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a b s t r a c t

In this paper a new Kirchhoff plate model is developed for the static analysis of isotropic micro-plates
with arbitrary shape based on a modified couple stress theory containing only one material length scale
parameter which can capture the size effect. The proposed model is capable of handling plates with com-
plex geometries and boundary conditions. From a detailed variational procedure the governing equilib-
rium equation of the micro-plate and the most general boundary conditions are derived, in terms of
the deflection, using the principle of minimum potential energy. The resulting boundary value problem
is of the fourth order (instead of existing gradient theories which is of the sixth order) and it is solved
using the Method of Fundamental Solutions (MFS) which is a boundary-type meshless method. Several
plates of various shapes, aspect and Poisson’s ratios are analyzed to illustrate the applicability of the
developed micro-plate model and to reveal the differences between the current model and the classical
plate model. Moreover, useful conclusions are drawn from the micron-scale response of this new Kirch-
hoff plate model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction needed to capture the size effect. This simplified couple stress the-
The behavior of micron-scale structures has been proven exper-
imentally to be size dependent. Therefore, the classical continuum
theory is inadequate to predict their response and the utilization of
strain gradient (higher order) theories containing internal material
length scale parameters is inevitable. For a literature review of the
afore-mentioned theories can be found in the recent works of
Vardoulakis and Sulem (1995); Exadaktylos and Vardoulakis
(2001) and Tsepoura et al. (2002). Although, the strain gradient
theories encounter the physical problem in its generality, they con-
tain additional constants – besides the Lamé constants - which are
difficult to determine even in their simplified form containing only
two additional constants (Lam et al., 2003). Thus, gradient elastic-
ity theories of only one additional material constant have been
developed.

Altan and Aifantis (1992) suggested a simplified strain gradient
model with only one strain gradient coefficient of length squared
dimension which has been used by many investigators (e.g., Askes
and Aifantis, 2002; Lazopoulos, 2004; Papargyri-Beskou and Bes-
kos, 2008). A variational formulation of this simplified gradient
elasticity theory has been presented by Gao and Park (2007) deter-
mining simultaneously both the equilibrium equations and the
complete boundary conditions for the first time.

Yang et al. (2002) – modifying the classical couple stress theory
(e.g. Mindlin, 1964; Koiter, 1964) – proposed a modified couple
stress model in which only one material length parameter is
ll rights reserved.
ory is based on an additional equilibrium relation which force the
couple stress tensor to be symmetric. So far has been developed for
the static bending (Park and Gao, 2006) and free vibration (Kong
et al., 2008) problems of a Bernoulli-Euler beam and for the static
bending and free vibration problems of a Timoshenko beam (Ma
et al., 2008). Moreover, Park and Gao (2008) solved analytically a
simple shear problem after the derivation of the boundary condi-
tions and the displacement form of the theory.

The work that has been done on the analysis of micro-plates is
limited only to publications of linear and nonlinear plate models
based on the simplified strain gradient model with one internal
parameter introduced by Altan and Aifantis (1992). More specifi-
cally, Lazopoulos (2004) developed a strain gradient geometrically
nonlinear plate model modifying Von Karman’s nonlinear equa-
tions. This model was implemented in the study of the localized
buckling of a long plate under uniaxial in-plane compression and
small lateral loading, using the multiple scales perturbation meth-
od. Papargyri-Beskou and Beskos (2008) derived explicitly the gov-
erning equation of motion of gradient elastic flexural Kirchhoff
plates, including the effect of in-plane constant forces on bending.
In their work three boundary value problems were investigated
(using the double Fourier series solution) dealing with static, sta-
bility and dynamic analysis of a rectangular simply supported gra-
dient elastic flexural plate. However, the main drawback of the
above plate models is that the presence of the microstructural ef-
fect raises the order of the resulting partial differential equation
form four (classical case) to six (gradient case). As well as the
classical boundary conditions are supplemented by additional
(non-classical) ones containing higher order traction and higher
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Fig. 1. Plate geometry and distribution of the boundary and source nodes.
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order moments. Hence, the employed analytical solutions are re-
stricted only to simple geometric shapes.

