
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Computational Geometry 37 (2007) 104–114

www.elsevier.com/locate/comgeo

Configurations with few crossings in topological graphs ✩

Christian Knauer a, Étienne Schramm b,1, Andreas Spillner c, Alexander Wolff b,∗,1

a Institute of Computer Science, Freie Universität Berlin, Germany
b Fakultät für Informatik, Universität Karlsruhe, PO Box 6980, D-76128 Karlsruhe, Germany

c Institute of Computer Science, Friedrich-Schiller-Universität Jena, Germany

Received 8 September 2005; received in revised form 25 May 2006; accepted 11 June 2006

Available online 1 September 2006

Communicated by E. Welzl

Abstract

In this paper we study the problem of computing subgraphs of a certain configuration in a given topological graph G such that
the number of crossings in the subgraph is minimum. The configurations that we consider are spanning trees, s–t paths, cycles,
matchings, and κ-factors for κ ∈ {1,2}. We show that it is NP-hard to approximate the minimum number of crossings for these
configurations within a factor of k1−ε for any ε > 0, where k is the number of crossings in G.

We then give a simple fixed-parameter algorithm that tests in O�(2k) time whether G has a crossing-free configuration for
any of the above, where the O�-notation neglects polynomial terms. For some configurations we have faster algorithms. The
respective running times are O�(1.9999992k) for spanning trees and O�((

√
3)k) for s-t paths and cycles. For spanning trees we

also have an O�(1.968k)-time Monte-Carlo algorithm. Each O�(βk)-time decision algorithm can be turned into an O�((β + 1)k)-
time optimization algorithm that computes a configuration with the minimum number of crossings.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Topological graphs; Crossing minimization; Non-approximability; Approximation algorithms; Fixed-parameter algorithms;
Monte-Carlo algorithms

1. Introduction

An undirected graph G(V,E) that is embedded in the plane such that no two edges share an unbounded number
of points is called a topological graph. If all edges are straight-line embedded, then G is called a geometric graph.
A crossing {e, e′} is a pair of edges in G such that e ∩ e′ �⊆ V . We call μee′ = |(e ∩ e′) \ V | the multiplicity of the

✩ This paper is based on two preliminary versions [Ch. Knauer, É. Schramm, A. Spillner, A. Wolff, Configurations with few crossings in
topological graphs, in: X. Deng, D.-Z. Du (Eds.), Proc. 16th Annual International Symposium on Algorithms and Computation (ISAAC’05), in:
Lecture Notes in Computer Science, vol. 3827, Springer-Verlag, Berlin, 2005, pp. 604–613; Ch. Knauer, É. Schramm, A. Spillner, A. Wolff,
Spanning trees with few crossings in geometric and topological graphs, in: Proc. 21st European Workshop on Computational Geometry
(EWCG’05), Eindhoven, 2005, pp. 195–198].

* Corresponding author.
E-mail addresses: christian.knauer@inf.fu-berlin.de (C. Knauer), spillner@minet.uni-jena.de (A. Spillner).

1 Supported by grant WO 758/4-2 of the German Research Foundation (DFG). WWW: http://i11www.ira.uka.de/group.
0925-7721/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2006.06.001

https://core.ac.uk/display/82404551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

C. Knauer et al. / Computational Geometry 37 (2007) 104–114 105
crossing {e, e′}. Note that μ � 1 for geometric graphs. Let X ⊆ (
E
2

)
be the set of pairs of crossings in E. Note that

c edges intersecting in a single non-endpoint give rise to
(
c
2

)
crossings. We will use n, m, and k as shorthand for the

cardinalities of V , E, and X, respectively. We define the weighted number of crossings of G as
∑

{e,e′}∈X μee′ .
In this paper we study the problem of computing subgraphs of a certain configuration in a given topological graph

such that the weighted number of crossings in the subgraph is minimum. The configurations that we consider are
spanning trees, s–t paths, cycles, matchings, and κ-factors, i.e. subgraphs in which every node v ∈ V has degree κ ,
for κ ∈ {1,2}. In the version of matching that we consider the number M of desired matching edges is part of the
input. We will refer to this version as M-matching.

Note that in our case the embedding of the graph is given and fixed. We do not try to find an embedding such
that the number of edge crossings is small. Recently Grigoriev and Bodlaender [2] considered graphs that have an
embedding where each edge has a bounded number of crossings. They showed that many optimization problems (like
maximum independent set) admit polynomial-time approximation schemes when restricted to such graphs. However,
they also showed that it is NP-hard to decide whether a graph has an embedding in the plane with at most one crossing
per edge.

Algorithms that find subgraphs with few crossings have applications in VLSI design and pattern recognition [4].
For example, a set of processors (nodes) on a chip and a number of possible wire connections (edges) between the
processors induce a topological graph G. A spanning tree in G with few crossings connects all processors to each
other and can help to find a wire layout that uses few layers, thus reducing the chip’s cost.

