note that without loss of  generality we can assume that one o f  the functions 

0fxi and lfx~ is monotone in both the above cases. It is obvious that in case 0f~ and 
lfx~ depend on less than two variables we can easily check by hand whether f is an 

s-function. So we now assume that o f  x, and ifxi depend on at least two variables. In 

this case, as we have already seen, it suffices to consider only the two above cases. 
Besides, since oj.~, and l fx i  are read-once functions, according to Lemma 4.5, each of  

them belongs only to one of  the classes Kv and KA in both the above cases. Because 

of  Lemma 6.1 we can easily see that only the two cases are possible: 
Case  3: oj.~i and lfx~ belong to one and the same class (it is unimportant whether 

we mean Kv or KA), or 

Case  4: ofxg and l fx i  belong to different classes. 

Hence, by virtue of  Lemma 4.4, we have in Case 3 

O f  x, = g ( R  1 (t~l) . . . . .  R p ( v p ) ) ,  

, f x ,  g(R,l (uS,1 , ~ , = ) . . . . .  R q ( w q ) )  

and in Case 4 

o f x ,  = g (R l (g l  ) . . . . .  R p ( g p )  ) , 

[ . f  x i ! ~ I ~ = qo(R I (wl) . . . . .  R q ( w q ) ) ,  

where n, = {{g/} [ i  C {1 . . . . .  p}} and ne - {{~i} [ i  E {1 . . . . .  q}} are two partitions 

of  {2}. Finally we get four cases by combining the above ones. But if 0f~ and I f  x, 

depend on more than two variables, then it is necessary to go into the depths o f  the 

y-representation of  each o f  these functions that gives us two more cases depending 
on whether or not nt and n2 are comparable. By combining them and the four above 

cases we get eight cases. 
To prove the main theorem it is necessary to consider separately each of  these cases. 

We now give a complete proof of  the main theorem, Theorem 3.1. The proof will 

be preceded by a number of  short statements; nevertheless we try to stick to the above 
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sketch. We start with the Case 1. Unless otherwise stated we assume that any s-function 
is represented in the form 

f (Y ,  Y) = Pfl(~?) V Y f207) ,  

where y is a distinguished variable o f f  f l and f2  are different read-once functions 
depending essentially on all their variables with different ramming values. We also 

assume that f l  is a monotone function. 

L e m m a  7.1. Let f ( y , 3 ? ) =  )Tfl(Y)V yf2(a?) be an s-function and (~ ~ {xl} c {;?}, 
and let f~l and f~ be functions obtained from f l and f2 by replacing all variables in 
{-f}\{Yl} by constants.fi'om {0,1} in such a way that f~ and f~ depend essentially 
on all their variables. Then .f~ = f~. 

Proof.  Assume that .f~l ¢ f ; .  Consider the function 

g(y, 2,)  = y f i ( 2 1 )  V yf~(21) 

which is a proper subfunction of  f .  Since f'j and f~  differ from any constant (because 
{£~} ¢ 0 and f~l ¢ J~) ,  g depends essentially on at least two variables (y  and £L). 
Besides, y is a distinguished variable of  g, since f~j and f~  depend essentially on all 
their variables. So f cannot be an s-function. The contradiction proves the lemma. [] 

Lemma 7.2. Let f ( y , ? ? ) =  )3f l ( . f )V y f 2 ( . ~ )  be an s-function where f l E K~ and 
f2  c K~ are functions such that 

f l (~? )=~l (P(~h) ,~?2)  and f2 (~ )=~2(P(~ l ) ,~2 )  

for some ~91,~2 and P of  P2, and {{~?1},{;72}} is apartition o f  {~?}. Then I{~?l}[ = 1. 

Proof.  Suppose that [{~71}[ > 1. Then P0?I)  depends essentially on at least two vari- 
ables. Since we have assumed above f l ( :?)  as a monotone function, P 0 h  ) is a mono- 
tone function as well, and so we can obtain from P(£~ ) a variable xi by replacing some 

variables in £L by some al . . . . .  ak C {0, 1}. Having done analogous replacement in f l  
and f2  we obtain functions f~l(xi,£2) and f~(xi,x2) belonging to the different classes 
K~ and K,p. By Lemma 4.3 f~l(xi,£2) ¢ f~(xi,£2) which contradicts Lemma 7.1. Thus 
the lemma is proved. 

Lemma  7.3. Let f ( y , Y ) =  )Sfl(Y ) V Y f  2(x) be an s-function and 

f l (~) = g(R! (~1) . . . . .  R p ( ~ p ) ) ,  

f 2 ( . ~ )  t ~ z ~ ---- r P ( R l ( W  1 ) . . . . .  Rq(wq)) ,  

and let {~,} C_ {~,/} for some i, j (i E {1 . . . . .  p} , j  E {1 . . . . .  q}) and [{f~i}l >~ 2. Then 
f I 0 ? )  = g(R(~i), xi) and f 2(Y) = o(Rl(~i),xi). 
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Proof.  Without loss of  generality, we can assume that {f t} C {qq}, I{~,}1 /> 2, and 
xl E {at}. First we show that p -  q = 2. Suppose to the contrary p > 2. (The case 
q > 2 can be considered by analogy.) According to an assumption of  the lemma we 

have 

fl(.,~) ~ g(RI(U1) . . . . .  R p ( f , ) ) ,  

f 2(£) -~ q~(R'l(~'l ) , . . . ,  R'q(@q)). (6) 

By Lemma 4.6 Z~  U {x,} C {F,}, hence by replacing Z~t u {xi} by V ( f l , f e , x l ) i n  
f l  and f2  we can obtain the functions 

f 'l = (t(P( gll ),R2(13"2) . . . . .  Rp(gp) ) ,  

f~2 = q~(O(ff',~ ), R~(~?'2 ) . . . .  , Rtq(~,q )) (7) 

with {g,,} = {F,I\(Z~) U {Xl}) ~ {wi i}  : { ~ ' l } \ ( Z ; "  1 U {Xl} ). 
fl' We now show that {flit} = (3 and q : 2. Assume that at By Lemma 7.1 f ' l  = .  2. 

least one of  the two equalities is not satisfied. Then f ~  E K~,. On the other hand, since 
p > 2, f l  c 1(.,t. Hence, by virtue of  Lemma 4.3, f ' j  # f~ .  Thus we have obtained a 
contradiction and so {@11} ~ (3 and q : 2. From (7) we easily see that under these 

equalities: 

R2(W2 ) - .q(R2(~2 ) . . . . .  Rp(~p)) .  

By replacing R~('~'2) in (6) by its y-representation obtained above we obtain 

f l  (-~) = y(RI (91), g(R2(~2 ) . . . . .  Rp(~p))) ,  

f2(-~) ~- qY(Rtl (Wl),  0'(R2(F2 ) . . . . .  Rp(I)p))) 

with {/71 } = {~,, }. 
Since p > 2 and {Fi} ¢ ~ for all i E {1 . . . . .  p}, the function 

.(.(.J( R2 (/~2 ) . . . . .  Rp(~)p)) 

depends on at least two variables which contradicts Lemma 7.2. Thus p = q = 2. 
We will now show that {vl} = {v~'t} and {g2} ~-- {~'2}. Using the equalities p -- 

q = 2 we can rewrite (6) as 

.f~(£) = .q(RI(F~ ) ,R2(f2)) ,  

f 2(;) : q)( Rrl ( ¢~'1), R~( @2 ) ) . (8) 

Having done the the same replacement as above we have obtained the functions 

f l  = ~(P(/~ll ) ,R2(~2) ) ,  

./"~ = (p(Q(@I 1 ), R~O;'2 ) ) ,  
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which are, by virtue of  Lemma 7.1, equal to each other. It is also clear that 

{~,,} : {~, } \(Z) ' ,  u {x , } )  c { ¢ , , }  : { < } \ ( z )  ~' u { x , } ) .  

We will now prove {v;'ll} = O. Suppose that {~Tvll} ¢ O. Then we can prove {gtL} = 0 

as above. From this equality and the equality of  ,f~ and f~  we see that 

R2(,72 ) ~ , ~ = O(Q(wlI) ,R2(w2)) .  

By replacing R2(/~2) in (8) by the above experession of  R2Q72) we obtain the equalities 

f ,  (2)  = y(R, (F~), 0(Q(~'~ ~ ), R'~ (~ ,2)) ,  

f 2 ( ; )  ' ~ ' - = @(RI(W 1 ),R2(w2) ) . (9) 

There are only two possibilities: 

1{,>2}1 > I or [{~?'2}1 = 1. 

It is necessary to consider separately each of  them. 
(i) Suppose that [{g'2}] > 1. Then the function R~(~2) depends on at least two 

variables which contradicts Lemma 7.2. Thus (i) is impossible. 
(ii) Now suppose that [ {g ' 2} ] -  1. In this case we can rewrite (9) as 

f l  (,e) = ,q(RI (Vl), ~(Q(#lx ) , x ) ) ,  

f2(.r)  = ~t(R',(,g'l ),2) (10) 

(here f2  contains Y, since we have already assumed above that f l  is monotone, and 

f l  and f2  have different ramming values.) 
We again replace Z~-~ I O {xl } in (10) by V ( f l , . f 2 , x l  ) and as a result we obtain the 

functions: 

f ~ ( £ ' )  = # / ( Q 0 V l l ) , X )  and f~(2') = ~,(Q(v~,, , ) ,2)  

with {,?,,} = {!+'l}\(/ij.11 U {Xl} ). (Recall that {JS,,} = 0.) It is easy to see that f~  ¢ 
f32 which contradicts Lemma 7.1. Thus {~511 } = 0. 

We can now see from 

{~,,} - {~, }\(z~.,, u {x , } )  < {,~,,,} = {¢ ' , } \ (Z; ' ,  u {x , } )  

that {~7,} = {~,} ,  and so {v2} -- {v;'2} as well, since {2} = {F1}~J{g2}  = {}~',l}Lq{14'2}. 
We now show that [{v2}l = l. Suppose I{L~2}[ > 1. First we rewrite (1) as 

Y'l(#) = g(Rl(v! ),R2072)), 

,/'2(~r) = ~ (R '  l (~! ) ,  R~(~2 ) ) .  ( 11 ) 
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By replacing Z~l u {Xl} in (11) by IT(f l ,  f 2 ,  x l )  we can easily show that R2072)= 
R~(v'2) in the same way as before. But this contradicts Lemma 7.2. Thus [{~72}[ = 1. 
Obviously we can now write 

f l(.~) = g(R(~), x ) ,  

f2 (x )  = t~(Rt(v),x). [] 

L e m m a  7.4. Let f ( y , £ ) =  f : f l ( Y ) V y f 2 ( £ )  be an s-function with f l ,  f 2  • P~, 
n >~ 2, such that 

f l (x) = g(Rl(Vl ) . . . .  , R p ( v p ) ) ,  

f2(-v) = ¢P(R'I ( ¢ , )  . . . . .  Rtq(~q )) .  

I fX l  = {{~i} [ i  E {1 . . . . .  p}} and ~2 = {{wi} [i E {1 . . . . .  q}} are comparable parti- 
tions of  {£}, then ( f l , f 2 )  may be one-type to only one of  the Jbllowing pairs." 

(xl V x z . . . x , , , x l ( x 2 V . . . V x n ) ) ,  n >~ 3, 

(X I V " "  V X n , X l ' "  "Xn) , n >>. 2, 

( x I V " ' V x n , x l ( Y 2 V . . . V & ) ) ,  n ~> 3.  

Proof.  Without loss of  generality we can assume ~2 9 ~1. According to the definition, 
~2-<~1 iff each {~i}(i E {1 . . . . .  p} )  is contained in some {~j} ( j  E {1 . . . . .  q}). There 
are only two possibilities: 

- there is {~i} (i E {1 . . . . .  p} )  such that [{g/}l /> 2, or 

- I{~i}l = 1 for all i C  {1 . . . . .  p}. 
We will now consider separately each of  them. 
Case 1: Suppose that there is {~i}(i E {1 . . . . .  p} )  such that ]{vi}[ ~> 2. Then, by 

Lemma 7.3, we have 

f l (£) = g(R(FO, x ) ,  

f2 (£ )  = ¢p(R'(3),x), (12) 

with [{zT}[ >~ 2. 

Since R ¢ Ko and R' ¢ K,p (see the definition of  the g-representation), and R,R' are 
read-once functions depending on at least two variables, by virtue of  Lemmas 4.3 and 
4.4, we can represent R and R' in the form: 

R(g) = q~(R 11([~ll) . . . . .  RII ) ) ,  

Rt(V) = g(R'll(l~ll ) . . . . .  Rtl~(~l,.)). 

We first show that [{TTli}[ = I for all i E {1 . . . . .  l}. Suppose to the contrary that there 

is {Vu} such that ]{17,i}] ~> 2. Let [{Vll}l >/ 2 and x, E {v, 1}. Since f l  and f2  have 
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different ramming values, R and R' have different ramming values as well. By Lemma 
4.6 ZR'O {X,} C {~5,1}, also l >~ 2, hence by replacing Z ~ ' U  {xl} by V ( R , R ' , x l )  in 

f~ and f 2  respectively we can obtain the functions: 

. f l ( .~)  - g(P(tT),x) and .f~(x ~) = ~o(Q(5),x) (see (12) ) .  

Since ZRIU {xl} C_ {vii} C {g}, x is an essential variable of  these functions and, by 
virtue of  Lemma 6.2, the functions P and Q depend essentially on at least one variable, 
.fl E Kq and f ~  ~ K,p. Hence, by Lemma 4.3, . f l ¢  f~ which contradicts Lemma 7.1. 