In this paper a new Kirchhoff plate model is developed for the
static analysis of isotropic micro-plates with arbitrary shape based
on the simplified couple stress theory of Yang et al. (2002) contain-
ing only one material length scale parameter which can capture
the size effect. The proposed model is capable of handling plates
with complex geometries and boundary conditions. To the author
knowledge publications on the solution of the particular problem
have not been reported in literature. The rest of paper is organized
as follows. In Section 2 the total potential energy and its first var-
iation of a three-dimensional body in rectangular coordinates are
presented according to the modified couple stress theory. Using
the minimum potential energy principle the governing equilibrium
equation together with the pertinent boundary conditions in terms
of the deflection are derived in their most general form, including
elastic support or restraint, in Section 3. The resulting boundary
value problem of the micro-plate is of the fourth order and it is
solved using the Method of Fundamental Solutions (MFS) in Sec-
tion 4. Several plates of various shapes, aspect and Poisson’s ratios
are analyzed in Section 5 to illustrate the developed micro-plate
model and to reveal the differences between the current model
and the classical plate model. Finally, a summary of conclusions
is given in Section 6.

2. Modified coupled stress theory

In the modified couple stress theory of Yang et al. (2002), the
strain energy density in rectangular coordinates of a three-dimen-
sional body occupying a volume V bounded by the surface X is gi-
ven as

U ¼ 1
2

Z
V
ðrijeij þmijvijÞdV ð1Þ

where

eij ¼
1
2
ðui;j þ uj;iÞ ð2Þ

vij ¼
1
2
ðhi;j þ hj;iÞ ð3Þ

are the strain tensor and the symmetric part of the curvature tensor,
respectively, ui is the displacement vector and hi is the rotation vec-
tor defined as (Yang et al., 2002)

hi ¼
1
2

eijkuk;j ð4Þ

where eijk is the permutation symbol. In what it follows, unless
otherwise stated, the Greek indices take the values 1, 2, while the
Latin indices take the values 1, 2, 3. Moreover, rij is the stress tensor
and mij is the deviatoric part of the couple stress tensor given as

rij ¼ kekkdij þ 2leij ð5Þ
mij ¼ 2ll2vij ð6Þ

where, k and l are the Lamé constants, dij is the Kronecker delta and
l is a material length scale parameter. From Eq. (3) it can be noted
that the curvature tensor vij is symmetric and consequently from
Eq. (6) the couple stress tensor mij is also symmetric. That is, only
the symmetric part of displacement gradient and the symmetric
part of rotation gradient contribute to the deformation energy
(Yang et al., 2002) which is different from that in the classical cou-
ple stress theory (e.g. Mindlin, 1964; Koiter, 1964).

Following Yang et al. (2002) and Park and Gao (2008), the work
produced by the external forces is

W ¼
Z

V
ðbiui þ cihiÞdV þ

Z
X
ðtiui þ sihiÞdX ð7Þ
where bi; ci; ti, and si are the body force, body couple, traction and
surface couple, respectively. Hence, the total potential energy of
the deformable body using Eqs. (1) and (7) is written as

P ¼ U �W ¼ 1
2

Z
V
ðrijeij þmijvijÞdV �

Z
V
ðbiui þ cihiÞdV

�
Z

X
ðtiui þ sihiÞdX ð8Þ

and its first variation gives

dP¼
Z

V
ðrijdeijþmijdvijÞdV�

Z
V
ðbiduiþ cidhiÞdV�

Z
X
ðtiduiþ sidhiÞdX

ð9Þ
3. Governing equation and pertinent boundary conditions of
micro-plates

Consider an initially flat thin elastic plate of thickness h consist-
ing of homogeneous linearly elastic material occupying the two-
dimensional domain X of arbitrary shape in the x; y plane bounded
by the curve C which may be piecewise smooth, i.e. it may have a
finite number of corners (see Fig. 1). The plate is bending under the
combined action of the distributed transverse load qðx; yÞ, the edge
moment eMnn and the edge force eV n producing a three dimensional
deformation state including the transverse deflection wðx; yÞ and
the in plane displacements uaðx; y; zÞ which in the absence of in
plane forces are written as (Timoshenko and Woinowsky-Krieger,
1959)