There is also a connection to matching with geometric objects. Rendl and Woeginger [9] have investigated the
problem of reconstructing sets of axis-parallel line segments. Given a set of 2n points in the plane they want to decide
whether there is a perfect matching (i.e. a 1-factor) where the matched points are connected by axis-parallel line
segments. They give an O(n logn)-time algorithm for this problem and show that the problem becomes NP-hard if
the line segments are not allowed to cross.

Kratochvíl et al. [5] have shown that for topological graphs it is NP-hard to decide whether they contain a crossing-
free subgraph for any of the configurations mentioned above. Later Jansen and Woeginger [4] have shown that for
spanning trees, 1- and 2-factors the same even holds in geometric graphs with just two different edge lengths or with
just two different edge slopes.

These results do not rule out the existence of efficient constant-factor approximation algorithms. However, as we
will show in Section 2, such algorithms do not exist unless P = NP . In Section 3 we complement these findings by
a simple polynomial-time factor-(k − c) approximation for any constant integer c.

This result being far from satisfactory, we turn our attention to another way of attacking the problems: in Section 4
we show that the problems under consideration are fixed-parameter tractable with k being the parameter. We give a
simple fixed-parameter algorithm that tests in O�(2k) time whether G has a crossing-free configuration for any of
the above configurations. Recall that the O�-notation neglects polynomial terms. For some configurations we have
faster algorithms. The respective running times are O�(1.9999992k) for spanning trees and O�((

√
3)k) for s–t paths

and cycles. For spanning trees we also have an O�(1.968k)-time Monte-Carlo algorithm. Each O�(βk)-time decision
algorithm can be turned into an O�((β + 1)k)-time optimization algorithm that computes a configuration with the
minimum number of crossings. We conclude in Section 5.

For finding spanning trees with few crossings we have also given a simple heuristic [6] and have compared its
output to optimal solutions that we obtained through a mixed-integer formulation [7]. We are interested in finding
an explanation for the amazingly good performance of our heuristic. How do bad examples look like? The reader is
invited to test our implementation via a Java applet at http://i11www.ira.uka.de/few_crossings.

Our fixed-parameter algorithms (and the MIP formulations in [7]) do not exploit the geometry of the embedded
graph. Thus they also work in a setting where we are given an abstract graph G and a set X of crossings, and we view
a crossing simply as a set of two edges not supposed to be in the solution at the same time.

In the whole paper we assume that the set of crossings X in the input graph has already been computed. Depending
on the type of curves representing the graph edges this can be done using standard algorithms [3]. Whenever we want
to stress that X is given, we use the notation G(V,E,X).

106 C. Knauer et al. / Computational Geometry 37 (2007) 104–114
Fig. 1. Graph G′: kd copies of G. Fig. 2. The basis of the reduction in [5].

2. Hardness of approximation

For each of the configurations mentioned in the introduction we now show that it is hard to approximate the problem
of finding subgraphs of that configuration with the minimum number of crossings in a given geometric graph G. The
reductions are simple and most of them follow the same idea.

We begin with the problem of finding a spanning tree with as few crossings as possible. We already know [4] that
the problem of deciding whether or not G has a crossing-free spanning tree is NP-hard. Our reduction employs this
result directly. Given a graph G with k crossings and a positive integer d , we build a new graph G′ by arranging kd

copies of G along a horizontal line and by then connecting consecutive copies by a single edge as in Fig. 1. The new
graph G′ has kd+1 crossings. Now if G has a crossing-free spanning tree then G′ has a crossing-free spanning tree.
Otherwise every spanning tree in G′ has at least kd crossings. Let φ(G) be 1 plus the minimum number of crossings in
a spanning tree of G. Then φ(G′) = 1 or φ(G′) � kd + 1. Our construction yields the following result. All theorems
in this section hold for any ε ∈ (0,1].

Theorem 1. It is NP-hard to approximate φ(G) within a factor of k1−ε .

Proof. Assume there exists a real ε ∈ (0,1] such that we can compute a factor-k1−ε approximation in polynomial
time. We choose the number of copies d in the construction of G′ outlined above such that d � (1 − ε)/ε. Then by
our assumption we can compute in polynomial time a spanning tree of G′ that approximates φ(G′) within a factor of

(kd+1)1−ε = kd+1 · k−ε(d+1) � kd+1 · k−ε[1−ε
ε

+1] = kd+1 · k−1 = kd .

But then we could decide in polynomial time whether there is a crossing-free spanning tree in G. This would contradict
the hardness result in [4]. �

We also consider a kind of dual optimization problem: Find a crossing-free spanning forest in G with as few trees
as possible. Let φ′(G) denote the minimum number of trees in a crossing-free spanning forest of G. Since there is a
crossing-free spanning forest with one tree if and only if there is a crossing-free spanning tree in G, we immediately
have the following theorem.

Theorem 2. It is NP-hard to approximate φ′(G) within a factor of k1−ε .

