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Abstract

We show that repeated-root cyclic codes over a finite chain ring are in general not principally generated. Repeated-root negacyclic
codes are principally generated if the ring is a Galois ring with characteristic a power of 2. For any other finite chain ring they are in
general not principally generated. We also prove results on the structure, cardinality and Hamming distance of repeated-root cyclic
and negacyclic codes over a finite chain ring.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

When studying cyclic codes over finite fields, most authors assume from the outset that the length n of the code is
not divisible by the characteristic p of the field. This ensures that xn − 1, and therefore the generator polynomial of any
cyclic code, will have no multiple factors, and hence no repeated roots in an extension field. Cyclic codes where p|n
were called “repeated-root cyclic codes” and have been studied in [7,20,12] (strictly speaking, only the codes where
p|n and the generator polynomial has multiple factors were called repeated-root codes, but here we will use this term
to refer to all codes with p|n). We will call “simple-root cyclic codes” the codes with n not divisible by p.

Cyclic codes over a finite ring rather than a field have been extensively studied over the last few years, motivated
by [10]. Throughout this paper R will denote a finite chain ring (e.g. Zpa , the ring of integers modulo a power of a
prime p, or a Galois ring), R its residue field and p the characteristic of R. A cyclic code of length n over R is an ideal
in R = R[x]/〈xn − 1〉. The structure of such codes was described in [6,11] for R = Zpa , and in [17] for the more
general case of a finite chain ring. Again, it is assumed in the aforementioned papers that n is not divisible by p i.e. we
are dealing with simple-root cyclic codes. All proofs make essential use of this assumption and the proof techniques
cannot be directly adapted to the case when p|n.

Repeated-root cyclic codes over finite rings have been less studied. The structure of cyclic codes over a finite chain
ring (covering both the simple-root and repeated-root case) was derived in [19] using Gröbner bases techniques. Similar
results on the structure of ideals in R[x] were proven in [14,15] using different techniques. Repeated-root cyclic codes
over Z4 for different particular cases of n were studied in [1,2,4].
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Negacyclic codes of length n over R are ideals in Q = R[x]/〈xn + 1〉. Again, it is usually assumed that p does not
divide n and we will distinguish between repeated-root and simple-root negacyclic codes according to whether p divides
n or not. For R = Z4, simple-root negacyclic codes have been studied in [21] and repeated-root negacyclic codes in [5].

In this paper, we are studying several issues regarding repeated-root cyclic and negacyclic codes over a finite chain
ring R. The main result is in Section 3, Theorem 3.4. We show that when p|n,R is not a principal ideal ring, which means
that for any n a multiple of p there exist repeated-root cyclic codes of length n which are not principally generated.
This is in contrast to the situation for the simple-root cyclic codes, which are always principally generated, see [6].
Simple-root negacyclic codes too are always principally generated. For repeated-root negacyclic codes the situation is
slightly more complicated: we show that Q is a principal ideal ring when R is a Galois ring and p = 2, but in all other
cases it is not principal. The main ingredient in the proof of these results is a theorem of [8,9], which we recall in a
slightly generalised form and with a simplified proof. For the particular case of codes of even length over R = Z4 our
results show that repeated-root negacyclic codes are always principal, whereas repeated-root cyclic codes are not. We
retrieve thus results of [1,2,4,5].

In the remainder of the sections, the results on the structure, cardinality and Hamming distance of simple-root cyclic
codes described in [19] (see also [6,11]) are generalised to include both simple-root and repeated-root cyclic codes.
Namely in Section 5 we determine a generator matrix and the cardinality of a cyclic code and in Section 6 we show
that the Hamming distance of a repeated-root cyclic code over R equals the Hamming distance of a certain, explicitly
constructed, repeated-root cyclic code over the residue field of R. In proving these results we make use of the Gröbner
basis of a cyclic code derived in [19] and recalled in Section 4. The canonical generating systems described in [14,15]
could also be used.

Finally, in Section 7 we show that the results of Sections 4–6 hold for negacyclic codes as well.