uaðx; y; zÞ ¼ �zw;a ð10Þ

Taking into account Eqs. (10), (4) and that

w;1 � w;x; w;2 � w;y ð11Þ

the displacement and rotation vectors of the micro-plate become,
respectively,

u ¼ �zw;x e1 � zw;y e2 þwe3 ð12Þ
h ¼ w;y e1 �w;x e2 ð13Þ

Substituting Eqs. (12) and (13) into Eqs. (2) and (3) the nonzero
components of the strain and curvature tensor are written as

ex � e11 ¼ �zw;xx; ey � e22 ¼ �zw;yy; cxy � 2e12 ¼ �2zw;xy

ð14a;b; cÞ

vx � v11 ¼ w;xy; vy � v22 ¼ �w;xy; vxy � v12 ¼
1
2
ðw;yy �w;xxÞ

ð15a;b; cÞ

respectively.
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The two dimensional state of stress is described by the stress (5)
and couple stress (6) tensors which, after the appropriate replace-
ment of the Lamé constants by the modulus of elasticity E and the
Poisson’s ratio m (Timoshenko and Goodier, 1970), take the follow-
ing form

rab ¼
E

1� m2 ½mejjdab þ ð1� mÞeab� ð16Þ

mab ¼ 2Gl2vab ð17Þ

where G ¼ E=2ð1þ mÞ is the shear modulus.
We define, respectively, the bending moment and the couple

moment tensors as

Mab ¼
Z h=2

�h=2
rabzdz ð18Þ

Yab ¼
Z h=2

�h=2
mabdz ð19Þ

which in terms of their components are written

Mx � M11 ¼ �Dðw;xx þ mw;yyÞ; My � M22 ¼ �Dðw;yy þ mw;xxÞ
ð20a;bÞ

Mxy � M12 ¼ Dð1� mÞw;xy; Myx � M21 ¼ �M12 ð20c;dÞ

and

Yx � Y11 ¼ 2Dlw;xy; Yy � Y22 ¼ �2Dlw;xy ð21a;bÞ

Yxy � Y12 ¼ Dlðw;yy �w;xxÞ; Yyx � Y21 ¼ Y12 ð22c;dÞ

where

D ¼ Eh3

12ð1� m2Þ ð23aÞ

is the bending rigidity of the plate and

Dl ¼ l2Gh ¼ El2h
2ð1þ mÞ ð23bÞ

is the contribution of rotation gradients to the bending rigidity. The
ratio of the total rigidity Dþ Dl over the bending rigidity is

Dþ Dl

D
¼ 1þ Dl

D
¼ 1þ 6ð1� mÞ l2

h2 ð23cÞ

Substituting Eqs. (14a,b,c) and (15a,b,c) and Eqs. (20) and
(21a,b) into Eq. (9), in the absence of body force and body couple,
yields

dP ¼
Z

X
ð�Mx � YxyÞdw;xx þ ð2Mxy þ Yx � YyÞdw;xy

�
þ ð�My þ YxyÞdw;yy

�
dX�

Z
X

qdwdX

þ
Z

C

eMnndw;nds�
Z

C

eV ndwds ð24Þ

which, after the transformation of the domain integral using twice
the divergence theorem of Gauss, becomes