Next let us briefly consider the problems of finding M-matchings, 1- and 2-factors in G with as few crossings
as possible. Again we already know that the related decision problems are NP-hard [4]. Let η(G) denote 1 plus the
minimum number of crossings in a subgraph of G of the desired configuration. Arguing along the same lines as for
spanning trees we obtain the following theorem. Note that in this reduction we do not connect the copies of G in G′.

Theorem 3. It is NP-hard to approximate η(G) within a factor of k1−ε .

Now we turn to the problem of finding a path between two given vertices s and t (an s–t path for short) with
as few crossings as possible. We show that the problem of deciding whether or not a given geometric graph has a
crossing-free s–t path is NP-hard by adapting the hardness proof for topological graphs of Kratochvíl et al. [5]. Their
proof is by reduction from planar 3SAT. Fig. 2 reproduces Fig. 7 from [5]. Each clause ci is represented by three edges
between the same two vertices. Each edge in such a triplet represents a variable that occurs in ci . Kratochvíl et al. [5]
show that it is possible to draw the edges that correspond to a variable v such that two of these edges cross if and only
if they correspond to a negative and a positive occurrence of v. Thus there is a satisfying truth assignment if and only
if there is a crossing-free s–t path in the constructed graph.

Our point here is not to go through the whole reduction presented in [5]. We just outline how to modify the
reduction such that the result is not merely a topological but a geometric graph. Consider edges in the clause gadgets

C. Knauer et al. / Computational Geometry 37 (2007) 104–114 107
Fig. 3. Details of the reduction.

Fig. 4. The graph G′.

Fig. 5. Adding edges between s and t . Fig. 6. Punishing the usage of crossings.

that correspond to the same variable v. At first glance it seems difficult to make these edges cross in the desired way,
i.e. two of them must cross if and only if they correspond to a negative and a positive occurrence of v. The starting
point is that each edge in a clause gadget is represented by two straight-line segments as shown in Fig. 8 in [5]. The
construction in [5] is such that for each variable we can draw a circle that intersects exactly the clause-gadget edges
that correspond to the occurrences of this variable. This is indicated in Fig. 3(a). The circle is drawn dotted. The part
of the clause-gadget edges inside the circle are the little tips. Tips drawn with bold and thin solid lines correspond
to positive and negative occurrences of the variable, respectively. We modify each clause-gadget edge as indicated in
Fig. 3(b). Then we replace the gray box in Fig. 3(b) by that in Fig. 3(c). This generates the desired intersection pattern.

Now we apply the same trick as in the case of spanning trees to turn the NP-hardness of the decision problem into
a hardness-of-approximation result. This is indicated in Fig. 4. If there is a crossing-free s–t path in G then there is
a crossing-free s1–tkd path in G′. If there is at least one crossing in every s–t path in G then there are at least kd

crossings in every s1–tkd path in G′. Let γ (G) denote 1 plus the minimum number of crossings in an s–t path in G.
Then we have the following theorem.

Theorem 4. It is NP-hard to approximate γ (G) within a factor of k1−ε .

In [5] it is shown that it is even possible to draw the edges of the graph in Fig. 2 in such a way that in addition to
the crossings which ensure the consistency of the chosen truth setting we can make the edges in every clause pairwise
intersecting. Thus we can choose at most one edge in every clause gadget and the constructed graph does not contain
a crossing-free cycle. Now we connect vertices s and t by an extra sequence of edges as indicated in Fig. 5 and easily
obtain the following corollary.

Corollary 1. It is NP-hard to decide whether or not a geometric graph contains a crossing-free cycle.

Unfortunately it seems impossible to apply the same trick again to obtain the hardness of approximation, since
there may be cycles that do not pass through vertices s and t and that have only few crossings. Thus we have to punish
the usage of a crossing in forming a cycle in the graph. To achieve this goal for every crossing in the constructed graph
we make the sequences of straight line edges cross many times. This is indicated in Fig. 6. By choosing the number
of bends large enough we obtain the following theorem where ζ(G) denotes 1 plus the minimum number of crossings
in a cycle in G.

Theorem 5. It is NP-hard to approximate ζ(G) within a factor of k1−ε .

108 C. Knauer et al. / Computational Geometry 37 (2007) 104–114
3. Approximation algorithms

After this long list of negative results on approximability let us now give a positive remark. Trivially, any spanning
tree in a geometric graph with k crossings (k +1)-approximates φ(G). However, with just a little more effort for every
constant c ∈ N we can compute a factor-max{1, k − c} approximation. We distinguish two cases.

Case 1: The graph G has at most c crossings. Then we can compute an optimal solution in polynomial time with
our fixed-parameter algorithm, see Section 4.

Case 2: The graph G has at least c + 1 crossings. Then we check for every subset S of c + 1 crossings from the set
of all crossings in G whether there is a way to delete edges participating in the crossings in S such that the resulting
subgraph of G is still connected but all the crossings in S have disappeared. If such a set S of c + 1 crossings exists
then we can find a spanning tree of G avoiding all the crossings in S. Such a spanning tree will have at most k − c − 1
crossings and thus is a factor-(k − c) approximation. If no such set S of c + 1 crossings exists then every spanning
tree of G must have at least k − c crossings and we can find an optimal solution in polynomial time by checking for
every subset of at most c crossings from the set of all crossings in G whether there is a spanning tree of G avoiding
the crossings in the subset.