Thus [{vli}] = 1 for all i E {1 . . . . .  l}. 
Similarly, we can prove I{g'b}] -- 1 for all j C {1 . . . . .  r}. Seeing that f l  and f 2  

have different ramming values, and f t  is a monotone function, we can now write 

f l (£) = g(xl ,  (p(x2 . . . . .  x , ) ) ,  

f 2 (£ )  = (p(xl,g(x2 . . . . .  xn)),  n ~> 3 (13) 

Case 2: Now suppose that ]{~ i} ] -  1 for all i E {1 . . . . .  p}. Then we clearly have 

f1 (2)  - g(xl . . . . .  x , ) ,  

f2 (£ )  q~(R'l (~') . . . . .  R'q(~'q)) .  

Here there are two more possibilities. Namely, 

I{~;i}]= l fo r  all i C  {1 . . . . .  q} or ]{'wi}[ > l fo r  some j 6  {1 . . . . .  q}.  

We will again consider saparately each of  them. 
Case 2.1: Let ]{~'i}] - 1 for all i E {1 . . . . .  q}. Obviously we can now write 

f l (3~)  = g(Y 1 . . . . .  X n ) ,  

f2 (£ ) - -¢p (x l  . . . . .  x,,), n ~> 2 (14) 

Case 2.2: Let ]{V~'l}] > 1 and x, E {~',}. By Lemma 4.6, Z~ 2 U {x,} C_ {~,,}, and 

so by replacing ZXlJ 2 0 {Xl} by V ( f 2 , f l , x l  ) in f ,  and f 2 ,  we can obtain the functions: 

1 7, I ./.2 = g(x,, . . . . .  xi, ) and f22 = q~(P(~7¢ll ), R20v 2) . . . . .  Rq(wq))  

where ( ' ~ 1 1 }  = ( 1 ~ ' 1 } \ ( Z ; 1 2  I J { X l } ) .  

Hence, by Lemma 7.1 f~  = f~ ,{~ ' l l }  = 0 and q = 2 (because f~  ~ K~j and f~  6 
, f2  otherwise). Thus R~(~'2) = g ( x i  I . . . . .  x ik  ). Clearly we can now write K,p, so f T ¢ .  2 

. f  l (.~) = g(g(it . . . . .  xik ),Xh . . . . .  Xh. ) ,  

f2 (£ )  = q~(R~l ( l ~ ' 1 ) ,  ~(Xi I . . . . .  Xi k ))" 

By Lemma 7.2 k = 1. Therefore 

f l (~)  = ,q(xl . . . . .  x n ) ,  

f2 (£ )  = ~P(xl,g(£2 . . . . .  £n)), n ~> 3 ( 1 5 )  
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The (,0-representation of  f 2  contains the negation of  some variables, since the function 

f l  is monotone, and f l  and f2  have different ramming values. 
Recalling the preceding notation one can rewrite (13) as 

( x i V x 2 . . - x , , , x l ( x 2 V . . ' V x , , ) ) ,  n /> 3 ,  

(X I V ' ' "  V X n , X l ' '  "Xn) , n >~ 2 ,  

(xt V . . . V x , ~ , x I ( 2 2 V . . . V 2 , ~ ) ) ,  n ~> 3,  

Lemma  7.5. Let f ( y , 2 )  = p.['1(2) V y f2 (2 )  be an s-fimction and 

j¢'1(2~) = , q (R l ( /~  1 ) . . . . .  Rp(~)p)) ,  

= g(Rt(wl ) . . . . .  Rq(wq)).  

Then none o f  the functions Ri (i C {1 . . . . .  p} )  is equal to a Jimetion R~ (j E 
{1 . . . . .  q}). 

Proof.  Suppose to the contrary that Ri = R~ for some i C { 1 . . . . .  p} and j C { 1 . . . . .  q}. 
Since, according to the definition of  the g-representation, Ri and R~ differ from any 
constant, there is ~ such that by replacing the variables vi and ~/  by ff in R i and R~, 

respectively, we can obtain a constant a such that g ( x , a ) =  g ( a , x ) =  x. 

It is easy to see that 

f l (2) : g(g(RI ( U I )  . . . . .  Ri-1 ( /~ i -1  ), Ri+l(Vi+l ) . . . . .  Rp( ~p ) ), Ri( ~i ) ) ,  

f 2(2) = g(g(R'I(~7~I ) . . . . .  R' i l(V~,,_~),R'/+lOOi+,) . . . . .  R'q(r~q) ),R'/O~:/) ) . (16) 

Hence, by replacing ~;i and vbj by ~, we can obtain from (16) the following functions: 

• f l  = y ( g l  ( V l )  . . . . .  g i - i  ( /~ i -1  ), Ri+l(r,i+l ) . . . . .  R p ( v p ) ) ,  

f~  = .q(R'l(U~, 1 ) . . . . .  Rr, l(v?j_l ),R'/+,(~/+, ) . . . . .  R'q(~q)). 

By Lemma 7.1 f l  = f~ ,  and so f l  = f2 ,  since Ri = Rj. Therefore y is a fictitious 
variable of  f which contradicts that y is a distinguished variable of  f .  The contradic- 
tion proves the lemma. 

L e m m a  7.6. Let f ( y , 2 )  = ff~f j(2) V y f 2 (2 )  be an s-Junction and 

f l ( 2 ~ )  - -  ( ] (RI  ( v l )  . . . . .  R p ( v p ) ) ,  

f 2 ( 2 )  = ( j (R"  I (1,~' 1 ) . . . . .  RtqO'Vq) ) . 

/ f  {t~i} C {r?j}.Jbr some i ~ {1 . . . . .  p} a n d j  C {1 . . . . .  q}, then l{~7i}l = 1. 
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Proof.  Suppose the contrary. Without loss of generality one can assume that {vl } C 
{~;',},[{vl}l ~> 2, and xL 6 {Vl}. By Lemma 4.6 Z~.I 1 ~J {Xl} C {~l}" Hence, by replac- 

ing Z}~ U {x, } in f l  and f 2  by I T ( f l , f 2 , x l ) ,  we can obtain the functions: 

f l  = g(P(/;l, ),R2(~2) . . . . .  Rp(~)p) ) ,  

f~  = g(Q(~Tvl, ),R~(~'2) . . . . .  R'eO¢~'q)) (17) 

where {g, , }  -- {v' }\(Z~', u {x , } )  c {~ , , }  = {f fq}\(z}, ,  u {XL}). 
By Lemma 7.1 f l  : f21. There are the two possibilities: 

{1~11 } ~-~ 13 o r  {~ '11}  • 0 .  

We will now consider separately each of  them. 
Case 1: Suppose that {~'lJ} = 13. Since {~11} C {wlJ} {vii} = 13 in this case as 

well. Then the equality f l  .f~ and the uniqueness of  the .q-representation imply the 
' = R~ which contradicts Lemma 7.5. Thus this equalities p = q and R2 = Ri2, . . . ,Rp zp 

case is impossible. 
Case 2: Now suppose that {ff'll} 7 L 13. Here there are also the two possibilities: 

( ~ l l }  --- 13 or  {~11}  7 ~ 13. 

We will again consider separately each of  them. 
Case 2.1: Suppose that {g,l} = 13. Let Q ( ~ , ~ ) =  g(Rtl,(fi~) . . . . .  R~k(~k)). We will 

now do the following: i f Q  c Kq, then we replace Q(vi"l i) in (17) by its g-representation. 
As a result we have obtained 

f{  = g(R2(~52) . . . . .  R p ( g p ) ) ,  

f l  , - . . . , ,  - . = g(R ll(uj ), Rlk(uk ) . . . .  R ~ 0 ; ' 2 )  , ,R'q(~'q)) 

Then the equality f l  = f~ and the uniqueness of  the g-representation imply the equality 
R~ = Ri for some i ~ {2 . . . . .  p} which contradicts Lemma 7.1. (Note that, according 
to the definition of the g-representation, q ~> 2.) Thus the Case 2.1 is also impossible. 

Case 2.2: Now suppose that {vii} ¢ 0. 
Let P(/~l 1 ) = g(Ri t (£1) . . . .  , R il(£l)). Here we first transform 

g ( ~ ( ~ l l ) , R 2 ( ~ 2 )  . . . .  , R p ( ~ p ) )  and g(QO'g'11),R~O~2) . . . . .  Rtq(~'q), 

in the same way as above. It is comparatively easy to check that under the transfor- 
mation we obtain f l  and .f~ in the form 

f l - -  g(R11(£1 ) . . . . .  Rll( f t  ),R2( F2 ) . . . .  , R p (  Fp ) ) , 

.f~ g(R' l  1 (/2'1), t ~ t ~ . . . , e ' q ( l ~ q ) )  = . . . , R l k ( U k ) , R 2 ( w 2  ), • 

Since {vii} C {u'¿l}, none ofR~, (i ~ {1 . . . . .  1}) is equal to R~ (j  q {2 . . . . .  q}) hence 
R~2 = R, for some i ~ {2 . . . . .  p} which contradicts Lemma 7.1. Thus this case is also 
impossible. [] 
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Lemma 7.7. Let f ( y , £ )  = f~f l(x) V y f2(£)  be an s-function with f l , f2  E P~,n >>, 2 
such that 

f1 (2)  = g(RI(gl ) . . . . .  Rp(gp)),  

f2 (2 )  -- g(R'l (~'1) . . . . .  Rtq(Wq )) .  

/ f ~ l  -- {{~i} l i ~ {1 . . . . .  p}} and 7( 2 : {{~'i} [ i C {1 . . . . .  q}} are comparable parti- 
tions of  {2), then ( f l , f 2 )  may be one-type only to the Jollowin9 pair. 

(xl V . . . V  x,,£1 V . . . V  Yn), n ~ 2. 

Proof.  Without loss of  generality we can assume ~2 -~ ~zl. According to the definition, 

~Zz_~zl iff each {gi}(i C {1 . . . . .  p})  is contained in some {~'i} ( j  E {1 . . . . .  q}). By 

Lemma 7.6 1{~i}[ = 1 for all i E {1 . . . . .  p} hence 

f l ( ; )  = g(x~ . . . . .  x . )  

(recall that f l  is a monotone function). 
We will now prove that ]{@i}] = 1 for all j E {1 . . . . .  q}. Suppose to the contrary 

that, for example, ]{~'1}] >~ 2. Let Xl E {@1}. 

By Lemma 4.6 Z~ 2 t_J {x, } C {O1 } and so by replacing Z~.~2 u {x, } in f l  and f 2  by 

V( f2 , f l ,X l ) ,  we have obtained the functions: 

f l  = g(xb . . . . .  xim), 

,f~ = g(Q( ~'l l ),R~(~2) . . . . .  R'q(~Vq) ) , 

where {,¢,,, } = {g,~ }\(Z~'2 Lo {xl }). 

By Lemma 7.1 f l  = f2  t. In this case, as we easily see, there are only two possibil- 
ities: either 

q > 2 or {1+'11 } # 0 ,  
or 

q = 2  and { g ' l l } = 0 .  

We will now consider separately each of  them. 

Case 1: Suppose that either q > 2 or {Wll} ¢ 0. In this case we transform the 

functions f l  and .f~ in the same way as in the Case 2.1 of  Lemma 7.6. As above, we 

can show that R '  = x 6 for some j C {1 . . . . .  m}. However this contradicts Lemma 7.5. 
Thus Case 1 is impossible. 

Case 2: Now suppose that both q = 2 and {g'll} = 0. Obviously, this assumption im- 

plies R~(#2) = g(xil . . . . .  Xim. Since R~2 (~ Kq, m = 1 because R~ E K~j otherwise. There- 
fore R~ = x,) for some j C {1 . . . . .  m} which contradicts Lemma 7.5 again, and so Case 
2 is also impossible. 

Thus we have shown that ]{@j}] = 1 for all j E {1 . . . . .  q}. From this equality and 

the fact of  that f l  and f2  have difl'erent ramming values we easily see that 

f2(2~) = g(271 . . . . .  27n). 
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Finally we can write 

f l ( ~ )  = .q(x~ . . . . .  x , ) ,  

f2(-~) = g(-~l . . . . .  -~, ) .  

Since g denotes either conjunct ion or disjunction, the l e m m a  has been proved.  

L e m m a  7.8. Let  f ( y , 2 )  = 35f1(£) V y f 2 ( £ )  be an s-/tmction with {2} = {xl . . . . .  x ,}  

(n >~ 3) and 

f l  (-~) = g(R1 (f/1) . . . . .  Rp(~p)) ,  

f 2 (2 )  = g(R', (V?,l) . . . . .  Rtq(1,fq)). 
lf~Zl = {{~i} li E {1 . . . . .  p}}  and 1r2 = {{~?,i} li c { l , . . . , q } }  are uncomparable par- 

titions, then 

7~1 = {{Xl . . . . .  X n 2,x. ~},{x,}} and /'~2 = {{XI . . . .  X n - 2 ; X n } { X n  1}} 

up to permuting indices. 

Proof .  According  to L e m m a  4.2 we can assume,  for example ,  {vt } = {ul }1~ . . . t~ {fi~} 
for some nonempty ,  disjoint sets {~i} and {g'i} = {ui}t~ {[i} for some sets {t i} , i  = 

1,2 . . . . .  k ~> 2. Also, at least one o f  {[i} is nonempty  and {[i} N {t2j } = 13 for all 

i , j  E {1 . . . . .  k}.  Taking  this into account,  we can write 

f l ( )~)  = g(Rl(t~ I . . . . .  t~k),R2(~2) . . . . .  Rp(~p) ) ,  

f 2 (£ )  = g(R'l (ill, [1 ) . . . . .  R~.(fih-, tk ), R~+ 1 (¢'k+1) . . . . .  R'qO?; q )) .  