dP ¼ �
Z

X
ðMx þ YxyÞ;xx � ð2Mxy þ Yx � YyÞ;xy

�
þ ðMy � YxyÞ;yy þ q

�
dwdX�

Z
C

M�
nn � eMnn

� �
dw;nds

þ
Z

C
Q �n � eV n

� �
dwdsþ

Z
C

M�
ntdw;tds ð25Þ

where

Q �n ¼
@

@x
ðMx þ YxyÞ �

@

@y
Mxy þ

Yx � Yy

2

� �� 	
cos a

þ @

@y
ðMy � YxyÞ �

@

@x
Mxy þ

Yx � Yy

2

� �� 	
sin a ð26Þ
M�
nn ¼ ðMx þ YxyÞ cos2 aþ ðMy � YxyÞ sin2 a

� 2 Mxy þ
Yx � Yy

2

� �
cos a sin a ð27Þ

M�
nt ¼ Mxy þ

Yx � Yy

2

� �
ðcos2 a� sin2 aÞ þ ðMx �My þ 2YxyÞ

� cos a sin a ð28Þ

are the stress resultants and a ¼ x;n. Using Eqs. (20), (21a,b) they
become

Q �n ¼ Q n þ Q l
n ¼ �ðDþ DlÞðr2wÞ;n ð29Þ

M�
nn ¼ Mnn þMl

nn ¼ �ðDþ DlÞðw;nn þ mw;ttÞ ð30Þ
M�

nt ¼ Mnt þMl
nt ¼ ðDþ DlÞð1� mÞw;nt ð31Þ

The above stress resultants consist of two components. The first
component is due to pure plate bending and the second one is
due to the microstructure plate bending effect.

The last integral in Eq. (25) represents a shearing force term and
must be converted in order to be absorbed with the line integral
representing potential energy of the shearing force. Noting that
w;t ¼ w;s the integration by parts along the boundary C of the
aforementioned integral givesZ

C
M�

ntdw;sds ¼
Z

C
M�

ntdw

 �

;sds�
Z

C
M�

nt ;sdwds

¼
X

k

M�
nt

� �
kdw�

Z
C

M�
nt;sdwds ð32Þ

where M�
nt

� �
k is the jump of discontinuity of the twisting moment at

the k-th corner. Thus, Eq. (25) becomes

dP ¼ �
Z

X
ðMx þ YxyÞ;xx � ð2Mxy þ Yx � YyÞ;xy

�
þ ðMy � YxyÞ;yy þ q

�
dwdX�

Z
C

M�
nn � eMnn

� �
dw;nds

þ
Z

C
Q �n �M�

nt;s � eV n

� �
dwdsþ

X
k

M�
nt

� �
kdw ð33Þ

By applying the principle of total minimum potential energy,
i.e., dP ¼ 0 for the stable equilibrium and the fundamental lemma
of the calculus of variation (e.g. Reddy, 1999) the governing equi-
librium differential equation of the micro-plate is obtained as

ðMx þ YxyÞ;xx � ð2Mxy þ Yx � YyÞ;xy þ ðMy � YxyÞ;yy þ q ¼ 0 in X

ð34Þ

together with the boundary conditions

Q �n �M�
nt ;s ¼ eV n or w ¼ ~w ð35aÞ

M�
nn ¼ eMnn or w;n ¼ ~w;n ð35bÞ

on C andX
k

M�
nt

� �
k ¼ 0 or wk ¼ ~wk ð36Þ

at the k-th corner.
Substituting Eqs. (20) and (21a,b) into Eq. (34) yields the gov-

erning equation of the micro-plate in terms of the deflection

ðDþ DlÞr4w ¼ q in X ð37Þ

The boundary conditions (35a,b) can be rewritten in the most gen-
eral form, including elastic support or restraint, as

b1wþ b2V�n ¼ b3 ð38aÞ
c1w;n þ c2M�

nn ¼ c3 ð38bÞ
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where bi; ci are functions specified on C and

V�n ¼ Vn þ Vl
n ¼ �ðDþ DlÞ ðr2wÞ;n � ð1� mÞðw;ntÞ;s

h i
ð39Þ

is the effective shear force. Note that all conventional boundary
conditions can be derived from Eqs. (38) by specifying appropriately
the bi and ci. When the boundary C is non-smooth the following
corner boundary condition must be added to Eqs. (38) (Dym and
Shames, 1973)

a1kwk þ a2k M�
nt

� �
k ¼ a3k; a2k–0 ð40Þ

in which aik are constants specified at the k-th corner. One can ob-
serve that for l ¼ Dl ¼ 0 Eqs. (37), (35a,b) and (40) yield the govern-
ing equation and the general boundary conditions of the classical
plate theory.