Theorem 6. For every constant c ∈ N there is a polynomial-time factor-max{1, k-c} approximation for φ(G).

4. Fixed-parameter algorithms

In this section we present fixed-parameter algorithms using the total number k of crossings as the parameter. The
intuition behind the concept of fixed-parameter algorithms [1] is to find a quantity associated with the input such that
the problem can be solved efficiently if this quantity is small. The number k suggests itself naturally since on the
one hand the problems under consideration become trivial if k = 0 and on the other hand the reductions in Section 2
employ graphs with many crossings.

4.1. A simple general approach

We assume that the input graph G has a subgraph of the desired configuration and we only try to find one with
the minimum weighted number of crossings. For example, when looking for spanning trees we assume that the input
graph is connected. We set EX = ⋃

X. Thus EX contains exactly those edges that participate in a crossing. Note that
|EX| � 2k. Now we can proceed as follows:

1. Form the crossing-free graph G′ by removing all edges in EX from G.
2. For all crossing-free subsets H ⊆ EX check whether the graph G′ ∪H has a subgraph of the desired configuration.

The graph G′ can be constructed in O(m) time. Let checkC(n,m) be the time needed for checking whether G′ ∪H has
a subgraph of configuration C. Since checkC(n,m) = poly(n,m) for all the configurations we consider, the two-step
procedure shows that the corresponding decision problems can be solved in O(m + checkC(n,m)4k) time and thus
are all fixed-parameter tractable. However, it is easy to do better.

Observation 1. To check the existence of a crossing-free configuration in G it suffices to go through all maximal (w.r.t.
the subgraph relation) crossing-free subgraphs of G and check whether one of them has a subgraph of the desired
configuration.

There are at most 2k maximal crossing-free subsets of EX: Imagine the process of selecting the edges for the
set H ⊆ EX as a search tree. Branchings in the tree correspond to possible choices during the selection process. By
selecting edges in EX to be in H or not to be in H we reduce the number of crossings from which we can still select
edges. The leaves of the search tree correspond to particular choices of H . Let T (k) denote the maximum number of
leaves in the search tree for input graphs with k crossings.

To obtain a recurrence for T (k) we consider an arbitrary edge e in EX . Suppose that exactly z ∈ {1, . . . , k} crossings
c1 = {e, f1}, . . . , cz = {e, fz} in X share edge e. If we select edge e to be in H , then none of the edges f1, . . . , fz can

C. Knauer et al. / Computational Geometry 37 (2007) 104–114 109
be in H . If we select edge e not to be in H , then we can select edges f1, . . . , fz as if crossings c1, . . . , cz would not
exist. Thus for both choices there are only k − z crossings left from which we can still select edges. This leads to the
recurrence

T (k) � 2T (k − z) (1)

which solves to T (k) ∈ O(2k/z) ⊆ O(2k). Going through the edges in EX we can build each of the maximal crossing-
free subsets of EX in O(k) time.

Theorem 7. Given a topological graph G(V,E,X) and a configuration C, we can decide in O(m + (checkC(n,m) +
k)2k) time whether G has a crossing-free subgraph of configuration C.

If the desired configuration C is an M-matching, we have checkC(n,m) ∈ O(
√

nm) [8]. Note that a 1-factor is
just a special kind of M-matching. For 2-factors we can employ the graph transformation of Tutte [10] and obtain
checkC(n,m) ∈ O(n4).

Observe that in step 2 the only interesting connected components of G′ are those that contain an endpoint of an
edge from EX . However, there are at most 4k such connected components. For the configurations spanning tree, s–t

path, and cycle this observation yields a reduction to a problem kernel [1], i.e. to a problem whose size depends only
on the parameter k, but not on the size of the input. Here the problem kernel is the component multigraph G� of G′
that has a node for each connected component of G′. The edges of G� correspond to the edges in EX . An edge e in
EX is incident to a vertex v of G� if and only if e has an endpoint in the connected component represented by v. To
decide whether G′ ∪ H has a spanning tree, s–t path, or cycle for some maximal crossing-free H ⊆ EX , we can do
the check (by some variant of breadth-first search) in G� ∪ H . This is faster than doing the check in G′ since G� has
size O(k).

Corollary 2. Given a topological graph G(V,E,X), we can decide in O(m+k2k) time whether G has a crossing-free
spanning tree, s–t path or cycle.

Finally we want to present a simple approach to deal with the corresponding optimization problems, i.e. the problem
of finding a desired configuration with minimum weighted number of crossings. Our idea is to check for each subset
X′ of X whether G has a configuration of the desired type that uses only crossings in X′. This can be done as follows.