We first show that q = k .  Assume q > k. Let xl  E { i l l  . . . .  ,uk}.  Since k >~ 2, by 
virtue o f  L e m m a  4.6, Zf '  l U{Xl}  C {/~1 . . . . .  /lk). Then by  replacing Z~II U{Xl} by 

V ( f l , f 2 , x l )  in f l  and f 2  respect ively,  we obtain the functions: 

.1{ = g(Q(z),  R2( h ) . . . . .  Rp(gp)) ,  

f ~  g(Pl(£1,  [1), ,Pk(zk, tk) ,R~+l(wk+t),  ' . . . .  ~ ~ ' ~ . . . ,Rq (wq) ) ,  

where  {Z} = {& . . . . .  f fk} \ (Z~ 0 {x~}) and {Ze} = {~7i}\(Z~I © {xl}),  i ~- 1,2 . . . . .  k. 
We  will now t ransform .fl and .1"2 in the fol lowing way: first, in case Q c K~j, 

replace Q(£)  in f l  by  its g- representat ion then, replace each Pi(£i, ti) in J~ by  its 
g-representat ion as well.  As a result, we  will clearly have obtained the fol lowing g- 

representat ions o f  .f l  and .f~: 

f l  = .q(Rll(Zll ' . . . . .  RII(ZlI) ,R2(~2), . . . ,Rp(~,p)) ,  

I ~ ~ I ~ 
.f~ = g(R'll(~i) 1 ) . . . . .  Rlk(w,k) ,R2+l(wk+l)  . . . . .  Rq(~.Vq)) 

where  {zT} = {z-71, }, U . .  , U {21l}. 
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Since {£}n{g , i}  : 0 for all i E  {1 . . . . .  k}, none of  R,i, i E {1 . . . . .  l} is equal to 
R' v, hence, by virtue of  the uniqueness of  the g-representation, R'q = Ri for some i E 
{2 . . . . .  p} which contradicts Lemma 7.5. Thus q = k, and so we have 

f l  (97) = g ( R 1  (t~l . . . . .  t7 k ) ,  R2(~7 2 ) . . . . .  Rp(vp  ) ) ,  

f 2 ( 9 7 )  = g(Rtl (bt l , / - I  ) . . . . .  RIk(btk,/-k ) ) .  

We now prove that ]{gi}] = 1 for all i E  {2 . . . . .  p}.  Since { S i } n { g j } = O  for all 
i >/ 1 , j  ~> 2, we can show that each {vi} (i E {2 . . . . .  p } )  is contained in some 
{Tj}(j" ~ {1 . . . . .  k})  by analogy with the preceding case. Hence, by virtue of  Lemma 

7.6,1 {vi} I = 1 for all i C {2 . . . . .  p}. Thus 

f1(97) = g(Rl(Fq . . . . .  fik ), xi2 . . . . .  xi r ) ,  

f2(97) = 9(R'I (t~l, 71 ) . . . . .  R~(t~k, 7k ) ) .  

We now prove that p = 2. Suppose the contrary. There are two possibilities: 
there are at least two nonempty sets among {ti} (i C {1 . . . . .  k}), or 

- there is the only nonempty set among {7i} (i E {1 . . . . .  k}). 
We will consider separately each of  them. 

Case 1: For the sake of  definiteness, we assume that {71} and {72} be nonempty sets, 
xi E {i'l} and Xj ~ {/-2}.  Since {/~1} • 0, [ { /g l , / -1}  [ ~ 2 hence, by virtue of  Lemma 

4.6,Z~!; to {xi} c {~l,T1} and so by replacing ZX/2 to {xi} by v ( f 2 , f l , x i )  in .fl and 
f2 ,  we obtain the functions: 

f~  = g(P(Ul I, t72 . . . . .  fik ), xj, Xjl . . . . .  x/, ) ,  

l ~ ~ ? ~ ~ f 2  = g(Q(  (tl l , /-11 ),R2( u2, t2 ) . . . . .  Rl~( uk, tk ) ) , 

where {t7,1} = {gl }\(Zj?2 U {x~}) and {71, } = {71 }\(Z}~ 2 U {x~}). 

According to Lemma 4.1, xj has the same ramming value in f l  as in f~ .  On 
the other hand, since X/ ~ {/'2} and {t72} ¢; {3, then - as follows from Lemma 4.6 - 
Z~I~ tO {xj}  C_ {~2,72}. So according to Lemma 4.1, xj has the same ramming value in 

f2 as in f22. Therefore f~  ¢ f22 since f l  and f2  have different ramming values. Also 
f~  and f22 depend essentially on at least two variables because {t72} ¢; 0 and {/-2} ¢; ~). 
Thus we have obtained a contradiction to Lemma 7.1, and so this case is impossible. 

Case 2: Now, for the sake of  definiteness, we assume that {/-1} is the single 
nonempty set among {7i} (i E {1 . . . . .  k}). Obviously we can now write 

f l (x)  = g(Rl (~q . . . . .  ~, ), Xi2 . . . . .  Xip ) ,  

,/"2(97) = g(R' 1 (uI, xi2 . . . . .  xip ), R'2( ~2 ) . . . . .  R'~ ( Ftk ) ) . 

Let xl E {/~2}, X 2 (~ {Xi2 . . . . .  Xip } and x3 E {ul}. (Recall that k /> 2.) We will now 
consider the two possibilities: 

x g E Z ~  2 and x 3 ~ _ Z ;  2 .  
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Case 2.1: Suppose that X3 E g~ 2. Since k ~> 2 and {~7i} :~ 0 for all i ~ {1 . . . .  ,k}, 
then, by virtue of  Lemma 4.6, Z~.~ I U {x, } C {tT, . . . . .  uk }. Hence, by replacing ZXf~ to 

{xl} by V ( f l , f 2 , x l )  in f l  and f2 ,  we obtain the functions: 

f ~ = ,q( P (  ~),xi~ . . . . .  xi,, ) , 

f ~  = Q(u,  x i2, . . .  ,xip ) ,  

where {~} = {ul . . . . .  ak}\(Z~.l I to {Xl }). 
By Lemma 4.1 and p ~> 2, x2 has the same ramming values in f l  and f2  as in f~  

and f2  3 respectively. Hence f~  ~ f2  3 since f l  and f2  have different ramming values. 
Also it is easy to see that f~  and f3  2 depend essentially on at least two variables. 
Thus we have again obtained a contradiction to Lemma 7.1, and so the Case 2.1 is 
impossible. 

Case 2.2: Now suppose that x3 ~ Z~ .  Here there are also the two possibilities: 

x2 E Z~ 3 o r  x2 ~ Zal~ . 

We will consider separately each of  them. 
Case 2.2.1: Suppose that x2 E Z~ 3. It is easy to see that this case is an analogy to 

the Case 2.1, and so it is also impossible. 
Case 2.2.2: Now suppose that x2 ~( Z~ 3. In this case we can write 

R/l(b~l, t'l ) = fP( . . . .  Rli(~lli, x2) . . . . .  Rlj(bllj ,X3) . . . .  ) ,  

where {Uli} # 0 and {ul/} # O. 
By Lemma 4.6 Z~3O{x3} C{tT,j,x3}. Hence, by replacing Z~3U{x3} by 

V ( f 2 , f l , x 3 )  in f l  and f2 ,  we obtain the functions: 

f 4  = g( . . . .  P(t~li) . . . . .  x 2 . . . .  ) ,  

f 4  = Q( . . . .  Uli . . . . .  x2 . . . .  ) .  

In exactly the same way as in the Case 2.1 we can show that f 4  :~ fa2 and these 
functions depend essentially on at least two variables (one can only observe that Z~22 t5 
{x2} c_ {t~ti,x2}). Therefore the Case 2.2 is impossible. 

Thus we have shown p = 2 .  Now, since [{17i}[ = 1 for all i E {2 . . . . .  p} and 
because of  the monotony of  f l  we can write 

f t ( £ )  = g(Rl(Vl ) , X 2 )  • 

Similarly, we can show that 

f2 (£ )  = g(R'l(gq ), x~).  

To complete the proof it suffices to observe that f l  and f 2  are different. [] 

For the subsequent discussion we need more concepts. 
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Let us recall that here all Boolean functions depend essentially on all their variables, 
and differ from any constant. 

Let f be a read-once Boolean function depending on at least two variables. As shown 
in Lemmas 4.4 and 4.5, for such a function there is only one y-representation (in fact, 
of course, up to permuting terms). Using this representation, we can inductively define 

the depth of f .  
- If f ( 2 )  = .q(x~ ~ . . . . .  x~") then the depth of f is equal to 1. 
- Assume that we already know what functions have depth equal to k, k ~< n. 

- Let f ( 2 )  =- 9(Rt(fl ) . . . .  , R p ( ~ p ) ) . f  is said to have depth equal to n + 1 iff all func- 
tions Ri, i C {1 . . . . .  p} have depth not greater than n, and there is at least one Ri 
having depth equal to n. 
We will denote the depth of f by d ( f ) .  Let us observe that the definition of the 

depth does not depend on an ordering of terms of the y-representation of a function 
so all equal functions have the same depth. 

The following statements follow directly from the above definition. 

Lemma 7.9. I f  d ( f )  ~- k, then the fimction f depends essentially on at least k + 1 
variables. 

Lemma 7.10. I f  the jimctions f and ~fx, depend on at least two variables and 
d ( f )  = k, then d ( ~ f  x,) ~< k. 

For the sake of convenience we will now prefer to use a geometrical language. (We 
assume in this paper that the reader has some familiarity with basic concepts of Graph 
Theory.) Without going into details we observe only that one can establish a correspon- 
dence between a read-once Boolean function f of  the depth k and a rooted tree Df of 
height k in which each leaf is labelled by a literal from the set {xl,...,xn,21 . . . . .  -f~} 
and each internal node is labelled by either A or V in such a way that no adjacent 
nodes in D(  can be labelled by the same symbol. (Note that in general, A and V 
denote here many-place conjunction and disjunction.) 

We will say that a node v of  D/ is a node of level k iff the distance between v and 
a root of DU is equal to k. 

Many statements get trivial by using the representation of read-once functions in the 
form trees. 

Lemma 7.11. Let ( f )  =- k, k >~ 2, and let xi,xj be variables o f f  with the levels" ki, kj 
respectively. I f  ki < k~ <~ k then xi q{ Z~!. 

The proof of  the two above lemmas is trivial. 

Lemma 7.12. Let f C K,J, d ( f )  = k, k >1 3, and let xi be a variable f with the level 
k and f '  be obtained from f by replacing xi by its ramming value in f and ZX/ by 
constants from {0, 1}. Then f '  E Ko and d ( f ' )  >1 k - 2 .  

The lemma gets trivial if we represent f in the form a tree D/  (see Fig. 1) (it is 
necessary to observe only that in Df any two adjacent nodes are labelled by different 
symbols). 
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Fig. 1. 

Remark .  Let 31 E {0, 1} be a ramming value of  Xil in f .  Then as it is easy to see 
from Fig. 1 we obtain the variables Xi2,...,Xim as fictitious ones of  f by replacing x,~ 
in f by 171. Also k is reduced by one unit if  there is at least two nodes of  the level 
k - 1, which differ from vj and are adjacent to vi, otherwise k is reduced by two units. 
(Recall that two nodes in D f  are adjacent iff they are joined by an edge.) 

Lemma  7.13. Let f ( y , 2 )  = ~ f  l(2) V y f 2 ( 2 )  be an s-function. I f  

f 1 (2 )  = g(R(xl . . . . .  xn-2 ,x ,  l ) , x , ) ,  

f2(;) y (R ' ( x~  . . . .  = ,X, 2 ,Xn),Xn_l) ,  

or 

f 1 (2 )  = g(R(Xl . . . . .  xn-2 ,x ,  j ) ,x , , ) ,  

f 2 ( - ~ )  qo(Rt(xl . . . . .  xn-2,xn),x,~_ I ) 

then d(R)  <~ 2 and d(R r) <~ 2. 

(18) 

(19) 

Proof.  Where the proof  in case of  (18) is just like the proof  in case of  (19) we limit 
ourselves to the consideration the case of  (18), otherwise we will consider separately 
each of  the two cases. 

Suppose the contrary. For example, let d ( R ) =  k, k ~> 3. (Note that in this case 
n >~ 3.) We will now show that Df~ is a tree of  the same kind as in Fig. 2. Since 
d(R)  /> 3, q0-representation of  R has the following form: 

R = q o ( g ( R l l ( g l l  ) . . . . .  Rlr(~lr)),R22(~22 ) . . . . .  R2p(~2p)) ,  

where at least one set among {/~1i}, i E {1 . . . . .  r} contains no less than two elements. 
For the sake of  definiteness, let ]{g11}] >~ 2 and xa E {vii}. We first show that 

Xn 1 E {I~11 }. Assume x , - i  ¢ {/~1,}. Since I{g, ,}[  >~ 2, by virtue of  Lemma 4.6, 

Z)~I u {x,} c {vii}. Hence, by replacing Z}~ 1U {xl} by 7 ( f , , f 2 , x l )  in f ,  and f2  
we obtain the functions: 

f {  = g ( R l (  . . . .  Xl . . . . .  x n - l ) , x , ) ,  RI ~ K~,  

.f'~ = g ( Q , (  . . . .  x~ . . . . .  x o ) , x ~  1 ) .  
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As we easily see f l ¢  f~  which contradicts Lemma 7.1. Thus xn i E {v11}. Similarly, 
we can prove that ]{gli}l ~> 2 implies x,, l E {t~li} for i E {2 . . . . .  r}. On the other 

hand, we have already shown that x,,_l E {gll} hence [ {vii} ] = 1 for all i E {2 . . . . .  r}, 
since {1711} A {gl,} = 0 for i ¢ 1. 