In curved boundary the stress resultants M�
nn;V

�
n and M�

nt can be
transformed to the local coordinate system of n and s (boundary
curvilinear coordinates) using a similar procedure to that for clas-
sical plates (Katsikadelis, 1982). That is,

M�
nn ¼ �ðDþ DlÞ r2wþ ðm� 1Þðw;ss þ jw;nÞ

h i
ð41Þ

V�n ¼ �ðDþ DlÞ ðr2wÞ;n � ðm� 1Þðw;sn � jw;sÞ;s
h i

ð42Þ

M�
nt ¼ ðDþ DlÞðm� 1Þðw;sn � jw;sÞ ð43Þ

in which j ¼ jðsÞ is the curvature of the boundary.
Finally, the stress resultants at a point inside X are given as

M�
x ¼ �ðDþ DlÞðw;xx þ mw;yyÞ; M�

y ¼ �ðDþ DlÞðw;yy þ mw;xxÞ
ð44a;bÞ

M�
xy ¼ ðDþ DlÞð1� mÞw;xy ð44cÞ

Q �x ¼ �ðDþ DlÞðr2wÞ;x;Q �y ¼ �ðDþ DlÞðr2wÞ;y ð45a;bÞ

The solution of Eq. (37) can be written as

w ¼ �wþ ŵ ð46Þ
where �w is the homogeneous solution and ŵ a particular one.

The particular solution is any solution that satisfies only the
governing equation independently of the boundary conditions,
thus

r4ŵ ¼ q=ðDþ DlÞ ð47Þ
There are many techniques to approximate the particular solution
when the transverse load q is quite complex. However, when the
load is a polynomial of x; y the particular solution can be obtained
by transforming Eq. (47) into the complex domain and after succes-
sive integrations yields the particular solution. Subsequently, the
transformation produces the particular solution in the physical
space (Katsikadelis, 2002)

ŵ ¼ ŵðx; yÞ ð48Þ
The homogeneous solution is obtained from the following

boundary value problem

ðDþ DlÞr4 �w ¼ 0 in X ð49Þ
and

b1 �wþ b2V�n ¼ b3 � ðb1ŵþ b2
bV �nÞ ð50aÞ

c1 �w;n þ c2M�
nn ¼ c3 � c1ŵ;n þ c2

bM�
nn

� �
ð50bÞ

on C which is solved using the MFS.

4. The method of fundamental solutions

The MFS is considered as a boundary-type meshless method
that encompasses all the advantages of the boundary methods
such as the BEM unlike the presence of singularities in the funda-
mental solutions since it is always regular (Zeb et al., 2008). For the
problem at hand, both BEM (e.g. Bezine, 1978; Stern, 1979; Katsi-
kadelis and Armenakas, 1989) and MFS (e.g. Karageorghis and Fair-
weather, 1987; Karageorghis and Fairweather, 1988; Karageorghis
and Fairweather, 1989) have been successfully employed to the
solution of the biharmonic equation. However, the open issue of
the MFS is the location of the source points. Two schemes are re-
ferred in the bibliography for the location choice of the source
points, the adaptive and the fixed one. In this work the fixed
scheme is adopted due to its simple implementation, computa-
tional efficiency and convergence proof (Li and Zhu, 2009).

According to MFS, the solution of the boundary value problem
described by Eqs. (49) and (50) is approximated as

�wðPÞ ¼
XN

j¼1

cjG1ðP;Q jÞ þ
XN

j¼1

djG2ðP;QjÞ; P : fx; yg 2 X [ C ð51Þ

where cj and dj are 2N coefficients to be determined;
G1ðP;QjÞ;G2ðP;QjÞ are the fundamental solutions of the Laplace
and the biharmonic operator, respectively, given as

G1ðP;QÞ ¼
1

2p
lnðrPQ Þ; G2ðP;QÞ ¼

1
8p

r2
PQ lnðrPQ Þ ð52a;bÞ

and Qj are N source points distributed appropriately outside of the
domain X; rPQj ¼ jP � Qjj is the distance between the point P and the
source point Qj (see Fig. 1).