1. Compute the graph G′′ = G′ ∪ ⋃
X′.

2. Compute the subset of crossings X′′ from X that do not share an edge with any crossing in X′.
3. Decide whether there is a crossing-free subset H of

⋃
X′′ such that G′′ ∪ H contains a desired configuration.

We filter out those subsets of crossings X′ for which we get a positive answer in step 3. Among the filtered-
out subsets we can easily keep track of one that yields the minimum weighted number of crossings. Clearly, step 3
dominates the running time of our algorithm. Let k′′ = |X′′| � k − k′ and k′ = |X′|. Now suppose in step 3 we use a
decision algorithm that takes O((checkC(n,m) + k′′)βk′′

) time after spending O(m) time on preprocessing, then the
above procedure takes O(m + ∑k

k′=0

(
k
k′
)
(checkC(n,m) + (k − k′))βk−k′

) total time. We apply the binomial theorem
and conclude as follows.

Theorem 8. Given a topological graph G(V,E,X), we can compute in O(m + (checkC(n,m) + k)(1 + β)k) time a
subgraph of configuration C in G with minimum weighted number of crossings if we can solve the related decision
problem on any topological graph in O((checkC(n,m) + k)βk) time after an O(m)-time preprocessing.

4.2. Spanning trees

In this section we want to improve the 2k-term in the running time of the simple decision algorithm. It will turn
out that we barely achieve this goal. We will get the exponential term in the running time down to 1.9999992k . While
this improvement seems marginal, the fact that we managed to beat the trivial algorithm is of theoretical interest.

110 C. Knauer et al. / Computational Geometry 37 (2007) 104–114
Moreover, we think that our methods can be applied in a wider scenario. A similar approach for s–t paths and cycles
yields 1.733k , see Section 4.3.

First note that it is rather easy to speed up the algorithm of Corollary 2 as long as the crossings in G are not all
pairwise disjoint. Then we can always find an edge e in EX that is shared by z � 2 crossings and recurrence (1) solves
to T (k) ∈ O(2k/2).

It remains to consider the case that the crossings in X are pairwise disjoint. Up to now we concentrated on the set
EX . It was only after selecting an edge e to be in H that we took a look at the connected components of G′ that are
possibly connected by e. Now we also take the connected components of G′ into consideration to guide the selection
process. Observe that any connected component C (in order to make G′ connected) must be connected by at least one
edge from EX to the rest of G′. This puts some restriction on which crossing-free subsets of the edges in EX with an
endpoint in C need to be checked. After introducing some notation, Lemma 1 will make this more precise.

We can assume that for every crossing c ∈ X neither of the two edges in c connects vertices in the same connected
component of G′, since such an edge cannot help to make G′ connected and thus need not be selected to be in H .

We define the degree of a connected component of G′ as the number of edges in EX with one endpoint in this
component. Now consider some connected component C of G′. Let d denote the degree of C and E(C) the set of
edges in EX incident to a vertex of C. Note that d = |E(C)|. Let X(C) denote the set of crossings contained in E(C).
We set x = |X(C)|, R = ⋃

X(C) and S = E(C) \ R. Then S consists of the d − 2x edges in E(C) that do not cross
any other edge in E(C). To connect C with the rest of G′ we select subsets T of E(C) such that T contains exactly
one edge from each crossing in X(C) and a subset of the edges in S.

Lemma 1. It suffices to check 2d−x − 1 subsets of E(C).

Proof. First consider the case that T ⊆ E(C) contains at least one edge from S. There are 2x(2d−2x − 1) subsets T

of this type.
Next we consider the case that none of the edges in S belongs to T . Suppose there is a maximal crossing-free set H

such that G′ ∪ H is connected and H ∩ S = ∅. Then we consider the graph G′′ that is formed by deleting component
C from G′ ∪ H . Let r denote the number of components of G′′. Since G′ ∪ H is connected, all the components of G′′
are connected in G′ ∪ H to component C by edges from the crossings in X(C). Since H is maximal crossing-free it
contains exactly one edge from each crossing in X(C). Thus the graph G′′ has at most x components.

We want to show that there is at least one other maximal crossing-free set Ĥ such that G′ ∪ Ĥ is connected and
Ĥ ∩ S = ∅. Then for each edge set T ⊂ R which leads to a maximal crossing-free set H that connects G′ there would
be another edge set T̂ ⊂ R which also leads to a maximal crossing-free set Ĥ that connects G′. Hence it would suffice
to check only 2x − 1 subsets T of E(C), one could be omitted. We know r � x.

If r < x, then there are two distinct crossings c1 = {e1, f1} and c2 = {e2, f2} in X(C) such that edges e1 and e2 are
in H and connect the same component of G′′ with C. Then Ĥ = (H \ {e1}) ∪ {f1} is another maximal crossing-free
subset of EX that connects G′.