Now we show that I {~2/} [ - 1 for all j C {2 . . . . .  p}. Suppose the contrary. Without 

loss of  generality, we can assume that, for example, 1{~22}1 > 2 and x2 E {v22}. Now 
we can obtain different functions depending essentially on at least one variable by 

replacing Z~ U {x2} by lT( f l , f2 ,x2)  in f l  and f2  as above. 
The contradiction to Lemma 7.1 proves that 1{~2j}l = 1 for all j E {2,.. p}. This 

way we have proved that 

f l (£) = g( cP(g(RIt (vll ), xi2 . . . . .  xir ), x j2 . . . . .  x j,, ), x, ) 

with x,-1 C {gll}- 

With the aid o f  this equality, we can easily prove by induction on d ( f l  that Df~ 
is a tree of  the same kind as in Fig. 2. 

We will now show that d(R ~) ~< 2. Suppose the contrary. 

Let d(R ~) = k', U /> 3. (Recall that we have already assumed d(R) >~ 3.) In exactly 

the same way as for Dfl  we can now show that in case of  (1)Df~ is a tree of  the 
same kind as in Fig. 3 and in case of  (19) also as in Fig. 3 with the only exception 

that the root is labelled by q~, the internal node adjacent to the root is labelled by g, 
etc. 

We will now prove that all variables of  the greatest level o f  Df~ and Dr2 are 

alike except X,_l and x~. Suppose to the contrary that there is a variable xi different 
from x~-i and xn which belongs to the (k -- 1)th level of Df~ and to the kith level 

o f  Dr2, kl < k' + 1. Then as we easily see from Figs. 2 and 3 x,, i --+ x i ( f l  ) and 
x,,_ 1 --+ xi( f2) .  Since x, belongs to the largest level o f  D&, by virtue of  Lemma 7.9, 
we obtain functions f~  and .f22 depending essentially on x, I and xi by replacing Z~'~. by 

V(f2 ,  f l , x n )  in f l  and f2 .  According to Lemma 4.l,x,, I ~ x i ( f~ )  and xn-l  ~ x i ( f  2) 
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hence xn-i has the same ramming values in f l  as in f~ and in J )  as in f~. So xn-1 
has different ramming values in f2  and .f2,2 since the functions f l  and f2 have different 
ramming values. Hence f~ # f~ which contradicts Lemma 7.1. Thus each variable of 
the (k + 1 )th level of Dfl different from xn-1 belongs to the (U + 1)th level of D&. 
Likewise we can prove that each variable of the (U + 1)th level of Dr2 different from 

x,, and xn-1 belongs to the (k + 1)th level of D/,~. 
Let us now obtain functions .['~ and f3 by replacing Z x~'-' U{x,,_l} by 2 ./i 

F( f t , f2 , x , , -1 )  in f l  and f2.  We can easily show that both the functions depend 
essentially on x, in the same manner as above. Also it follows from d ( f l )  ~> 4 and 
Lemmas 7.7 and 7.10 that each of the functions also depend essentially on at least 
other variables xi and xj. Note that after the above replacement no more than one 
variable can change its ramming value to the opposite one in f l  and f2  (x,, in f2 ,  
and a variable of the kth level of D/, in J'l if it is the only variable of the kth level). 
Thus at least one variable has the same ramming value in f l  as in f~ and in f3.  
But since f l  and f2 have different ramming values, this variable also has different 
ramming values in .fl~ and in f~.  Hence J~ ¢ f3 which contradicts Lemma 7.1. The 
contradiction proves that d(R') <~ 2. 

Starting at this point, we consider (18) and (19) separately. 
(1) Since d(R) ~> 3 and d(R') <~ 2, f l  and f2  can be represented in the form: 

f l  (2) -- g(~0(#(R(xn 1, ~1 ), h) ,  V3 ),Xn ), 

f 2 C O  g ( ~ o ( R ' , ( ~ , , ) , .  ' ~ . . . .  Rq(wq)),Xn_l), 

where {~i} # 0 for i = 1,2,3 and R} is either a variable or g for all j E {1 . . . . .  q}. 

Now we easily see that by replacing Z~'I-' U {x,,-1} by V( f l , f 2 , xn  i) in f l  and 
f >  we obtain the function 

.f4 = g(R,(b),x,) with I{g}[ >~ 2, R1 EK e  
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and a function 

f 4  such that either f2  4 E K e  or f2  4 = g .  

In either of  the cases f 4  ¢; ,/-4, which contradicts Lemma 7.1, so d(R) <~ 2. 
(2) This case needs a longer proof. 

First, we show that d(R ~) >~ k - 1. Let us replace Z~, "- f ,  tO {x,,-I} by V ( f l , f 2 , x n - l )  
in f l  and f2 .  One readily checks that in this way we obtain functions f~  and ,/`52 
depending essentially on at least three variables. Since x,,_j belongs to the (k + l)th 
level of  Dfl,  by virtue of  Lemma 7.10, d(fSl) ) k -  1. But according to Lemma 7.1 
,/`~ = f2  5, since f is an s-function. Hence d ( f  5) = d ( f~ )  >~ k - 1, Moreover it is easy 
to see that .f~ is a subfunction of  R' hence, by virtue of  Lemma 7.8, d(R') >~ k -  1. 

We will now show that d ( R ) <  4. Assume d(R)t> 4. Then d(R')~> 3, since 
d(R') ~> k -  1. (Recall that d ( R ) -  k,k >>, 3.) On the other hand, we have already 
shown that d(R ~) ~< 2. The contradiction proves that d(R) = k, k < 4. Thus we have 
shown that this is the only possibility: 

d ( R ) =  3 and d ( R ' ) =  2. 

Taking this into account, we can write 

f ,  (2) = g(~o(g(qo(x._ ,. ~, ), ~2 ), ~3 ), x . ) ,  

f 2 ( 2 )  = g(q~(Rtl (!'Vl) . . . . .  Rtq(}vq)),.Vn-1), 

where { v i } ¢ 0  f o r i =  1,2,3 and q ~> 2. 

(Here the last equality contains 2n-1 because f l  and f 2  have different ramming values 
and f l  is monotone.) 

Let xl E {g'l }U "" • 0 {g,q}. Then we obtain different functions depending essentially 
on xn 1 from ./'1 and ./"2 by replacing Z ~" i ~  {Xn_l}  by V ( f l , f 2 , x n - I )  in ,/`1 and f l  
f 2 .  The contradiction to Lemma 7.1 proves that d(R') <~ 2. 

Lemma 7.14. Let f ( y , 2 )  = y f l ( 2 )  V y f2 (2 )  be an s-function with {2} = {x 1 . . . . .  Xn} 
(n ~> 3) and 

f t(2) = g(Rl(Fq ) . . . . .  RpOTp)), 

,/`2 (2) = g( R' 1 ( ~,, ) . . . . .  R'q ( ¢,q ) ) , 

f f '~ ,  = {{/;,} [ i C {1 . . . . .  p}} and ~2 = {{v~,/} [ i E {1 . . . . .  q}} are uncomparable par- 
titions of  {Y}, then ( f  l , f 2 )  may be one-type to only one of  the pairs: 

(xl ...x,,-2x,,-i Vxn,2t ...2,,-2xn V x , _ l ) ,  n ~> 3,  

(xl...xn_2x~ 1 V X ~ , ( x l V . . . V x ~ _ 2 ) x ~ V x n _ I ) ,  n ~> 4 ,  

(X 1 V ' ' "  V x  n 2) Xn I Vxn,()71 V " "  V)7 n 2) Xn V x n - 1 ) ,  t/ ~> 4 ,  

for all n given above. 
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Proof. According to Lemma 7.8, we have 

~, = {(xl . . . . .  x , _ > x ,  ,},{xn}} and ~2 = {(xl . . . . .  x,,_2,x,},{x~ 1}}. 

(To be more precise, note that ~zl and ~2 can differ from them in pemauting indices. 

But without loss of  generality we can assume that ~1 and ~2 are the same as above.) 

This implies that 

f l(£) = g(R(xl . . . . .  xn-2, xn- l ), x,  ) ,  

f2  (£) = g( R' (xj . . . . .  x~- 2, x, ), x~_ I ) .  (20) 

On the other hand, according to Lemma 7.13,d(R) ~< 2 and d(R') ~< 2. So, in order 

to prove the lemma it suffices to consider only the three possibilities: 

d ( R ) = d ( R ' ) - -  1; d ( R ) =  1, d ( R ' ) = 2  and d ( R ) = d ( R ' ) = 2 .  

We will now consider each of  them taken separately. 

Case 1: Suppose that d(R) = d(R')  = 1. Because of  (20) we have 

f l(.~) = g(~p(xl . . . .  , x . _ 2 , x .  i ) , x n ) ,  

f2 (£)  = .q(tP(£1 . . . . .  £~-2,xn),x.-1),  n >>- 3.  

(Recall that f l  and f2  have different ramming values and f l  is monotone, so f l  

contains xt . . . . .  x . -2  and f2  contains £1 . . . . .  £~-2). 
Case 2: Now suppose that d(R) = 1, d(R') = 2. Here, by (20), there are two more 

possibilities. First 

f l ( X )  = g(cP(Y-l,Z2,Xn-I ) ,Xn) ,  

f2(.~) = g(~(.q(zl,O~n), ~ l(Z2)),Xn_l ) ,  (21) 

where {£} = {£ ,}U{£2}~J{x ,_ , ,x , }  and [{£, ,£2,x , - , }[  >~ 2. 
As it is easy to see we can obtain the functions: x~ and £n by replacing ZI,Z2,x~-I in 

f l  and f2  by IT ( f l , f 2 , x ,  t). Since the functions are different, we have a contradiction 
to Lemma 7.1 which shows that this case is impossible. And then 

f l(£) = g(q~(£1,Z2,x,, , ) ,x, ,) ,  

f2 (£)  = .q(~o(g(£1, ~2(Z~z,x~)),x,-1), (22) 

where {£} = {el}~J{_~2}(~{Xn_I}b{Xn} and I{e ,}l  >z 2. 
We will now show that {22} = ~. For the sake of  definiteness, suppose Xl E {£t }. 

One can easily check that the functions: 

. f l  = y ( ~ 0 ( e 2 , x . _ l ) , x . ) ,  

..f'~ = g(I/-t2(Z2,Xn),Xn 1) 

will be obtained fi-om f l  and f 2  by replacing zl in these functions by V ( f 2 , f l , x l ) .  
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If  {22} :fi 0 then f l ¢  f~  which contradicts Lemma 7.1, so {:72} = 0. Thus 

f l (x )=g(q ) (Z l ,Xn  I),Xn), 

f 2 (2 )  = g(40(g(:7,),Xn),Xn--l) withl {£1}l >/ 2 .  

Case 3: Now suppose that d(R)  = d(R')  = 2. For 2i = (Xil . . . . .  xik ), denote by 2~ the 
vector (2q . . . . .  )?ik ). By (1) there are three more possibilities. 

f l ( £ )  = g(~P(g(:71,22),Xn--1 ), 011 (:73, Z4)),Xn) , 

f2 (2 )  = g(qo(g(z31,:73,2n), ~ 12(22,£4)),J~, 1), (23) 

where {2} = {:71}~-J{22)~-J{23}~-J{24)~-J{Xn_l,Xn} and l{:Tl,~,xn-1}l ~> 2. 
Clearly we can obtain the functions: 

f 2  = g(t/S 1i(23,24),X,,), 

f22 = ~0(g(23,;.), ~,' 12(24)) 

and f2  by replacing £1, £2, x , - i  by V ( f l ,  f 2 ,  xn-1). As it is easy to see 
The contradiction to Lemma 7.1 shows that this case is impossible. 

from f l  

s, i7. 

f J(£) = g( fP(g( £I, £2), ~21(£3, £4, Xn--1 ) ),Xn ) , 

f2( '~) = g(~(g(z31,23,-'~n), I//22(22, 24)) ,  Xn-1 ) , (24) 

where { .~) :{21}U{£2)~J{:73)U{24)U{Xn_I ,Xn)  and 1{2,,£2,}1 />2 .  Let x i E  
{21,h}.  Let us replace 2 j , h  in f l  and f2  by f f ( f i , f 2 , x l ) .  As a result, we obtain the 
following functions: 

f ~  ~- 0(I//21(23, 24, Xn--I ) ,Xn) ,  

f 3  = 9(q0(£3, £n), 02~2(24)),x,,-1) • 

Since one of  3 3 f i , f 2  is a monotone function, but the other is not monotone, as it is 
easy to see, f 3  ¢ f 3  The contradiction to Lemma 7.1 shows that this case is also 2" 
impossible. 

f l ( x )  = g(q)(g(£1, z72), I//31(£3, £4, Xn-1 )),Xn), 

f2 (2)  = g(q)(g(Sj,  23, ), I//32(h , Z4, Xn)),Xn I ) ,  (25) 

where {2} = {2,1}@{22}6{23}~_J{24}O{Xn_l ,Xn} , 1{21,:72,}1 /> 2, and 1{:71,23,}1 
) 2 .  