It is apparent that �wðPÞ given by Eq. (49) is a function of x; y.
Hence, its derivatives are obtained by direct differentiation.
Namely,

�w;klmnðPÞ¼
XN

j¼1

cjG1;klmnðP;Q jÞþ
XN

j¼1

djG2;klmnðP;Q jÞ; P : fx;yg2X[C

ð53Þ

where k; l;m; n ¼ 0; x; y. Note that �w;0000 � �w.
The next step of the method is to choose N points – usually dis-

tributed uniformly – along the boundary. Eqs. (51) and (53) when
applied at the N nodal points on C give

�w ¼ cG1 þ dG2 ð54Þ
�w;klmn ¼ cG1;klmn þ dG2;klmn; k; l;m;n ¼ 0; x; y ð55Þ

where G1;G2;G1;klmn;G2;klmn are known N � N matrices originating
from the differentiation of the fundamental solutions and their
derivatives and �w; �w;klmn are N � 1 vectors including the homoge-
neous solution �w and its derivatives at the N boundary points.

In order to determine the 2N unknown coefficients cj and dj the
homogeneous solution �w and its derivatives should satisfy the
boundary conditions (50) when they also applied at the N nodal
points on C, thus

B1 �wþ B2V�n ¼ b1 ð56aÞ
C1 �w;n þ C2M�

nn ¼ b2 ð56bÞ

where B1;B2;C1;C2 are known N � N diagonal matrices containing
the values of b1; b2; c1; c2 and b1;b2 are known N � 1 vectors.

After the substitution of Eqs. (54) and (55) into Eq. (56) yields a
2N linear system of algebraic equations from which the 2N un-
known values of the coefficients cj and dj are determined.
5. Numerical examples

On the base of the procedure described in previous section a
FORTRAN program has been written for establishing the bending
response of the Kirchhoff micro-plates. In all examples the results
have been obtained distributing uniformly the boundary nodes on



B.C.: Case (i ) 
a

x

y

b

B.C.: Case (ii)
a

x

y

b

B.C.: Case (iii)
a

x

y

b Free 

Fig. 2. Boundary conditions of the rectangular micro-plate. Case (i) all edges simply
supported, Case (ii) all edges fixed and Case (iii) two opposite edges simply
supported and the other two free.

Table 2
Central deflection and bending moments in the elliptical plate for two cases of
boundary conditions and various aspect ratios. Upper row: exact, Lower row:
computed.

B.C.: case(i) B.C.: case(ii)

a=b wc Mc
x Mc

y wc Mc
x Mc

y

1.0 0.0641 0.2060 0.2060 0.0156 0.0813 0.0813
0.0637 0.2062 0.2062 0.0156 0.0812 0.0812

1.5 0.0228 0.0987 0.1427 0.0055 0.0369 0.0562
0.0226 0.0968 0.1423 0.0055 0.0369 0.0562

2.0 0.0090 0.0525 0.0948 0.0021 0.0186 0.0364
0.0089 0.0512 0.0939 0.0021 0.0186 0.0364

Fig. 3. Normalized central deflection of both rectangular and elliptical micro-plates
versus the square of the non-dimensional material length scale parameter for three
different aspect ratios and Poisson’s ratios.

G.C. Tsiatas / International Journal of Solids and Structures 46 (2009) 2757–2764 2761
the boundary. The source points are placed equally on a virtual
boundary – outside the domain – at a distance 20% greater than
that of the actual one.

5.1. Rectangular and elliptical micro-plates

For reasons of comparison both rectangular ðN ¼ 84Þ and ellip-
tical ðN ¼ 200Þ plates with various aspect ratios are first investi-
gated using the classical Kirchhoff theory ðl ¼ Dl ¼ 0;D ¼ 1Þ. The
employed data are: q ¼ 1; a ¼ 1; m ¼ 0:30. Three different cases of
boundary conditions are examined for the rectangular plate,
namely, (i) all edges simply supported, (ii) all edges clamped and
(iii) two opposite edges simply supported and the other two free
(see Fig. 2), while the (i) simply supported and (ii) clamped cases
are examined for the elliptical plate. In Tables 1 and 2 results for
the central deflection and bending moments in rectangular and
elliptical plates for three different aspect ratios are presented,
which are in excellent agreement as compared with those obtained
from the analytical solutions of Timoshenko and Woinowsky-Krie-
ger (1959).