2. Notation

Throughout this paper R will denote a commutative finite chain ring which is not a field. Recall that a finite chain
ring is a finite ring whose ideals are linearly ordered. Examples of finite chain rings include Zpa (the ring of integer
residues modulo a prime p, with a an integer, a�1) and Galois rings. The main properties of R that are used in this
paper are collected below (see for example [13,22]):

Proposition 2.1. A finite chain ring R is a local principal ideal ring with maximal ideal N(R), the nilradical of R;
the elements of R\N(R) are units. Let � be a fixed generator of N(R) and � the nilpotency index of � i.e. the smallest
positive integer for which �� = 0.

(i) The distinct proper ideals of R are 〈�i〉, i = 1, . . . , � − 1.
(ii) For any element r ∈ R\{0} there is a unique i and a unit u such that r = u�i , where 0� i�� − 1 and u is unique

modulo ��−i .
(iii) For any r ∈ R, if r�i = 0 then r ∈ 〈��−i〉.

From now on, � and � will be as in Proposition 2.1. We will denote by R = R/〈�〉 the residue field of R and by the
prime number p the characteristic of R. Recall that the characteristic of R will then be a power of p.

We will also denote by r the image of an element r ∈ R under the canonical projection from R to R. This projection
extends naturally to a projection from R[x] to R[x].

Example 2.2. (i) For R = Zpa we have � = p, � = a, R = Zp and r = r mod p.
(ii) If R is a Galois ring R = GR(pa, m) = Zpa [x]/〈t〉 with t a basic irreducible polynomial of degree m, then � = p,

� = a, R = GF(pm) and r = r mod p.

A cyclic code of length n over R is an ideal in R = R[x]/〈xn − 1〉. A negacyclic code of length n over R is an ideal
in Q = R[x]/〈xn + 1〉.
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A polynomial over a field is called square-free if it has no multiple irreducible factors in its decomposition. The
square-free part of a polynomial over a field is the product of all its distinct irreducible factors.

3. Repeated-root cyclic codes over a finite chain ring are not principally generated

Cyclic and negacyclic codes over a field (regardless of being simple-root or repeated-root) are always principal ideals
and admit as generator a divisor of xn − 1 (or xn + 1, respectively).

It was shown in [6, Corollary of Theorem 6] that simple-root cyclic codes over Zpa are always principal ideals but
they do not always admit as generator a divisor of xn − 1. Using the same technique the result can be generalised as
follows ([17, Theorem 4.6], cf. also [8]):

Theorem 3.1. Let f ∈ R[x] be a monic polynomial such that f is square-free. Then R[x]/〈f 〉 is a principal ideal
ring.

Hence simple-root cyclic and negacyclic codes over R are principally generated.
For repeated-root cyclic codes it was proven in [1,4] that for R = Z4 and n = 2e or n = 2k with k odd, R is not a

principal ideal ring.
To examine the general case we will need the following theorem, which is a generalisation of [8, Theorem 4]; see

also [9, Theorem 2]. We simplified the proof and included it in the appendix for completeness.

Theorem 3.2 (cf. Cazaran and Kelarev [8,9]). Let f ∈ R[x] be a monic polynomial such that f is not square-free.
Let g, h ∈ R[x] be such that f = gh and g is the square-free part of f . Write f = gh + �u with u ∈ R[x]. Then
R[x]/〈f 〉 is a principal ideal ring iff u �= 0 and u and h are coprime.

Note that in the original theorems [8, Theorem 4, 9, Theorem 2] the polynomials g, h, u are constructed in a unique
way and the construction relies on the structure of the particular ring, whereas here we allow any choice for the
polynomials g, h, u, provided they satisfy the looser properties mentioned in the theorem.

Corollary 3.3. With the notations of Theorem 3.2, if f and h have a non-trivial common factor as polynomials in R[x],
then R[x]/〈f 〉 is not a principal ideal ring.