First, we show that {23 } = 0. Assume {:73 } ¢ 0. We have already assumed above 
that xl E {21,h}.  In this case, by replacing :71,:72 in f l  and f2  by V ( f l , f 2 , x l ) ,  we 
clearly obtain the following functions: 

f l  4 = g(O31(•, 24, Xn--1),Xn), 

f 4  = g(q0(g(23,), I//'32(24, Xn)),X n 1)- 
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f l  6 -- (.](031(£4, 

f 6  = 0 ( 0 3 2 ( £ 4  , 

Since f is an s-function, 
only if 

Since, according to the above assumption, {£3} # (3,f4 # f 4  which contradicts 
Lemma 7.1. Therefore {£3} = (3. We will now show that {£2} = 0 as well. Assmne 
{£2} # (3. Let x2 C {£t}. Since {23} = (3, we obtain the functions: 

f~  = g(~P(g(£2), 0'31(£4, x,,-1 )) ,xn) ,  

f25 = g(032(£2, £4, x,)) ,x , , - t )  

by replacing £1 in f~ and f2  by V(f2, f~,x2). Since {£2} ¢ (3, f~ ¢ .f~ which con- 
tradicts Lemma 7.1, so {£2} = (3. Since {£2} = {£3} = (3, we can write 

f l ( . ~ )  - -  ,q((P(g(£1 ), I//31(£4, Xn-1 )),Xn), 

.f2(x) = ,q(qo(g(z~l ), 032(£4, Xn)),Xn-1) with] {£, } ] >~ 2.  

We will now show that {£4} - (3. Assume {£4} # (3. Then, by replacing £1 in f l  and 
f2 by f f ( f l , f 2 , x 2 )  , w e  obtain the functions: 

x,,_l),x,), 

x,,),x, 1). 

by virtue of  Lemma 7.1,.f~' = f 6  but this equality is possible 

031(£4, x , - l )=g(P(Y4) ,x , ,  t) and 032(£4, xn)=g(P(Y4),x~) .  

Hence both xn-i and x, have the same ramming value in .1"1 and .]'2, but, according 
to the above assumption, .fl and f2  have different ramming values. The contradiction 
proves that {£4} = (3. This way we have shown that 

f 1 ( 2 )  = y( ~o(,q(£1), x,, l ) ,x , , ) ,  

f s (Y)-g(~o(g(21) ,x , ) ,x , ,  ,) with l{£ ,} l  ~>2. 

Lemma 7.15. Let f(y,Y,) = y.fl(£) V Yf2(£) be an s-function with {2} = {xl . . . .  ,x~} 
(n >~ 3) and 

f l (2) - g(R(xl . . . . .  x, _ 2, x~_ i ), x. ), 

f 2 ( . ~ )  = ~p( R' (x, . . . . .  x , -  2, x,, ),x,~ 1)" 

Then ( f  l, f 2) may be one-type only to one of  the pairs 

(Xl . - . x ,_sx ,_ t  V x , , , ( X l V . . . V x , _ 2 V 2 , ) £ , _ l ) ,  n >~ 3,  

((xl V" .Vx~_3Vx ,7_ t ) x ,  2Vxn,(xl.. .x~_3x7, Vx~-2)xn-t), n >~ 4. 

Proof.  According to Lemma 7.13, d(R) ~< 2 and d(R') ~< 2. There are the four pos- 
sibilities: 

d ( R ) = d ( R ' ) =  1; d(R)=  1, d (R ' )=2;or  

d (R)=  2, d(R')=- l; d ( R ) = d ( R ' ) =  2. 

We will consider each of  them taken separately. 
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Case 1: Suppose that d(R) = d(R') = I. Having recalled that f i  and f2  have dif- 
ferent ramming values we can write 

f l ( ; )  = g(~o(xi . . . . .  x . - 2 ,  x . - i  ) , x . )  , 

f 2 ( x )  = (o(g(xl . . . . .  xn_2, xn),~Tn_l ) .  

Case 2: Suppose that d(R)=  1,d(R')= 2. In this case we must have 

f l ( x )  = g(cP(£, x ._ ,  ) , x . ) .  

f2(£) = ~p(R'(£, x . ) . ; ._  l ), 

where {2} = {£}~ {x,_,, x.}. 
Since d(R ' )= 2, ]{£,xn} ] ~> 2 and, as follows from Lemma 4.6, Z}~ u {x,} c_ 

{£,x,}, so, by replacing Z~2 u {x,} in f i  and f 2  by V(fe,  f , ,xn) ,  we obtain the 
functions: 

f l  = q~(£i,x._,) and f21 = ~o(P(ei) ,e, ,_,) ,  

where {£1} = {£}\(Z~2 U {xn}). 
It is easy to see that f l ¢  f i  which contradicts Lemma 7.1. Thus this case is 2 

impossible. 

We can show that the case d(R) = 2,d(R/)  = 1 is also impossible in the same way 
as in the preceding case. 

Case 4: Now suppose that d(R) = d(R ~) = 2. Here we must consider separately four 
more possibilities. 

f , ( £ )  = g(~P(g(£1, £2, x.-1 ). ~1(£3. £4)),Xn) , 

f2(£) = ~p(g(~,o(£i, £3, x.), ~2(£2, £ 4 ) ) , x . - I ) ,  (26) 

where {£} -- {£1 }~J {£2} ~J {£3} ~J {£4}0 {xn-I  ,Xn}, I {£ ' ,£2,X.-- '  }1 > 2, and I{£, ,£3, x,,}l 
> 2 .  

First we will show that {£2} = ~). Let us replace 51,£3,x,, in f l  and f2  by 
17(f2, f l , x , ) .  As a result, we have obtained the functions: 

f l  2 = ¢P(9(£2, Xn 1 ), I//1 11(£4)) , 

f 2  = ~o(tkiz(e2,£4)),x. , ) .  

Obviously if {£2} ~;L {~ then f 2  ¢ f22 which contradicts Lemma 7.1, hence {£2} = (~. 

Likewise, by replacing 21,£2,x, i in f l  and f 2  by V( f l , f2 ,x , , - l ) ,  we can show 
that {£3} = I~. It follows from {£3} = (3 that {£4} ¢ ~, otherwise {£3,£4} = 13, and so 
d(R) = 1, while d(R) = 2 here. 

We will now show that 1 { £ 4 } ] =  1. Since {£2} = {£3} = ~, we can obtain the 
functions: 

f~  = q(~11(£4), Xn) and f23 = g(~tli(£4),Xn) 
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by replacing £t,x, 1 in f l  and f2  by V ( f l , f 2 , x , - l ) .  Since f is an s-function, 
by virtue of Lemma 7.1,f~ = f3 .  Hence ~ l ( z 4 )  ----- ~12(Y4) and so, as follows from 
Lemma 7.2, I{Z4} [ = 1. Thus we have shown that 

f l(£) - g((p(g(£1, x, 1), x,_2),x,,),  

f2(£)  = (O(~]((D(£1,Xn),Xn 2),Xn-1) with{Y1} ¢ 0. 

./I(£) = g(@(g(Yl, Z2, x~-i ), ~21(Z3, Y4)),x.), 

f2(-~) z q)(g((p(zTi, z73) ' ~22(f2 ' z4, Xn)),Xn-I), (27) 

where {£} = {~1}~ {£2}U {£3}U {~4}6 {x.-l ,xn} and I {~a,~3) I i> 2. 
Let x~ E {z'1,£3}. Since I{Sl,S~}l 1> 2, by replacing £1,£3, in f l  and f2  by 

F ( f 2 , f l , x l ) ,  we obtain the functions: 

f4  g(~o(g(£2, x.-1).  ' - ~/ 21 (Z4)),Xn) , 

.f4 = (p(~(~t22(~2 ' Z4 ' Xn)) ,Xn_l)  " 

By Lemma 4.3 f~  ¢ f4  which conradicts Lemma 7.1. Therefore this case is impossi- 
ble. 

We have two possibilities left: 

f l ( £ )  = g((P(g(z1, Z2), ~t31(Z3, Z4, Xn I ) ) , X n ) ,  

f2(£)  = (p(g((p(zl, z3) , ~32(z2, z4, Xn)),Xn-I), (28) 

and 

f1(£)  = g(@(g(£1, 22), ~41(Z3, A, x . - I  ) ) ,x . ) ,  

f2(£)  = ~p(g(q~(Zi, -~3, xn), ~a2(z2, Z4)),x.-i  ) ,  (29) 

where {£} = {21}U {Z2}~J {Z3}U {z'4}~J {x . - l ,x .}  and I {~,,S2} I /> 2. 
We can show that the last two cases are impossible in the same way as in (2). 
Thus the lemma is proved. [] 

Lemma 7.16. Let f ( y , £ )  = y, f l (£)  V yf2(£)  be an s-function with {£} = {Xl . . . . .  x~} 
(n ~> 2) and 

f l(£) -- g(Rl(~l ) . . . . .  R p ( ~ p ) ) ,  

f2(x)  = ~o(R:l(w, ) . . . . .  R'q(~q)). 

I f n l  = {{vi} li C {1 . . . . .  p})  and ~2 = {{~'i} li e {1 . . . . .  q}} are uncomparable par- 
titions of  {£}, then ( f  ~, f2 )  may be one-type to only one of  the pairs: 

(X l ' "  "Xn-2Xn 1 VXn, (Xl""  "Xn 2 V£n)3~n-1),  Ft ~> 3, 

((Xl V " "  VXn 3 Vxn  l)Xn 2 Vxn , (X l  ""Xn-3Xn VXn 2)Xn_l) ,  n ~ 4 ,  

(XIX 2 V X3X4, (X 1 V X 3)(x 2 V x4) ) . 
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Proof.  According to Lemma 4.2, we can assume, for example, that 

{~,} = {<}8 ... 8 {t/k}, 

{#,} = {a ,}0  {/,} (30) 

for some nonempty, disjoint sets {t/,} and some sets {t'i}, i = 1 . . . . .  k ~> 2, also at least 

one of  {/i} is nonempty and {i'i} CI {t/j} = 0 for all i , j  ff {1 . . . . .  k}. 

Taking this into account, we can write 

f1(2)  = g(Rl(fft . . . . .  fla.), R2(V2) . . . .  Rp(Vp)), 

f2() :)  = (P(Rtl(t/l, t'l) . . . . .  R~(t/,:., t'k), g2+l(~'k+l ) . . . . .  Rtq(#q) ) .  

Without loss of  generality, one can assume that {tL} ¢ (3. First we will show that 

k = q. Assume q > k. We now show that in this case 

{ll} • {U2} 0 "" ' ~  {~p}. 

Consider the equality: 

{< }0 . .  6 (ak}0 if, }0 {t2}0 - 0 {~,}~ {¢'~-,}0 .-. 0 (G} 

-- {/'~l}~J "'" ~J {t/k}0 {Ca}0 ' ' "  0 {~.} 

in which both the expressions on either side of  = are a partition of  {2}. 

I f  {t'l } = {~2}0 . . .  0 {Fp}. Then, by removing equal sets from both members of  the 
equality, we obtain the equality 

{/2}0 . . -0  {t\}O {~k~-,}O ... 0 {G} = ¢~ 

which yields {g;i} = 0 for all i E {k + 1 . . . . .  q}. However, according to the definition, 
{g,/} ¢ 13 for all i E {1 . . . . .  q}. The contradiction proves that 

{il} ~ {t72}0 " ' '  0{Up} .  

Let xl C {t~l,ll}. Since {t/,} /=13 and {ti} ¢(3, [{t/1,t'l}[ ~ 2 hence, by virtue of  

Lemma 4.6,Z~ 2 u {xl} c {t/l , t l} so, by replacing Z}l 2 u {x,} in f l  and f2  by 

17( f2 , f l , x l  ), we obtain the functions 

f l  = g(Rl(t/ll ,  t/2 . . . . .  t/k), P2(g21) . . . .  Pp(gpJ)), 

and 

ft? = ~o(Q(t/,1,/',l ),R:(t/2, t'2) . . . . .  R~(t/k, /'k), R:-+l(~'k+l) . . . . .  Rtq(~'q)) . 

where {t/,,} = {t/1}\(Z~, 2 u {Xl}), {711 } = {t'[ } \ ( / j , I  2 U {X[}), and {g,,} = {g/}\(Z}'2 U 
{x, }), i = 2  . . . . .  p. 

It follows from {tl} N {t/i} = (3 for all i c  {1 . . . .  k}, { ~ , } ¢  {F2}U " "  0 {Fv}, and 
{t/, } • {t/i} = ~) for i E {2 . . . .  k} that f l  Y~ f21 which contradicts Lemma 7.1. Therefore 
k = q .  
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Thus we can write that 

f 1 ( 2 )  = g(Rl(f i l  . . . . .  5k) ,R2(52)  . . . .  R p ( ~ p ) ) ,  

f 2 ( 2 )  = ~o(R'l (fi~, tl ) . . . . .  R~ (v,k, tk ) ) .  

There are only two possibilities: 
- the set {t'l} is the only nonempty set among {i i} ,  i E {1 . . . . .  k} ,  or 
- there is another nonempty set among {ti} different from {t'l}. 

We will consider separately each o f  these cases. 
Case 1: Suppose that the set { / i }  is the only nonempty set among { t i } , i E  

{ 1 , . . . , k } .  In this case we have 

f l (2) = g(Rl (51 . . . . .  ilk), R2(v2) . . . .  R p ( g p ) ) ,  

f 2 ( x )  ' " , = (~o(R1 ( I l l  ['1 ) , R 2 ( b ~ 2 ) ,  • • . ,  R k' (uk~)) 

Since {5i} n {SJ} = 13 for all i ~ {2 . . . .  p} a n d j  c {1 . . . . .  k} 

{g'l } = {F2}  ~5 ' ' "  ~J {/Tp} , 

We now show that 1{)7i}1 = 1 for all i ~ {2 . . . .  p}. Suppose, for some j E {2 . . . .  p}, 
1{5i}1 >~2. Then it follows from {5/}C_Q'1} that, by virtue of  Lemma 7.3, 
RI(SL . . . .  ,Sat) = xi, i.e., k = 1 which contradicts Lemma 4,2, since =1 and ~z2 are un- 
comparable. Therefore I{g,}] = 1 for all i c {2 . . . . .  p}. 