Afterwards, the plate was analyzed taking into account the
microstructural effect, as measured by the material length scale
parameter lðDþ Dl ¼ 1þ 6ð1� mÞðl=hÞ2Þ. In Fig. 3 the normalized
central deflection w0=wc

0 of both rectangular and elliptical micro-
plates versus the square of the non-dimensional material length
scale parameter l=h is depicted for three different aspect ratios
and Poisson’s ratios ðm ¼ 0:25;0:30;0:35Þ while the aforemen-
tioned boundary conditions are considered. From the presented re-
sults can be concluded that the deflection of the plate decreases
nonlinearly with the increase of l=h. This response presents a sim-
ilarity to that obtained by Papargyri-Beskou and Beskos (2008) for
a square simply supported gradient elastic plate, in which the nor-
malized deflection decreases with increasing the normalized gradi-
ent coefficient. From Fig. 3 can also be pointed out that in both
rectangular and elliptical micro-plates the rate of decrease of the
normalized central deflection depends only on the Poisson’s ratio
and is totally independent on the boundary conditions and the as-
pect ratio. That is, for a given Poisson’s ratio and external applied
lateral load, the normalized deflection is the same for all plates.
From the same figure, it is also observed that the deflection of
the micro-plates decrease with the increase of the Poisson’s ratio.
Table 1
Central deflection and bending moments in the rectangular plate for three cases of bound

B.C.: case(i) B.C.: case(ii)

b=a wc Mc
x Mc

y wc

1.0 0.0406 0.0479 0.0479 0.0013
0.0406 0.0479 0.0479 0.0013

1.5 0.0077 0.0812 0.0498 0.0022
0.0077 0.0812 0.0498 0.0022

2.0 0.0101 0.1017 0.0464 0.0025
0.0101 0.1016 0.0463 0.0025
This was also concluded by Ma et al. (2008) studying the micro-
structure effect of a simply supported Timoshenko beam model
based on the modified couple stress theory of Yang et al. (2002).

Moreover, in Figs. 4–8 the deflection profiles at y ¼ 0 for both
rectangular ða=b ¼ 1=1Þ and elliptical ða=b ¼ 0:5=0:63662Þ micro-
plates are presented for various values of the non-dimensional
material length scale parameter l=h, as obtained by the classical
Kirchhoff theory and by the proposed plate model ðm ¼ 0:30Þ. It
can be seen that, for all the boundary condition cases, the deflec-
tions estimated by the proposed model are always smaller than
that by the classical theory. Also, the differences between the
two models reduce as the thickness of the plate increases (the ratio
l=h decrease) indicating that the size effect is only significant at the
micron-scale. To the same conclusion came Park and Gao (2006)
and Ma et al. (2008) studying the deflections of a cantilever
ary conditions and various aspect ratios. Upper row: exact, lower row: computed.

B.C.: case(iii)

Mc
x Mc

y wc Mc
x Mc

y

0.0231 0.0231 0.0131 0.1225 0.0271
0.0231 0.0231 0.0131 0.1226 0.0271

0.0368 0.0203 — – –
0.0368 0.0203 0.0129 0.1228 0.0339

0.0412 0.0158 0.0128 0.1231 0.0366
0.0412 0.0158 0.0128 0.1233 0.0365
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Fig. 4. Deflection profiles at y ¼ 0 of the rectangular micro-plate. Boundary
conditions: Case (i).

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x

0.0016

0.0012

0.0008

0.0004

0

w

l/h=0.0 (Classical theory)
l/h=0.1
l/h=0.2
l/h=0.3
l/h=0.4

Fig. 5. Deflection profiles at y ¼ 0 of the rectangular micro-plate. Boundary
conditions: Case (ii).
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Fig. 6. Deflection profiles at y ¼ 0 of the rectangular micro-plate. Boundary
conditions: Case (iii).
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Fig. 7. Deflection profiles at y ¼ 0 of the elliptical micro-plate. Boundary condi-
tions: Case (i).
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Fig. 8. Deflection profiles at y ¼ 0 of the elliptical micro-plate. Boundary condi-
tions: Case (ii).

Table 3
Central deflection and maximum absolute bending moment in the rectangular and
elliptical micro-plates ðV ¼ 1; l=h ¼ 0:3Þ.