Proof. If u = 0, by Theorem 3.2, R[x]/〈f 〉 is not a principal ideal ring. So let us assume u �= 0. Let d ∈ R[x] be the
non-trivial common divisor of f and h. Write f = df 1 and h = dh1 with f1, h1 ∈ R[x]. We have df 1 = gdh1 + �u,
hence �u = d(f1 − gh1). This means d(f1 − gh1) = 0, which implies (f1 − gh1) = 0, since d �= 0. Hence we can
write f1 − gh1 = �u1 for some u1 ∈ R[x]. Then �u = �du1, so u = du1. Hence u and h are not coprime, as they have
das a common factor. By Theorem 3.2 we can now infer that R[x]/〈f 〉 is not a principal ideal ring. �

Theorem 3.4. Let R be a finite chain ring and p the characteristic of its residue filed. Let R = R[x]/〈xn − 1〉 and
Q = R[x]/〈xn + 1〉. If p|n then:

(i) R is not a principal ideal ring.
(ii) If p > 2 or if p = 2 and R is not a Galois ring then Q is not a principal ideal ring.

(iii) If p = 2 and R is a Galois ring then Q is a principal ideal ring.

Proof. Since p|n, we can write n as n = kpb for some b�1 and k not divisible by p. In R[x] we have:

xkpb − 1 = (xk − 1)p
b

,

xkpb + 1 = (xk + 1)p
b

since (
pb

i
) ≡ 0(mod p) for all 0 < i < pb and (−1)p

b = −1 if p is odd and (−1)p
b = 1 = −1 if p = 2.
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(i) Putting f = xn − 1, g = xk − 1 and h = (xk − 1)p
b−1 with f, g, h ∈ R[x] we have that f = gh and g is the

square-free part of f . Note that xk − 1 divides f = xkpb − 1 in R[x]. Hence xk − 1 is a common factor of f and h, so
by Corollary 3.3, R is not a principal ideal ring.

(ii) and (iii) Put f = xn + 1, g = xk + 1 and h = (xk + 1)p
b−1 with f, g, h ∈ R[x]. We have that f = gh and g is

the square-free part of f .
Consider first the case p > 2. Since pb is odd, xk + 1 is a factor of f = xkpb + 1. Hence xk + 1 is a common factor

of f and h, so by Corollary 3.3 Q is not a principal ideal ring.
Now assume p = 2. There is a u ∈ R[x] such that f = gh + �u. We determine �u:

�u = f − gh = xk2b + 1 − (xk + 1)2b = −
2b−1∑
i=1

(
2b

i

)
xki .

By Kummer’s Theorem we know that all (
2b

i
) with i = 1, . . . , 2b − 1 are divisible by 4, except for (

2b

2b−1 ), which is

divisible by 2 but not by 4. Hence: �u = 2txk2b−1 + 4w for some odd integer t and some w ∈ R[x]. If R is a Galois
ring then � = 2 so u = xk2b−1

. Obviously u is coprime to h, hence by Theorem 3.2, Q is a principal ideal ring.
Assume now R is not a Galois ring. By [13, Lemma XVII.4], any finite chain ring R contains a Galois ring T =

GR(pa, r) and �s = pv for some s�1 and v ∈ T [x] a unit. Moreover, when R is not a Galois ring one can show that
s�2. We have p = 2 = �sv−1 and so �u = �sv−1txk2b−1 + �2sv−2w. Hence u = 0 and by Theorem 3.2, Q is not a
principal ideal ring. �

For the important particular case R = Z4, Theorem 3.4 becomes:

Corollary 3.5. If n is even then Z4[x]/〈xn + 1〉 is a principal ideal ring and Z4[x]/〈xn − 1〉 is not a principal ideal
ring.

Hence all repeated-root negacyclic codes over Z4 are principal. For any even n there are repeated-root cyclic codes
over Z4 which are not principal. We retrieved therefore results of [1,2,4,5].

4. Generators of cyclic codes over a finite chain ring

Generators of a particular form for ideals in R[x] were described in [14,15]. The structure of minimal Gröbner
bases for ideals in R[x] was described in [19]. It turns out that the two notions coincide.

We recall below [19, Theorem 4.2], which describes Gröbner bases for cyclic codes over R. As usual, elements of
R are identified with polynomials of degree less than n.