We can also show that ]{tTj} I = 1 for all j ~ {2 . . . . .  k} in the same manner as above. 
Thus we have proved that 

f l (-V) - -  g ( R I  ( t~l ,  Xi 2 . . . ,  Xi k ) ,Xj2 . . . . .  3~jp ) ,  

! ~ ¢7 k 
f 2 ( ; )  = ~P(R1 (ul ,xj2 . . . . .  xjp ), Xi~ 2 . . . .  Xik ) .  

We will now show that p = 2. Assume p > 2. Here we must consider separately 
the two possibilities: 

2cj2 ~ Z ~  3 and X/2 ¢ Z ~  ~ . 

Case 1.1: Suppose that X/2 ~ Z% Since { t71}¢0  and k > 2, by Lemma 4.6 we .[2 " 
have ZXS201, {xi2} C_ {5,,x,2 . . . . .  xik} SO, by replacing Z~!~ 0 {xie} in f ,  and .f2 by 

f f  ( f  t, Jz ,x i2 ), we obtain functions: .f~ and f 2  depending essentially on x/2 . . . . .  x&. It 

is easy to see that X/2 E Z~!I3. So, by virtue of  Lemma 4.1, X/3 has the same ramming 

value in f l  as in f l .  On the other hand, since X/2 E Z~2 ~,xy 3 has the same ramming 

value in f2  as in f2 .  Hence xj3 has different ramming values in f 2  mad f 2  because f l  
and f2  have different ramming values. Therefore f 2  ¢ .f~ which contradicts Lemma 
7.1. Thus we have shown that p = 2 in this case. 

Case i.2: Now suppose that XJ2 ~ Z{ i3  Then by replacing Z x~3 &"  12 U {X~3} in f l  and 

.f2 by [?(f2, f l , x i  3), we can obtain the functions: 

f ~  = g( . . . .  xi2 . . . . .  XJ2 . . . .  ) and f3  ~_ ~0( . . . .  x, 2 . . . . .  xj2 . . . .  ) 



On almost bad Boolean bases 455 

which, by Lemma 4.3, are different. The contradiction to Lemma 7.1 shows that p = 2 
in this case as well. 

Similarly, one can show that k = 2. Thus we can write that 

f l ( 2 )  = g(RI  (al  ,x i  2 ),xj2 ) ,  

c~ 2 f2 (2 )  = (p(R' 1 (ttt,xj2 ),xiz ). 

Then, by virtue of  Lemma 7.15, ( f l , f 2 )  may be one-type to only one of  the pairs: 

(X I . . .Xn_2Xn_ 1 V X n , ( X  I V . . . V x  n 2 V 2 n ) 2 n _ l ) ,  /7 ~> 3,  

((XI V . . .  V X n _  3 V X n _ l ) X n _  2 V X n , ( X  1 . . .Xn_3X  n V X n _ 2 ) X n _ l )  , /7 >~ 4 .  

Case 2: Suppose that there is another nonempty set among {~,} different from {[1}. 
(Note that, according to our assumption {?a} ¢ 0.) For the sake of  definiteness, let 
{i2} ¢ 0. This implies 

if1} ¢ {~2}~ .-. 0 (~p). 
We now show that p = 2 .  Assume p > 2. Let x2 E{fil  . . . . .  g~}. Since {~1}~;0,  
. . . .  {~7~} ¢ 0, and k ~> 2, by virtue of Lemma 4.6, Z~ u {x2} c {~1 . . . . .  g~}. Hence, 

by replacing Z)2 u {x2} in f ,  and f2  by ¢(f~,f2,x2), we obtain the functions: 

f 4  = g(P(ff), R2(/~2) . . . .  Rp(gp)), 

f 4  = ~o(Pl(~ht,?l) . . . . .  Pk(a lk , i k ) ) ,  

where {g} = {~, . . . .  ,gk} and {~li} = {ai}\(Zj~ O {x2}),i E {1 . . . . .  k}. Since {/'.} ¢ 
0,{i2} ¢ 0,{gi} ~ 0 for all i E {1 . . . . .  p} and p /> 2 , f  4 E K~ and f 4  ~ K<p; hence, by 
virtue of  Lemma 4.3, f 4  ¢; f 4  which contradicts Lemma 7.1. Therefore p 2. 2 ~- 

Similarly, by replacing Z~.~ 2 U {x,} in f ,  and f2  by V(f2, f l ,X l ) ,  we can show that 
k = 2  as well. 

Thus we can now write that 

f l ( 2 )  = g ( R  1 (/~1,/12),R2(il, 72)) ,  

f2(2) = qo(R',(g,,i1 ),R~(u2, i2)). 
We will now show that Rj and R2 are functions of  the type ~o(£). Suppose to the 

contrary that, for example, 

Rl(fit, u2) = ~O(Rl l(Vll) . . . . .  Rlm(glm)) 

and at least one of  the set among {gli},i E {1 . . . . .  m} contains no less that two el- 
ements. Without loss of  generality one can assume that I{~11}1 /> 2 and xi E {/;,,}. 
By Lemma 4.6 Z~.', U {x~} C_ {gll}. Then, by replacing Z)~ tJ {xi} in f ,  and f2  by 

V( f l , f 2 , x i ) ,  we obtain the functions: 

f ~ = .q( o(  P(s),R~2(v~2 ) . . . . .  R~.,( C~Im ) ),R2( i~, i2 ) ) , 

f 5  = qo(p 1 (u l I ,  t'l ), R~(a2, ~ ) ) ,  

where {£} = {g, , ) \ (Z~! U {xi}) and {ui,) = {/,~i}\(Zff/1 U {xi}), i =  1,2. 
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Since {/1} ¢ 0, {/2} ¢ 0,{gli} ¢ 0 for all i E {1 . . . . .  m} and m ~> 2, then, by Lemma 
4.3, f~ ¢ f52 which contradicts Lemma 7.1. Therefore Rl is a function of the type (p(Y) 
(perhaps, with other variables). In the same manner one can prove that R2 is also a 
function of the type ~(£) and R' 1,R~ are functions of the type 9(5). 

Thus we can write that 

f l  (-~) = ~](~(b~l,/'~2 ), (P([I, t2 ) ) ,  

f2(£) - -  (P(,q(~l, t'l ), ~(U2, t2 ) ) -  

Finally,  we want to show that each of the sets {ul},{g2),{tl} and {t2} contains 
only one element. This is shown in the same way as above. 

Let us show, for example, that either of {t~l),{~2} contains only one element. 
Suppose to the contrary that at least one of them contains no less than two el- 
ements. Let xi C {[I,t2). Since are {tl}, and {[2} are nonempty, by Lemma 4.6, 
Z~/ U {XJ} C (~'1 I'2}. Hence, by replacing Z~/ U {xj} in f ,  and f2  by V ( f  , f2 ,x/) ,  

; I  - -  ' . f l  " 

we ob ta in  the func t ions  

f 6  = (])(/~1,/~2) and f~ = q~(.q(ffl),g(fi2)- 

Since, acoording to our assumption, at least one of {~l }, {~2} contains no less than two 
elements, then f6  ~ f~, which contradicts Lemma 7.1. Therefore [{~1 }] = [{~2}] = 1. 

Hence we have proved that 

f l ( X )  =g(@(XI,X2),@(X3,X4)), 

f 2 ( £ ) =  @(g(Xl,X3),g(x2,x4)). 

Thus the proof is completed. U] 

The following statement which is an immediate consequence of Lemmas 7.4, 7.7, 
7.14, and 7.16 completes the Case 1 of Lemma 5.3. 

Lemma 7.17. I f  f ( y , 2 )  = ~f1(2) V y f2(2) is an s-function with different functions 
f l and f2 having different ramnting values, then the pair ( f l ,  f2 )  may be one-type 
only to one o.i(" the following pairs: 

(X 1 V X2"''Xn,XI(X 2 V ' ' "  V Xn)), n ~ 3, 

(xl V . V x ~ , x t . . . x , ) ,  n ~ 2,  

(Xl 

(xl 

(xl 

(xl 

(xt 

V .Vx~ ,x l (£2V . . 'V£~) ) ,  n > /3 ,  

V - V x . , ) ? l V . . - V £ . ) ,  n ~ 2 ,  

. . .x~ 2x, 1Vx , ,£~ ' "£~-2x ,  Vxn t), n >>- 3, 

• " .x , -2x,- t  Vx, , (xl  V- . .Vx~_2)x ,Vx~  1), n >~ 4,  

V - ' -  VX n 2)Xn_ I V Xn,(.,~ 1 V ' ' '  V.~n_2)X n VXn_l ), II ~ 4,  
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(XlX 2 Vx3x4,(X 1 Vx3)(x2 Vx4)) 

(Xl-" "Xn-2Xn-I VXn,(Xl"" "Xn 2 V-~n)'Xn 1), 17 ~> 3, 

((xl V . . .  Vx~ 3 Vx~-l)x,,-2 Vx~ , (x l . . . x~ -3x ,  Vx,_2)x , - l ) ,  n > ~4 .  

Before considering the Case 2 of Lemma 5.3, we must introduce some auxiliary 

notions which will be convenient later. 
Let f~,  f2  be functions of P~ depending essentially on 2. We will say that a variable 

x E {£} and a constant ¢r G {0, 1} Jorm a special pair into ( f l , f 2 )  if  the functions 

~f:~ and ~f~ depend essentially on all their variables and ~f~ = ~f~. 
A pair ( f J , f 2 )  E P~ × P'~ is called a B-pair if the following conditions hold: 

(i) the functions f l  and f2  are read-once, and depend essentially on all their 

variables, 

(ii) f l  • f 2 ,  
(iii) there is a variable and a constant forming a special pair into ( f t , f 2 ) .  A proof of 

the following statement is left to the reader. 

Lemma 7.18. Let ( f  l , f 2 )  and (gJ,g2) be one-type pairs. Then ( f  l , f 2 )  is a B-pair 

Of (gl,g2) ix" also B-pair. 

Note that for the functions g(x,y)  and ~o(x.y) (i.e., V and A) there are constants 
a and b in {0,1} such that g(a , x )=  g ( x , a ) = x  and q~(b,x)= qo(x,b)=x. We will 

denote these constants by c q and by c~ respectively. 

Lemma 7.19. Let f l and f2  be different fimctions depending essentially on 2, and 
let 

f ~ (2) = g(P(g,), Q(gt)), 

f2(£) = g(P'(?~),Q(~t)) with {2} =- {t~}~J {~}. 

Then, by replacing fi in f l  and f2  by constants ~ such that Q ( 6 ) =  c~j, we obtain 

different functions. 

A direct conclusion of the preceding lemma is the result. 

Lemma 7.20. Assume that we are in the notations of  the preceding lemma and 

all assumptions o f  the lemma hold. Also let ( f  l , f  2) be a B-pair and let a variable 
x G {2} and a constant cr E {0, 1} Jbrm a special pair into (fl ,f2).  Then we can 
obtain different functions in exactly the same way as in the preceding lemma which 

form a B-pair with (x, a) as a special pair into it. 

Lemma 7.21. Let ( f : ,  f2)  ¢ P~ × P~. Then 
(i) for n = 1 there is" no B-pair; 

(ii) for n = 2 there is" the only equivalence class 

(xlY2,xl Vx2); 
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(iii) for  n = 3 there are only the two equivalence classes 

(X 1 VX 2 VX3,.~I(X 2 VX3) ) and (xl Vx2x3,(xl  Vx2)x3)).  

To prove the last lemma it is necessary to search consecutively all pairs of  Boolean 
functions of  one, two, and three variables. Of  course verification is tedious, we can, 

however, easily do it. 

L e m m a  7.22. From each B-pair ( f  l, f 2) E P~ × P'~, n >~ 4 one can obtain a B-pair 

(gl ,g2) E P~ × P~' with m < n by replacinq the same variables in ./1 and f 2 by the 
same constants @ {0, 1 }. 

Proof.  To prove the lemma we will consider a number of  cases and in each of  them 

we will give an effective way of  constructing the pair (gl, g2) with a smaller number of  

variables than ( f l , f 2 ) .  Although the cases look alike we will examine them separately 

because in fact they differ. 

Clearly, there are the following two possibilities: 

- f l  and f2  belong to one and the same class of  Kv and KA or 

- f~ and f 2  belong to different classes. 
We will now consider separately each of  them. Let a variable x and a constant 

a E {0, 1} form a special pair into ( f l ,  f2 ) .  
Case 1: Suppose that f l  and f2  belong to one and the same class of  Kv and KA. 

Denote the class containing f l  and f2  by K,j. Let 

f l ( x )  = g(Rl(X, vl ) , R z ( v z )  . . . . .  Rp(gp)), 

f 2 (2 )  = g(R~l (x, Wl ), R~ (~"2) . . . .  R'qO~'q)). 

where ]{2)[ ~> 4 and {~,},{@l} may be empty. 

It is easy to see that here it suffices to consider only the following three possibilities: 

Case 1.1: Let {gl} = { i f ' l } -  1~. We will now show that this case is impossible. 

Since {gl } = {~?~ } = 0, Rl(x, Ul) = X¢~I and R'l(X,~', ) = x ~2. First, we show that al ¢; 
a2. Indeed, since x and ~ form a special pair into ( f l , f 2 ) , a  is a ramming value of  

x neither in f l  nor in f2  hence, by virtue of  Lemma 4.7, 8 is a ramming value of  

x in .ill and in f z .  However, if 0.1 • 02, then either Rl(a,  gl) or R/1(0.,~;'1) is equal 

to 8, i.e., a is a ramming value o f  x either in f l  or in f2 ,  which contradicts the 
above-mentioned. 