If r = x, then we consider two sub-cases:
If there is a crossing c = {e, f } in X(C) such that e is in H and both edges e and f are incident to vertices in the

same component of G′′, then Ĥ = (H \ {e}) ∪ {f } is another maximal crossing-free subset of EX that connects G′.
Otherwise, i.e. if in every crossing c = {e, f } in X(C) edges e and f are incident to vertices in distinct components

of G′′, we construct a bipartite graph B with one independent vertex set representing the crossings in X(C) and the
other independent vertex set representing the components of G′′. A crossing c in X(C) is connected by an edge in
B to a component C′′ of G′′ if and only if there is an edge in c which is incident to a vertex of C′′. Thus there is a
one-to-one correspondence between the edges in R and the edges of the bipartite graph B . Now it is easy to see that
the edges in H ∩ R correspond to a perfect matching M in B . Note that the vertices of B which correspond to the
crossings in X(C) have all degree two. Hence we can construct another perfect matching M̂ in B: From any crossing
c1 we follow the edge of B which is not in the perfect matching and reach a component C′′

1 of G′′. From C′′
1 we follow

the edge in the perfect matching to a crossing c2 and so on. After traversing at most 2x edges we will eventually return
to crossing c1. The traversed edges of B form a cycle where edges in the perfect matching and edges not in the perfect
matching alternate. Changing the roles of the edges in the cycle gives us the desired perfect matching M̂ �= M and
thus a maximal crossing-free edge set Ĥ �= H .

To summarize the proof: we need only check 2x(2d−2x − 1) + 2x − 1 = 2d−x − 1 subsets of E(C). �

C. Knauer et al. / Computational Geometry 37 (2007) 104–114 111
The result of Lemma 1 leads to a new search-tree algorithm. In the beginning of this section we used edges
involved in many crossings to guide the branching. In order to cope with the case that all crossings are pairwise
disjoint, we use a component of hopefully small degree d to guide the branching. Then Lemma 1 yields the recurrence
T (k) � (2d−x − 1)T (k − (d − x)) for the size of the search tree. First observe that for every positive integer l it holds
that (2l − 1)1/l < (2l+1 − 1)1/(l+1) since (2l − 1) < 2l < (2 + 1/(2l − 1))l . Now suppose we have an upper bound δ

on d . Then T (k) = (2δ − 1)k/δ solves the above recurrence. This can be shown by induction on k:

T (k) � (2d−x − 1)T
(
k − (d − x)

)
� (2d−x − 1)(2δ − 1)(k−(d−x))/δ

= (2δ − 1)k/δ · 2d−x − 1

(2δ − 1)(d−x)/δ

= (2δ − 1)k/δ ·
[
(2d−x − 1)1/(d−x)

(2δ − 1)1/δ

]d−x

� (2δ − 1)k/δ.

Hence, we have T (k) ∈ O(βk
δ), where βδ = δ

√
2δ − 1 < 2.

Now we describe how to guarantee the existence of a component with small degree. The intuition behind this is
simple: if G′ has many, i.e. more than αk connected components for some α ∈ (0,1), then by the pigeon-hole principle
there must be a component of small degree. Otherwise, if G′ has few connected components (i.e. at most αk), then we
can afford to enumerate all possibilities to connect G′ by a crossing-free edge set H . The choice of α has to balance
the running times in the two cases.

We first consider the case that G′ has more than αk connected components. Let δ denote the minimum degree of a
component of G′. Then we double-count the edge–component incidences. This yields 4k � 2|EX| > δαk, and hence
δ < 4/α. In the worst case δ = �4/α
. The resulting search tree has size

T1(k) ∈ O
(
b1(α)k

)
, where b1(α) = β�4/α
.

We need O(k) time for generating and checking each of the at most T1(k) nodes and leaves of the search tree. This
yields a total running time of O(m + kT1(k)).

Next we consider the case that G′ has at most αk connected components. Set l = �αk
. Observe that we can make
G′ connected without crossing edges if and only if there are l − 1 crossings in X such that G′ becomes connected
by using one edge from each of these l − 1 crossings. Thus we simply go through each of the

(
k

l−1

)
subsets of l − 1

crossings from X. For each such subset we enumerate all 2l−1 ways to choose one edge per crossing. This results
in T2(k) <

(
k
l

)
2l subsets H for which we can check in O(k) time each whether G′ ∪ H is connected. This yields a

total running time of O(m+ kT2(k)). In order to simplify T2 we apply Sterling’s formula to
(
k
l

) = k!/(l!(k − l)!). This
results in

T2(k) ∈ O
(
b2(α)k

)
, where b2(α) = 2α

αα · (1 − α)1−α
.

In order to balance the expressions T1(k) and T2(k) in the two running times, we determine a value of α that min-
imizes maxα∈(0,1){b1(α), b2(α)}. (The graphs of b1 and b2 do not intersect since b1 is a stair-case function, i.e. not
continuous.) The minimum is attained at α ≈ 0.227. This value of α yields T1(k) = O(βk

17) = O(1.9999992k) and
T2(k) = O(1.99965k), so the total running time is dominated by the first case. We sum up our result in the following
theorem.

Theorem 9. Given a topological graph G(V,E,X), we can decide in O(m+kβk
17) time whether G has a crossing-free

spanning tree, where β17 < 1.9999992.