Theorem 4.1. Let C ⊂ R be a non-zero cyclic code. Then C admits a set of generators

C = 〈�j0g0, . . . , �
js gs〉,

where 0�s�� − 1 and
(i) 0�j0 < · · · < js �� − 1

(ii) gi monic for i = 0, . . . , s,
(iii) n > deg(g0) > deg(g1) > · · · > deg(gs),
(iv) �ji+1gi ∈ 〈�ji+1gi+1, . . . �js gs〉 in R[x], for i = 0, . . . , s − 1,
(v) �j0(xn − 1) ∈ 〈�j0g0, . . . , �js gs〉 in R[x].

Moreover this set of generators is a strong Gröbner basis.

The following is an immediate consequence of [18, Theorem 7.5]:
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Proposition 4.2. Let C ⊂ R be a non-zero cyclic code. A Gröbner basis of C as described in Theorem 4.1 is not
necessarily unique. However, the cardinality of the basis, the degrees of its polynomials and the exponents j0, . . . , js

are unique.

Remark 4.3. Note that Theorem 4.1 is a structure theorem for both simple-root and repeated-root cyclic codes.
Conditions (iv) and (v) imply that gs |gs−1| . . . |g0|xn − 1. For the simple-root case we show in [19, Theorem 4.3] that
conditions (iv) and (v) can be replaced by the stronger condition gs |gs−1| . . . |g0|xn − 1 retrieving thus the structure
theorems of [6,17]. For repeated-root codes, conditions (iv) and (v) cannot be improved in general: there are codes for
which no set of generators of the form given in Theorem 4.1 has the property gs |gs−1| . . . |g0|xn − 1 (see [19, Example
3.3]).

5. The generator matrix and the cardinality of cyclic codes over a finite chain ring

In [17, Theorem 4.5] we determine a generator matrix and the cardinality of a simple-root cyclic code over a finite
chain ring. The result can be generalised to arbitrary cyclic codes (repeated-root or simple-root) as follows:

Theorem 5.1. Let C be a cyclic code given by a set of generators as in Theorem 4.1. Denote di =deg(gi) for i=0, . . . , s

and d−1 = n. Then

(i) The matrix consisting of the rows corresponding to the codewords �ji xkgi with i=0, . . . , s and k=0, . . . , di−1 −
di − 1 is a generator matrix for C.

(ii) |C| = |R|
∑s

i=0 (�−ji )(di−1−di ).

Proof. By Theorem 4.1, the set of generators G = {�j0g0, . . . , �js gs} is also a strong Gröbner basis. Hence for any
g ∈ R[x] with deg(g) < n we have that g represents a codeword in C iff g strongly reduces to 0 w.r.t. G. Let g be such
a polynomial. No matter what polynomial in G is used at each reduction step, the final result of reducing g will still be
0. We can therefore impose that we will always use �ji gi with minimum possible i. The reduction becomes then unique
and yields polynomials v0, . . . , vs ∈ R[x] with g = ∑s

i=0 vi�ji gi , deg(vi) < di−1 − di and vi unique modulo ��−ji for
i = 0, . . . , s. There are therefore |R|(�−ji )(di−1−di ) possibilities of choosing each vi . �

The formula for the cardinality of the code, as well as the size of the generator matrix in the theorem above, do not
depend on the choice of minimal Gröbner basis, as s, di and ji are unique by Proposition 4.2.

Remark 5.2. Note that a generator matrix for a cyclic code C cannot be directly constructed from an arbitrary (non-
Gröbner basis) set of generators of C. Another advantage of describing C by a Gröbner basis rather than an arbitrary
set of generators is that we have an immediate method for error detection. Namely, a polynomial of degree smaller
than n represents a codeword if and only if it strongly reduces to 0 with respect to the Gröbner basis. Equivalently, one
can use for error detection a parity check matrix derived from a generator matrix. However, as noted earlier, we would
need a Gröbner basis in the first place for deriving a generator matrix.

6. The Hamming distance of cyclic codes over a finite chain ring

For simple-root cyclic codes over R it was shown in [16] that their Hamming distance coincides with the Hamming
distance of certain, explicitly constructed, simple-root cyclic codes over R. Here we will extend this result to include
repeated-root cyclic codes.

We will denote by dH () and wtH () the Hamming distance and Hamming weight, respectively.