Now, assume 0.1 = 0.2. We then have 

f l (-~:) ~ g(x ~, g(R2 (~2) . . . .  , R p ( vp ) ) ,  

f2(5~) ~--- g(X a, O(Ri ( l~2 ) . . . ,  Rtq(~'q)). 
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According to the definition, ~.f] = ~f~, i.e., 

g(R2( t )  2 ) . . . . .  R p ( ~ p  ) )  : g ( R ~ ( ~ '  2 ) . . . . .  Rtq(~'q ) )  

which, in its turn, implies f l  = .f2. Thus, we have obtained a contradiction again. 
Before considering other cases we give a basic idea of  their examination. First, 

represent ~f~' and ~J~z in the form of  their ,g-representations and then, use the equality 
~f-~ = ~j'~ and the uniqueness of  g-representation. 

Case 1.2: Let {vl} : ~ and {~'1 } ¢ 0. Clearly, we here have 

af~ = g(R2(f2) . . . . .  Rp(F)p)),  

~,f~ = g(R~l (a, ~'1 ), R~(~52 ) . . . . .  R~q(~,'q ) ) .  

Of  course, it may be that the second expression is not the g-representation. So we 
first make the transformation: in the case R t l ( a , ~ l ) E  K q, replace R~l(a, rbl) by its g- 
representation in the expression, otherwise, keep R~l(O -, ~1 ) without any change. Obvi- 

ously, under this transformation we obtain the g-representation of  ~.f~. Since ~f-~ =~ f~,  
by virtue of  the uniqueness of  g-representation, there is i E {2 . . . . .  p} such that, for 

example, R~(~2) = Ri(f,i). Hence, by virtue of  Lemma 7.20, the lemma is true in this 
c a s e .  

Case 1.3: Now suppose that {Vl} ¢ (3 and {wl} ¢ 0. This case is more tedious. 
Clearly, in its turn, here there are the following three possibilities: 

neither R1 (a, Vl ) nor R'I (a, v~'l ) belong to K~, 
only one of  them belongs to Kq, or 

- either of  them belongs to Ko. 

We will now consider separately each of  them. 

Case 1.3.1: Suppose that neither R l(a, Vl) nor Rrl(a,~l  belong to Kq. 
Then it is clear that 

~f~ = g(Rj (a, fl ) ,Re( f2)  . . . . .  R p ( f p ) ) ,  and 

f 2  t ~ I ~ t ~ g(R t (o', w l ), R2(w2 ) a x : . . . .  R q ( w q ) ) .  

are already g-representations, hence a f ]  - ~f~ and the uniqueness of  g-representation 
imply p = q and the two possibilities: 

- Rl(a,  f j ) =  R ' t (a ,~l  ) or 

el(cT, f l )  =e~(~?i)  and R ' l ( ~ , ~ , , ) = e / ( g i  ) for some i E {2 . . . . .  q} and 
j C {2 . . . . .  p}. 

We will also consider separately each of  them. 

Case 1.3.1.1: Let Rl(a ,  f l )  = R ' l (a ,~ l ) .  Then it is easy to see that in this case 

g(R2(/~2), R p ( f p ) )  g(R2(w 2 ,  " " ~ . . . . .  = ) . . . .  Rq(Wq)) 
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On the other hand, 

f t (2) = ,q(Rl(x, vl ), g(R2(132 ) , . . . ,  R p ( v p ) ) ) ,  

f 2 ( 2 )  = g( R t, (x, ffq ), g(R;( if,2 ) . . . .  R'q( ~,q ) ) ) .  

By Lemma 7.20, the pair (R1,R~) depending on the number o f  variables less than 
( f l , f 2 )  is a B-pair. This proves the lemma in this case. 

Case 1.3.1.2: Let Rl(a ,  gl)  = R~(~;,i) for some i ~ {2 . . . . .  q}. Then two more cases 
depending on the quantity of  p = q are possible. 

p = q = 2  and p = q  > 2 .  

Case 1.3.1.2.1: Let p = q  = 2. Clearly, here we have 

./1 (2) = g(R1 (x, vl ), R2(v2 ) ) ,  

f 2 ( ~ )  = ~ ( R ' , ( x ,  ~ I ~ , ( 3 1  ) v2) ,R2(Vl))  

and 

Rll( or, g2) = R2(g2). (32) 

Since {6,} ¢ 0 and {~,1} = {gz} 7 ~ 0, either of  Ri and R~t belongs to K,p. Let 

RI(x,  vt ) = ~P(RII(X, /hi ),R12(~712) . . . . .  Rlk(vlk)), 

R t ( x , v ~ )  ~0(R21 ( x ,  " t ~ t ~ W21 ), R 2 2 ( w 2 2  ), , = . . . , R l : ( w l : ) )  

where {vii} and {wzl } may be empty. 

Then, using (32), we can rewrite (31) in the form 

.1°1(2) = g( (p(Rt j(x, vii ), R12( v12 ) . . . . .  Rlk( (hk ) ), (p( R~I ( a, ~v21 ), 

R i 2  (I~%22) . . . . .  R111(~11 ) ) ,  

f2(-~) i ~ , ~ g(q~(R21(X, Wzl ),R22(w22) ' ' ~ = . . . ,  RI I (wl I ) ) ,  (p(Rll(a,  vl l ) ,  

R I 2 ( V 1 2 )  . . . . .  RI/(VlD) • 

Since the sets {vlt} and {w21 } may be empty, there are the two possibilities: either 
of  these sets is empty, or at least one of  them is nonempty and they will be consider 
separately. 

Case 1.3.1.2.1.1: Let either of  the sets {vii) and {~v21} be empty. Then since, 

according to our assumption, n ~> 4, i.e., [{2}] ~> 4, at least one of  the two possibilities 
must be satisfied: 

- k ~> 3 o r /  >~ 3, or 

- at least one of  the sets {t?t2}, {~'22} contains no less than two elements. 
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Case 1.3.1.2.1.1.1: For the sake of  definiteness, let k ~> 3. Since RI2 differs from 

a constant, there are constants fi such that R l2 (D)=  co. It is easy to check that we 
obtain a B-pair o f  the number of  variables less than ( f l , f 2 )  by replacing /;12 in f l  

and f2  by ft. In case l >~ 3 we can show the same one by replacing/;22 in f ]  and f 2  

by analogous constants for R22. 
Case 1.3.1.2.1.1.2: For the sake of  definiteness, suppose that ]{/;12}1 ~> 2. (The case 

I{vT,22}[ ~> 2 can be easily considered by analogy.) Clearly, there are constants ~ such 
that by replacing some variables of  Ri2 by these constants in R12, we can obtain x~ i. It 
is easy to check that we obtain a B-pair of  the number of  variables less than ( f l ,  f 2 )  

by replacing the same variables by "5 in f l  and f 2 .  
Case 1.3.1.2.1.2: Now, suppose that at least one of  {/;it } and {/;2] } is nonempty. 

Here we act in the same way as in Case 1.3.1.2.1.1.1. It is easy to check that we 
obtain a B-pair o f  the number of  variables less than ( f t , f 2 )  as a result again. 

Case 1.3.1.2.2: Let p = q > 2. By the uniqueness of  g-representation there is i E 
{3 . . . .  ,q} such that, for example, R3(/ ;3)= R~(~i).  In this case, by Lemma 7.20, we 
obtain a B-pair o f  the number of  variables less than ( f l , f 2 )  by replacing i;3 in f l  

and f 2  by such constants /~ that R~(fi) = R~(fi) = c q. 
Case 1.3.2: Let only one of  Rl(a,~71) and R~l(a,~'l) belong to Ko. Without loss of  

generality one can assume that R l ( a , / ; l ) C  Kq and R~1(¢7,~1)~ Kq. Suppose, also, that 

RI( er, /;I) = g(R l l (V l l )  . . . . .  R l k ( g l k ) ) .  

Then 

Rt(x ,  v l )  = <P(S ,g(Rl l ( / ; l l )  . . . . .  R l k ( / ; l k ) ) ) .  

The number of  terms of  the above qo-representation of  RI is equal to 2, otherwise 
°R:~ C Ke which contradicts the assumption ~R~ E Ky. The first term is x ° by the same 

reason. By replacing Rl(cr, gl) by its g-representation in 

~J'~ = 9(RI(cY, vl ) ,g(R2(( ,2) , . . .  , R p ( g p ) ) ) ,  

we obtain 

~ f [  = g(R]I(VlL),...,Rlk(Olk),R2(g'2) . . . . .  R p ( F p ) ) .  

Since 

~ fxl = g(Ri 1(/;11 ) , . . .  ,R tk (  vlk ),R2(v2 ) . . . . .  Rp(  /;p ) ) , 

~ f ~  , ~ , _ , g(R I (0", Wl ), R2(w2 ) = .. .  , R q ( w q ) ) ,  

then due to the uniqueness of  g-representation we have two possibilities: 
- Ri(/;i) ~- R~.(~j) for some i ~ {2 . . . .  , p }  and j E {2 . . . . .  q}, or 

Ris(/;is) =R~(~ ' i )  and R t t ( / ; i t ) = R ~ ( ~ j )  for some s , t  ~ {1 . . . .  , k } , s  C t and i , j  E 
{2 . . . . .  q}, i C j .  
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Let us consider separately each of them. 
Case 1.3.2.1 : Let 

Ri(?~i) = R~(v~j) for s o m e / E  {2 . . . . .  p}andj  E {2 . . . . .  q} 

In this case we replace fi in f t  and f2  by constants 5 such that 

Ri(5 )  = R~(~)  = e ~  

Case 1.3.2.2: Let 

& , ( G )  = R l ( ~ i ) ,  

R,,(filt) = R~(~j) 

for some s,t  E {1 . . . . .  k} , s  ~ t and i , j  E {2 . . . . .  q) , i  ~ j .  
In this case we replace 51s in f l  and f 2  by constants 5 '  such that 

R , A ~ ' )  = R ; ( 5 ' )  = eg. 

In both of  the above cases we obtain a B-pair with a number of  variables less that 

( f t , f 2 ) .  The verification is left to the reader. 
Case 1.3.3: Suppose that each of  Rl(a ,  Sl) and R~l(a,~l)  belong to Kq. Suppose, 

also, that 

RI(a,  51 ) = g(Rjl(511 ) . . . . .  RJk(f21k)), 

R'l(6, Wl) = g(R' , j (wll)  . . . . .  R'll(V?ll)). 

Then 

R:(x, 5j ) = ~p(x ~, g(g11(~ll ) . . . . .  Rlk(V:k))) ,  

R '  1 ( x ,  1~1)  = q)(x 6, g(R'll(~l I ) . . . . .  R' l l (~l l ) ) ) .  

The first term of  the both q~-representations is x ~, since the variable x has the same 
ramming value in R1 and R~. Clearly, by replacing Rl(a,  51) and R~(a,v~l) by their 

g-representations in 

~fx 1 = g(Rl(a,  ?2t ),R2(52) . . . . .  Rp(Vp)),  

= g ( R I ( O ' ,  Wl  ) , R 2 ( w 2 )  . . . . .  gtq(Wq)) 

respectively, we obtain g-representations of  ~f~ and of~. Since 

~ f~  = g(Rll(511) . . . . .  Rlk(Slk ) ,R2(f2) . . . . .  R p ( f p ) ) ,  

f 2  g(R',l(Wl,), . . . . .  Rll(Wll),R2(w2) . . . .  Rq(Wq)), 
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then due to the uniqueness of  q-representation we have the three possibilities: 

-- Ri(~i)  = R'j(vbj) for some i E {2 . . . . .  p} and j E {2 . . . . .  q}, 

- R,s(~71,,.) = R~(~)  and R j ( f j )  = R'lt0?lt) for some i E {2 , . . . ,q} ,  s E {1 . . . . .  k} and 
j E {2 . . . . .  p } , t  E {1 . . . . .  l}, or 

- Rti (~)J i )=R' j j (v? l j )  for some i C {1 . . . . .  k} and j E {1 . . . . .  l}. 
In the first case we act in the same way as in Case 1.3.2.1 and in the second case 

as in Case 1.3.2.2. In the third case it is necessary to replace /~ti in f l  and f 2  by such 

constants 6 that R I i ( ~  ) = Rtl j (~)  = c o. It is comparatively easy to check that in each 

of  the three cases we obtain a B-pair with a number of  variables less than ( f t , f 2 ) .  
The verification is left to the reader. 

Case 2: Let f j  E K o and f 2  E K~o, and let 

f l (2) = ~](Rl(X, ~l ) ,R2(  u2 ) . . . . .  Rp (  ~p ) ) , 

f 2 ( 3 7 )  ' ~ ' ~ = (,0(Rl (x ,  w l  ), R 2 ( w 2  ) . . . .  Rtq(Wq)),  ( 3 3 )  

where 1{2}1 ~> 4 and either of  {vl} and {r?l} may be empty. 
First, note that since (x, cr) forms a special pair into ( f x , f 2 ) ,  ~f]¢ = ~f~. On the 

other hand, one can easily show that if at least one o f  the two conditions: 

R l (x, gl ) = x ~ and p = 2 ,  or Rll (x, ~ l  ) = x ~2 and q = 2  

is not satisfied, then ~f-~ E Kg and ~f~ E K e  and so, by virtue of  Lemma 4.3, ~f~ ¢ ~f~. 
Thus, it suffices to consider only the two possibilities: 

Rl(x ,  O j ) = x  ~l and p = 2 ,  or R ' l ( x , v ~ l ) = x  °2 and q = 2 .  