If we are willing to resort to a randomized algorithm we can improve the result of Theorem 9. We are looking for
a new way to treat the case that the crossings are pairwise disjoint and G′ has at most αk connected components.
The following randomized algorithm allows us to choose α larger than in the deterministic algorithm above. Observe
that if G has a connected crossing-free spanning subgraph at all, then there are at least 2(1−α)k maximal crossing-free

112 C. Knauer et al. / Computational Geometry 37 (2007) 104–114
subsets H ⊆ EX such that G′ ∪ H is connected. This can be seen as follows: Suppose there is a crossing-free subset
F ⊆ EX that makes G′ connected. Then we can choose such an F with |F | < αk. Let XF = {c ∈ X | c ∩ F = ∅}.
Since the elements of X are pairwise disjoint we have |XF | > (1 − α)k. If we select one edge from each crossing in
XF and add these edges to F the resulting set of edges is still crossing-free. There are at least 2(1−α)k possible ways
to select edges. Thus there are at least 2(1−α)k maximal crossing-free subsets H ⊆ EX such that G′ ∪ H is connected.

This suggests the following randomized algorithm: From each element of X we randomly select one edge and
check if the resulting crossing-free graph is connected. If the given topological graph G has a crossing-free connected
spanning subgraph, the probability of success is at least 2(1−α)k/2k = 2−αk . Thus T ′

2(k) = O(b′
2(α)k) iterations suf-

fice to guarantee a probability of success greater than 1/2, where b′
2(α) = 2α . This results in a running time of

O(m + kT ′
2(k)) if G′ has at most αk connected components. Otherwise we use the deterministic algorithm with

running time O(m + kT ′
1(k)), where T ′

1(k) ∈ O(b1(α)k) and b1(α) = β�4/α
.
Again we must choose α to balance the two running times. Setting α = 4/5 yields T1(k) ∈ O(βk

4) = O(1.968k) and
T ′

2(k) ∈ O(24k/5) = O(1.742k).

Theorem 10. There is a Monte-Carlo algorithm with one-sided error, probability of success greater than 1/2
and running time in O(m + kβk

4) which tests whether a given topological graph has a crossing-free spanning tree
(β4 < 1.968).

Before we turn to other configurations, note that for the dual optimization problem of finding a spanning forest of
G consisting of as few trees as possible, we only have to find a maximal crossing-free subgraph of G consisting of as
few components as possible. So by checking every crossing-free subset of EX we can easily find one that yields an
optimal solution in O(m + k2k) time. With an argument similar to the one that led to Theorem 9 one can show that it
is not even necessary to check each crossing-free subset of EX . This yields the following theorem.

Theorem 11. Given a topological graph G(V,E,X), we can compute in O(m + kβk
17) time a spanning forest of G

consisting of as few trees as possible.

4.3. s–t paths and cycles

First we consider the problem of finding a crossing-free path between two given vertices s and t . Suppose C is the
connected component of G′ that contains vertex s. We select an edge e of EX as the edge by which the crossing-free
s–t path leaves C. Edge e connects C to another component of G′ and the new bigger component thus created will
then play the role of C and so on. If we again imagine this process of selecting edges as a search tree then we reach a
leaf of the search tree if vertices s and t become vertices of the same component (then we have found a crossing-free
path between them) or if we get stuck because we cannot leave the actual component C by edges from EX .

Suppose vertices s and t do not belong to the same connected component of G′. We delete all components that
have no vertex incident to an edge in EX . Suppose the components to which s and t belong are still present.

Again it is easy to speed up the algorithm if crossings in X are not pairwise disjoint. By recurrence (1) we obtain
T (k) ∈ O(2k/2).

Next we consider the case that the crossings in X are pairwise disjoint. We can assume that for every crossing
c ∈ X none of the two edges in c connects vertices in the same connected component of G′. Furthermore we can
assume that there is no connected component C of degree 1 since either C contains s or t and then we must use the
only edge from EX incident to C, or C contains neither s nor t and then C can be deleted.

Now let C denote the connected component of G′ that contains vertex s. Let d denote the degree of C and E(C)

the set of edges in EX incident to a vertex of C. Let X(C) denote the set of crossings contained in E(C). We set
x = |X(C)|. The key observation is that if there is a crossing-free s–t path at all then there is one that uses exactly one
of the edges in E(C).

First we consider the case that d − 2x � 1. We obtain the recurrence T (k) � dT (k − d + x). If d is an even
number then x � d/2 − 1 and the recurrence solves to T (k) ∈ O(4k/3) ⊆ O(1.59k). If d is not an even number then
x � (d − 1)/2 and the recurrence solves to T (k) ∈ O(3k/2) ⊆ O(1.733k).

C. Knauer et al. / Computational Geometry 37 (2007) 104–114 113
Second we consider the case that d = 2x. We can assume that there is no crossing c in X(C) such that both edges
in c go from C to the same connected component of G′ since with respect to the existence of a crossing-free s–t path
the edges in c would be equivalent and we could use one of the two edges if necessary.