Simply supported Clamped

a=b w0 jMjmax w0 jMjmax

Rectangle: 1/1 0.0030 0.0479 0.00092 0.0506
Ellipse: 0.5/0.63662 0.0043 0.0696 0.00105 0.0465
Rectangle: 1.12838/0.88623 0.0028 0.0395 0.00083 0.0530
Ellipse: 0.56419/0.56419 0.0047 0.0656 0.00115 0.0398
Rectangle: 1.2/0.83333 0.0026 0.0541 0.00074 0.0513
Ellipse: 0.6/0.53052 0.0046 0.0687 0.00112 0.0434
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Bernoulli-Euler beam and a simply supported Timoshenko beam,
respectively, using the same modified couple stress theory.

Finally, in order to examine the influence of the micro-plate
shape on the deflection and on the stress resultants, the bending
response of a rectangular and of an elliptical micro-plate was
investigated keeping fixed the volume of the material V. In Table
3 results for the central deflection and the maximum absolute
bending moment are presented for simply supported and clamped
micro-plates ðV ¼ 1; l=h ¼ 0:3Þ. It is obvious that in the simply sup-
ported boundary condition case the rectangular micro-plate
achieves both smaller deflection and maximum bending moment
than the elliptical one. In the clamped boundary condition case
only the deflection of the rectangular micro-plate is smaller while
the maximum bending moment is always higher than that of the
elliptical one.
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5.2. Micro-plate with arbitrary shape

In order to demonstrate the capability of the method to treat
plates with complex geometries, a simply supported micro-plate
with arbitrary shape has been analyzed ðN ¼ 100Þ. The boundary
of the plate is defined by the curve r ¼ 0:8ðj sin hj3þ
j cos hj3Þ;0 6 h 6 2p. The employed data are: q ¼ 1; m ¼ 0:30;
Dþ Dl ¼ 1þ 6ð1� mÞðl=hÞ2 and l=h ¼ 0:2. The contours of the de-
flected surface, the stress resultant M�

x and the principal stress

resultant M�
1 ¼

M�xþM�y
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�x�M�y

2

� �2
þ M�

xy

� �2
r

are depicted in Figs.

9–11, respectively.

6. Conclusions

In this paper a new Kirchhoff plate model was developed for the
static analysis of isotropic micro-plates with arbitrary shape con-
taining only one internal material length scale parameter which
can capture the size effect. From a detailed variational procedure
the governing equilibrium equation and the most general bound-
ary conditions of the micro-plate are derived in terms of the deflec-
tion using the principle of minimum potential energy. The
resulting boundary value problem is of the fourth order and it is
solved using the Method of Fundamental Solutions (MFS). The
main conclusions that can be drawn from this investigation are
summarized as:

� The present formulation is alleviated from the drawback of
existing micro-plate models, the analytic solutions of which
are restricted only to micro-plates with simple geometric
shapes. That is, the proposed plate model is capable of handling
micro-plates with complex geometries and mixed boundary
conditions.

� The deflection of the micro-plates decreases nonlinearly with
the increase of material length parameter. It depends only on
the Poisson’s ratio and is totally independent on the boundary
conditions and the aspect ratio.

� The increase of the Poisson’s ratio produces decrement in the
deflection of the micro-plate.
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Fig. 9. Contours of the deflected surface in the micro-plate with arbitrary shape.
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Fig. 11. Contours of the principal stress resultant M�
1 in the micro-plate with

arbitrary shape.
� For all the examined boundary condition cases, the deflection
estimated by the proposed model is always smaller than that
by the classical theory.

� The difference of the results obtained by the two models (pres-
ent and classical) reduces as the thickness of the plate increases
(the ratio l=h decrease) indicating that the size effect is only sig-
nificant at the micron-scale.

� For rectangular and elliptical micro-plates with fixed material
volume it is proved that in the simply supported boundary con-
dition case the rectangular micro-plate achieves both smaller
deflection and maximum bending moment than the elliptical
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one. In the clamped boundary condition case only the deflection
of the rectangular micro-plate is smaller while the maximum
bending moment is always higher than that of the elliptical one.
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