As a matter o f  fact, they are dual and so it suffices consider only one o f  them, say the 
first. 

Case 2.1: Let R j ( x , ~ l ) = x  ~1 and p = 2. In this case we can clearly rewrite (33) 
in the form: 

f l (2) = ,q(x c~, R2072 )) ,  

f2 (2)  = qg(R'j (x, r?~ ), R;(v?2) . . . .  R'q(~q)) .  (34) 

But, as noted above, {~l } may be empty, so here, in its turn, there are also the two 
possibilities: either 

{ k , } = 1 3  or {v?i}¢13. 

If  {u?l } = 0, then R' 1 (x, ~l ) = x e because the variable x has the same ramming value 

in f l  and f2.  I f  {~l} :fi 13 then R ~ ( x , ~ l )  E K q. Thus these two possibilities imply the 
two possibilities: 

R',(x ,~l)=x e o r  R'~(x, Cvl)EKq. 
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Let us consider separately each of  them. 
Case 2.1.1: Let {~q} = 0 then R'l(X,~,l) = x J. Then, clearly, (34) can be rewritten 

in the form: 

f l (2) = g(x ~, rz(g2 ) ) ,  

f2(.~) = qo(x #, R~ (w2) . . . .  Rtq('wq )) (35) 

Since (x, a )  is a special pair into ( f l , f 2 ) ,  ~f [  = ~fx. Taking this equality into account, 
from (35) we see that 

R2( v2 ) = ~p( R~( ~2 ) . . . .  R'q(V?q ) ) . 

It follows from I{ }1 > 4 that 

l{~2}l = l{~2}[u . - ~ 0  [{la~q}] > 3.  

Therefore, there are constants fi such that, by replacing some variables of  ~'2,.. . ,~'fq 
in R2 by fi, we obtain x{. Then, by replacing the same variables by fi in f l  and f 2 ,  
we obtain the functions: 

f~  =gt'x~,x~'i~ andf32 = q°(x'~,x~) 

which, as it is easy to check, form a B-pair with a number of  variables less than 

( f l ,  f2  ). 
Case 2.1.2: Now let {~?'1} ¢ 0, then according to Lemma 4.4 one can assume that 

Rtl(X, l~'l ) = g(Rtll(X, l~ll ),RI12(~12 ) . . . . .  Rtlk( ~'lk ) ) . (36) 

where {g'lJ) may be empty. 

Then, by replacing R'I(X,#L) in (34) by (36), we have 

f2(37) = qo(g(Rtll(X, ffel. ),R'.2(~,2 ) . . . . .  R',k(~)lk ) . . . .  ,R; (~2)  . . . .  Rtq(l~q)). (37) 

Since ~f'[ = ~ f ~  again, using (37), we have 

R2(g2) = qo(.q(Rtll(O',wII t ~ .(38) ),Ri2(w12) ' , - t - t - • , Rlk(Wlk .. ) . . . . .  R2(W2) . . . .  Rq(Wq)) 

By replacing R2(~2) in the representation 

f l (2) = g(x ~, R2(v2)) 

by (38), we have obtained 

f 1 (  2) = g(x ' ,  (p(g( R', i(O', ~ ' l l  ) ,R112(¢'12) . . . . .  R'lk(l~lk ) . . . . .  
R~(~v2) . . . .  R'q(~Vq))). (39) 

Since {~'11} may be empty, we have the two possibilities: either 

{~?1~} - 0 or {1~11 } ¢ O, 
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Now we will consider separately each of these two possibilities. 
Case 2.1.2.1: Suppose that {~;'11} = (3. Since the function 

,q(R'12 (1~ 12 ) . . . . .  R'lk(~'l k ))  

differs from any constant, there are constants fil such that, by replacing some variables 
of this function by /~1, we obtain x~ i. Similarly, there are constants fi2 such that, by 
replacing some variables of the function 

by /~2, we obtain x~ j. Obviously, by replacing the same variales by /~1 and ~2 in fL 
and f2 ,  we obtain the functions 

f 4  = g(xa, qo(x]i,x;/) and f4 = qo,g,( (xaS', i ),xjaJ) 

forming a B-pair. Since l{2}l /> 4, at least one of the sets 

{~',2}~J'"U{~'lk} and {v~'2}~J-..U{~?q} 

contains no less that two variables, hence the B-pair (f4, f4)  depends on a number of 
variables less than ( fL , f 2 ) .  

Case 2.1.2.2: Now suppose that {~'11 } ¢ 13. Since each of the functions R~12 . . . . .  R~lk 
is monotone (which follows from (39) if we recall that fn is monotone), and differs 
from any constant, there are constants /32,-..,/3k such that 

R'12(/~ 2) . . . . .  R"lk(~l, " ) = cfl . 

By replacing ~'12 . . . . .  ~vl/~ by fi2,...,fi* in f l  and fe ,  we obtain the functions 

f~ = 9(x a, q)(R~I, (a, ~2'L1 ), R~(~2) . . . . .  Rrq(Vreq))), 

f~ = o(R/ll(x,~,ll),R2(w2),' ~ ...,R~q(~,q)), 

which, as it is easy to check, form a B-pair. Since k ~> 2, the B-pair (f~, f s) depends 
on the number of variables less than ( f l , f 2 ) .  Because the above cases exhaust all 
possibilities which can occur, we have completely proved the lemma. [] 

Lemma 7.23. I f  ( f  t, f2)  E P~ x P~ is a B-pair. then either it is' one-type to one of  
the following pairs: 

(XIX2,Xl Vx2), (Xl Vx2 Vx3,.~I(X2 Vx3)),  (x1 VxZx3, (XI  V x2)x3)) 

or, by replacing the same variables in f l and f 2  by  the same constants o f  {0, 1}, 
one can obtain a pair which is' one-type to one o f  the above pairs. 

Proof. In case n ~< 3, by virtue of Lemma 7.21, the lemma is true, otherwise Lemma 
7.22 is repeatedly applied until n is smaller than 4. 
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Note, henceforth we do not assume that in the representation of an s-function 

f ( y , x )  = y.f l (x)  V y f207),  

the functions f l  and f2 must have different ramming values. However we have as- 
sumed that f i  and f2 are different read-once functions depending essentially on all 
their variables. 

Lemma 7.24. Let f ( y , 2 )  = ,vJl(£) V y f  2(2) be an s-function with f l and f2  satis- 
J),,ing 

(i) /{J?}l >i 2, 
(ii) f l and f2  depend essentially on all their variables, 

(iii) f l  and f2  are dilferent read-once functions, 
(iv) there is a variable x c {£} and a constant a E {0, 1} such that the functions " f {  

and ~.f~ depend essentially on all their variables and are equal. Then ( f l , f 2 )  
is one-type to one o f  the pairs 

(Xl)72,Xl VX2), (Xl VXiX3,(X1 V x2)b%3) . 

Proof. Since ( f i , . f 2 )  is clearly a B-pair, it follows directly from the preceding lemma 
that either ( f l , f 2 )  is one-type to one of the following pairs: 

(X1372,XI VX2), (Xl Vx2 Vx3,371(x 2 V x3)), (Xl Vx2x3,(Xl Vx2)x3) 

or from (.fl, f 2 )  we can obtain another B-pair (gl, g2) with a number of variables less 
than ( f l ,  f 2 )  by replacing the same variables in f i  and f2 by the same constants of  
{0, 1}. But it will be shown now that the second statement must be rejected because 
it contradicts that f is an s-function. Indeed, this statement yields that the function 

f ' ( y ,  ~' ) = )~gl ()7') v yy2 07' ) 

is a proper subfunction of f .  According to the definition of B-pair the functions 91 and 
g2 are, however, different and depend essentially on all their variables hence, by virtue 
of  Lemma 5.2, y is a distinguished variable of f ' ,  and so f cannot be an s-function. 

Let us also show that ( f l ,  f2 )  cannot be one-type to 

(Xl VX2 V x3,)Tl(X2 VX3) ) . 

Suppose to the contrary that, for example, 

. f (y ,£)  = P(xi Vx2 VX3)V y(Xl(X2 VX3)) 

is an s-function. It is easy to check that y is a distinguished variable of this function. 
Hence f cannot be an s-function. Thus we have completely proved the lemma. [] 

Clearly, Lemma 7.24 completes Case 2 of  Lemma 5.3. 

Lemma 7.25. Let f ( y , £ )  = y f  i(x) V Y f  z(£) be an s-fimction. Then the pair ( f  l, f :) 
may be one-type only to one o f  the Jollowin9 pairs: 
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(X1 V XZX3, (x I V x2)x3 ) 

(XlX2 V X3X4, (X 1 V x3)(x2 V x4) )  

(X I V " '"  V X n , X l ' "  "Xn) , n >~ 2,  

( x ~ V ' ' ' V x n , x ~ ( Y 2 V ' ' ' V Y n ) ) ,  n > 2 ,  

( x l V x 2 ' ' ' X n , X I ( x 2 V ' ' ' V x n ) ) ,  n >~ 3,  

(Xl V " '"  VXn,.,V 1 V ' ' "  V.~n) , n • 1 , 

(X 1 V ' - "  V X n _ 2 ) X n _  1 V Xn, (371 ~/ ' ' "  V )Tn--2)Xn V / n - I ) ,  

( X I ' "  "Xn--2Xn 1 V X n , . ~ l ' "  "-~n 2Xn V x ~ - l ) ,  n >~ 3,  

( x l ' "x , , -2x , ,  I Vx . , ( x l  V ' ' ' V x ~ - 2 ) x .  Vx , , - I ) ,  n >/ 4 ,  

(x l ' ' ' x , , -2x , ,  l V x,,.(xj V ' " V  x,,-2 V Y,,)Yn-1), n >~ 3,  

n > ~ 4 ,  

( ( X 1 V ' " V x n - 3 V X n - I ) X n  2 V x n , ( X l  " " X n - 3 x n V x n - 2 ) x n  I), n ~> 4 .  
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,ql = y(X1 "" "Xn--2Xn--1 V X n )  V y(371 -- ".~n_2Xn V Xn-  1 ), n i> 4 .  

Since n ~> 4, 

Og{, = xn(.V V)~-"  "2n-2) V yxn-1 . 

Obviously 0g~ is not represented by a read-once formula over {V,A,--}.  Hence, by 
virtue of  Lemma 2.3, there is a subfunction of  0g{t which depends essentially on at 
least two variables and has a distinguished variable. But since any subfunction of  0g~ 
is also a subfunction of  gl, then gl is not s-function. 

ProoL In case I{~}1 < 2 we can easily find the only appropriate pair (xl,£1). In case 
[{2}1 >~ 2 it suffices to apply Lemmas 7.17 and 7.24. 

To complete the proof  of  the main theorem it is necessary to ascertain the following: 
(i) what pairs of  the above list can in fact produce an s-function; (ii) what s-functions 
in them are not one-type functions. In other words what s-functions define in fact a 

class of  distinct representatives of  s-functions. 
By a somewhat lengthy process, we can show the following; 
(1) all pairs from the first to the seventh produce s-functions; 
(2) the eighth pair produces an s-function only for n = 3; 
(3) in no cases all pairs from the ninth to the eleventh produce s-functions. (We 

here mean a number in the above list.) 
We will now prove only (2). The proof  of  the others cases is left as problems to 

the reader. 
Consider the function: 
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Now, consider the function 

(12 = .y(xlx2 V x3) V y(YLx3 V x 2 ) .  

For example, by replacing Xl by 0 in this function one can obtain the function 

° gX~ = yx2 V x3, 

which is, clearly, read-once. One can likewise verify that all subfunctions o f  g2 are 

read-once. Therefore, .(42 is an s-function. This completes the proof o f  (2). 
We also leave to the reader the verification that 

(4) the third and the fifth pairs produce one-type functions for n /> 3; 

(5) the fourth and the seventh pairs produce one-type functions for n >/ 4, and the 
fourth and the eighth pairs for n -- 4; 

(6) the others o f  the above list produce s-functions which are not one-type. 

As a result, we can present the following list as a class of  the distinct representatives 
o f  s-functions: 

y(X 1 V X2X 3 ) V y ( x l  V X2 )x3 , 

y(XlX 2 V X3X4) V y(xl V x3)(x2 V x4), 

y ( x i V - - - V x , , ) V y X l - - ' x ~ ,  n ~> 2 ,  

35(xl V ' " V x n ) V y x I ( , V 2 V ' " V x ,  n), n >~ 2,  

~ ( x ~ V . - . V x , ) V y ( & v . . . v £ , ) ,  n >  1. 

We can easily verify that the list given in the theorem is merely a more convenient 
representation of  the same functions. 

This way we have completely proved the main theorem. [] 

8. Conclusion 

As it is shown above, there is a convenient necessary condition for a basis to be 
premaximal. 

• To prove that this condition is also sufficient is an open interesting problem. How- 

ever, in our opinion, this problem is very difficult. 

• Another open problem is to prove a statement like Pratt's one. Namely, we need 

to show that the equality L s o ( f )  = O((LB(f ) )  ~) with a small value o f  ~ for all 

f E P2 and all bases B of  the type B0 U {g} where g is an s-function. This would 
be an additional argument for our assumption that the property "'to be a premaximal  

basis'" is really formalization of  our intuitive concept o f  "'to differ very little J?om 

the de Morgan basis in the sense o f  computational possibilities". 
• Finally, we would like to observe that a knowledge of  peculiarities of  premeximal 

bases really gives a possibility to obtain nonlinear lower bounds on the complexity of  
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Boolean functions in computing them by formulas. In particular, the author showed 
that full binary basis is premaximal in exactly the same way. So it is very important 
to go on in investigation of  these peculiarities. 
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