Theorem 6.1. Let C be a cyclic code given by a set of generators as in Theorem 4.1. We have: dH (C) = dH (〈gs〉).

Proof. As in [16, Theorem 4.2] one can show that dH (C) = dH (C ∩ 〈��−1〉) = dH ((C : ��−1)) where (C : ��−1) is
the ideal quotient (C : ��−1) = {g ∈ R|��−1g ∈ C} . (The main idea in the proof of this result is that multiplying a
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codeword by � decreases its weight, so when looking for words of minimum Hamming weight in C is suffices to look in
C ∩ 〈��−1〉. The second equality follows from the fact that for any g ∈ R, both ��−1g and g have non-zero coefficients
exactly in those positions where g has unit coefficients, and so wtH (��−1g) = wtH (g).)

We have C ∩ 〈��−1〉 = 〈��−1gs〉 as the set of generators in Theorem 4.1 is also a strong Gröbner basis and we can
reduce any element of C ∩ 〈��−1〉 to 0 using only �js gs . Hence (C : ��−1) = {g ∈ R|��−1g ∈ 〈��−1gs〉} = 〈gs, �〉 and
so (C : ��−1) = 〈gs〉. We have therefore dH (C) = dH ((C : ��−1)) = dH (〈gs〉) as required. �

Hence if C is a repeated-root cyclic code, its Hamming distance equals the Hamming distance of 〈gs〉. The latter is
a repeated-root cyclic code over the finite field R for which the results of [12,7,20] concerning the Hamming distance
apply.

7. Negacyclic codes

The results in Sections 4–6 also hold for negacyclic codes, reformulated accordingly. We obtain valid theorems if
we replace “C is a cyclic code” by “C is a negacyclic code” and xn − 1 by xn + 1 in Theorems 4.1, 5.1 and 6.1.

Appendix

Proof of Theorem 3.2. It is known that a finite ring is principal iff its radical is principal (see [3, Propositions 8.7 and
8.8] and also [9, Lemma 3]). The ring R[x]/〈f 〉 is finite. It is easy to see that N(R[x]/〈f 〉)=〈g〉 and N(R[x]/〈f 〉)=
〈g, �〉, where N( ) denotes the nilradical. Hence it suffices to prove that 〈g, �〉 is principal iff u �= 0 and u and h are
coprime.

Assume first that u �= 0 and u and h are coprime. We will show that 〈g, �〉 is principal, namely it is generated by
v =g + �b where b ∈ R[x] is such that b=g/ gcd(g, u). In R[x]/〈f 〉 we have vh= (g + �b)h=gh+ �bh= �(bh−u).
Note that bh − u and f are coprime, since any factor of f is either a factor of u or a factor of bh but not both. By [13,
Theorem XIII.4], f and u − bh are coprime so u − bh is invertible in R[x]/〈f 〉. Hence � = vh(bh − u)−1 ∈ 〈v〉 and
thereforeg = v − �b ∈ 〈v〉, so 〈g, �〉 = 〈v〉.

For the converse result, assume that 〈g, �〉 is a principal ideal and let v be its generator. Since 〈g, �〉 = 〈g〉 = 〈v〉 we
may assume that v = g. Write v as v = g + �w for some w ∈ R[x]. Since � ∈ 〈v〉, there are A, B ∈ R[x] such that
� = Af + Bv in R[x]. Hence 0 = Af + Bv = Agh + Bg = g(Ah + B). We have therefore that B = −Ah + �c for
some c ∈ R[x]. Now � = Af + Bv becomes � = A(gh + �u) + (−Ah + �c)(g + �w) = �(Au − Ahw + gc) + �2cw.
Therefore 1 = A(u − hw) + gc i.e. u − hw and g are coprime in R[x]. Since all irreducible factors of h are factors of
g, it follows that u �= 0 and h and u are coprime, as required. �
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[17] G.H. Norton, A. Sălăgean, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra Engng. Comm. Comput. 10 (2000)

489–506.
[18] G.H. Norton, A. Sălăgean, Strong Gröbner bases for polynomials over a principal ideal ring, Bull. Austr. Math. Soc. 64 (2001) 505–528.
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