Now if there are two crossings c1 = {e1, f1} and c2 = {e2, f2} in X(C) such that e1 and e2 go from C to the same
connected component of G′, then it is sufficient to check only for one of e1 and e2 whether there is a crossing-free s–t

path that uses this edge. Hence we obtain the recurrence T (k) � (d − 1)T (k − d/2) which solves to T (k) ∈ O(3k/2).
Otherwise the edges in E(C) go from C to pairwise distinct connected components of G′. Consider any crossing

c = {e, f } in X(C). Let A and B denote the connected components of G′ to which edges e and f respectively go
from C. Since every connected component of G′ has degree at least two, components A and B each have a vertex
incident to an edge from EX \ E(C). Now observe that if there is a crossing-free s–t path that uses edge e and also
goes through component B then there is another crossing-free s–t path that uses edge f to go directly to component
B . Hence if we check edge e we can delete component B and all edges in EX incident to B , and if we check edge f

we can delete component A and all edges in EX incident to A. Thus we get rid of at least x +1 crossings for each edge
in E(C) checked and obtain the recurrence T (k) � dT (k − d/2 − 1) which solves to T (k) ∈ O(4k/3). This yields the
following theorem.

Theorem 12. Given a topological graph G(V,E,X), we can decide in O(m + kβk
2) time whether G has a crossing-

free s–t path (β2 = √
3 < 1.733).

Finally we present a simple way to employ the result of Theorem 12 for finding crossing-free cycles. For every
edge e in EX we check whether there is a crossing-free cycle that contains edge e. Let A and B be the connected
components of G′ that have a vertex which is incident to edge e and let X′ be the set of crossings in X that do not
contain edge e. Observe that there is a crossing-free cycle that contains edge e if and only if there is a crossing-free
path from a vertex in component A to a vertex in component B using only edges in G′ and in the crossings X′. Thus
we obtain the following theorem.

Theorem 13. Given a topological graph G(V,E,X), we can decide in O(m + k2βk
2) time whether G has a crossing-

free cycle.

5. Conclusion

The main achievement of this paper is the design of the non-trivial fixed-parameter algorithms that decide whether
a graph with k crossings has a plane spanning tree, an s–t path, or a cycle. The difficulty was to show that these
configurations allow algorithms where the base in the exponential part of the running time is strictly less than 2,
namely 1.9999992 for trees and

√
3 for paths and cycles. The main open question is whether such algorithms also

exist for other configurations such as matchings, and whether the running times of our algorithms can be further
reduced.

Acknowledgements

We thank Jiong Guo for pointing out that for the search-tree algorithms in Section 4 the case of disjoint crossings
is actually the hardest. We also thank Markus Völker for implementing the Java applet. Last but not least we wish to
express our gratitude to two anonymous referees whose comments helped to improve the presentation of our results.

References

[1] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer-Verlag, 1999.
[2] A. Grigoriev, H.L. Bodlaender, Algorithms for graphs embeddable with few crossings per edge, in: M. Liśkiewicz, R. Reischuk (Eds.), Proc.

15th Int. Symp. on Fundamentals of Computation Theory (FCT’05), in: Lecture Notes in Computer Science, vol. 3623, Springer-Verlag, 2005,
pp. 378–387.

[3] D. Halperin, Arrangements, in: Handbook of Discrete and Computational Geometry, CRC Press, 2004, pp. 529–562, Chapter 24.
[4] K. Jansen, G.J. Woeginger, The complexity of detecting crossingfree configurations in the plane, BIT 33 (1993) 580–595.
[5] J. Kratochvíl, A. Lubiw, J. Nešetřil, Noncrossing subgraphs in topological layouts, SIAM J. Disc. Math. 4 (2) (1991) 223–244.

114 C. Knauer et al. / Computational Geometry 37 (2007) 104–114
[6] C. Knauer, É. Schramm, A. Spillner, A. Wolff, Configurations with few crossings in topological graphs, in: X. Deng, D.-Z. Du (Eds.), Proc.
16th Annual International Symposium on Algorithms and Computation (ISAAC’05), in: Lecture Notes in Computer Science, vol. 3827,
Springer-Verlag, 2005, pp. 604–613.

[7] C. Knauer, É. Schramm, A. Spillner, A. Wolff, Configurations with few crossings in topological graphs, Technical Report 2005-24, Fakultät
für Informatik, Universität Karlsruhe, September 2005. Available at http://www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2005/24.

[8] S. Micali, V.V. Vazirani, An O(
√|V ||E|) algorithm for finding maximum matching in general graphs, in: Proc. 21th IEEE Symp. Found.

Comp. Sci. (FOCS’80), 1980, pp. 17–27.
[9] F. Rendl, G. Woeginger, Reconstructing sets of orthogonal line segments in the plane, Discrete Math. 119 (1993) 167–174.

[10] W.T. Tutte, A short proof of the factor theorem for finite graphs, Canad. J. Math. 6 (1954) 347–352.

