JOURNAL OF COMBINATORIAL THEORY, Series A 34, 248-251 (1983)

Note

There Are No De Bruijn Sequences of Span nwith Complexity $2^{n-1} + n + 1$

RICHARD A. GAMES

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523

Communicated by the Managing Editors

Received March 19, 1982

If $\mathbf{s} = (s_0, s_1, ..., s_{2n-1})$ is a binary de Bruijn sequence of span *n*, then it has been shown that the least length of a linear recursion that generates \mathbf{s} , called the complexity of \mathbf{s} and denoted by $c(\mathbf{s})$, is bounded for $n \ge 3$ by $2^{n-1} + n \le c(\mathbf{s}) \le$ $2^n - 1$. A numerical study of the allowable values of $c(\mathbf{s})$ for $3 \le n \le 6$ found that all values in this range occurred except for $2^{n-1} + n + 1$. It is proven in this note that there are no de Bruijn sequences of complexity $2^{n-1} + n + 1$ for all $n \ge 3$.

A binary de Bruijn sequence $s = (s_0, s_1, s_2, ...)$ of span *n* is a periodic sequence of period 2ⁿ with the property that the 2ⁿ vectors $s_i = (s_i, s_{i+1}, ..., s_i)$ s_{i+n-1} , $i = 0, 1, 2, ..., 2^n - 1$ are all the distinct binary n tuples. In this note the sequence s will be represented by a single period, $s = (s_0, s_1, ..., s_{2^n-1})$. If s is a binary de Bruijn sequence of span n, then [1] showed that the least length of a linear recursion that generates s, called the complexity of s and denoted by c(s), is bounded for $n \ge 3$ by $2^{n-1} + n \le c(s) \le 2^n - 1$. A numerical study of the allowable values of c(s) for $3 \le n \le 6$ found that all values in this range occurred except for $2^{n-1} + n + 1$, see [1]. We show that there are no de Bruijn sequences of complexity $2^{n-1} + n + 1$ for all $n \ge 3$ by first showing that the weight of one period of $D^{n}(s)$ is twice an odd number. Here D = E + 1, where E is the sequence shift operator, $(Es)_i = s_{i+1}$; so that if $\mathbf{s} = (s_0, s_1, ..., s_{2^n-1})$, then $D\mathbf{s} = ((D\mathbf{s})_0, (D\mathbf{s})_1, ..., (D\mathbf{s})_{2^n-1}) = (s_0 + s_1, s_1 + s_1)$ $s_2, ..., s_{2^n-1} + s_0$). We remark that if s is regarded as a sequence of n tuples, $\mathbf{s} = (\mathbf{s}_0, \mathbf{s}_1, ..., \mathbf{s}_{2^n-1})$, then Ds corresponds to a sequence of (n-1) tuples, namely, $(\hat{D}\mathbf{s}_0, \hat{D}\mathbf{s}_1, ..., \hat{D}\mathbf{s}_{2^{n-1}})$, where $\hat{D}\mathbf{s}_i = \hat{D}(s_i, s_{i+1}, ..., s_{i+n-1}) = (s_i + s_{i+1}, s_{i+1} + s_{i+2}, ..., s_{i+n-2} + s_{i+n-1})$. So $\hat{D}: GF(2)^n \to GF(2)^{n-1}$ is the homomorphic definition of the second phism of [3] which maps the de Bruijn graph G_n to the de Bruijn graph G_{n-1} .

A de Bruijn sequence $s = (s_0, s_1, ..., s_{2^n-1})$ of span *n* satisfies an *n*-stage

0097-3165/83 \$3.00

nonlinear recursion; that is, s is a sequence of maximum period 2^n generated by some *n*-stage (nonlinear) feedback shift register. This recursion has the form, for $i = 0, 1, 2, ..., 2^n - 1$ (all subscripts computed modulo 2^n) $s_{i+n} =$ $s_i + f(s_{i+1}, s_{i+2}, ..., s_{i+n-1})$ for some Boolean function $f: GF(2)^{n-1} \to GF(2)$ [2, p. 115]. The weight of f, denoted by wt(f), is the number of ones in the image vector $(f(\mathbf{x}): \mathbf{x} \in GF(2)^{n-1})$. The weight of a periodic sequence s, denoted by wt(s), is the number of ones in a single period of s.

THEOREM 1. If s is a de Bruijn sequence of span n generated by the Boolean function $f: GF(2)^{n-1} \to GF(2)$, then wt(f) is odd.

Proof. See [2, p. 122].

In general, if $g(E) = a_0 + a_1E + \dots + a_{n-1}E^{n-1}$ with $a_i \in GF(2)$, $i = 0, 1, \dots, n-1$, and if $(x_0, x_1, \dots, x_{n-1}) \in GF(2)^n$ (regarded as a sequence of period n), then $g(E) \mathbf{x} = ((g(E) \mathbf{x})_0, (g(E) \mathbf{x})_1, \dots, (g(E) \mathbf{x})_{n-1}))$, where $(g(E) \mathbf{x})_i = a_0 x_i + a_1 x_{i+1} + \dots + a_{n-1} x_{i+n-1}$ (subscripts mod n). For convenience we write $g(E)_i \mathbf{x}$ for $(g(E) \mathbf{x})_i$ so that, in particular, $g(E)_0$ can be regarded as a linear transformation from $GF(2)^n$ to GF(2) defined by $g(E)_0$: $(x_0, x_1, \dots, x_{n-1}) \mapsto a_0 x_0 + a_1 x_1 + \dots + a_{n-1} x_{n-1}$.

THEOREM 2. If $g(E) = a_0 + a_1E + \dots + a_{n-1}E^{n-1}$ with $a_i \in GF(2)$, $i = 0, 1, \dots, n-1$, and some $a_i \neq 0$, then $|\{\mathbf{x} \in GF(2)^n : g(E)_0 | \mathbf{x} = 0\}| = |\{\mathbf{x} \in GF(2)^n : g(E)_0 | \mathbf{x} = 1\}| = 2^{n-1}$.

Proof. Here, $g(E)_0$ is a nonzero linear transformation so image $(g(E)_0) = GF(2)$ and kernel $(g(E)_0) = \{\mathbf{x} \in GF(2)^n : g(E)_0 | \mathbf{x} = 0\}$. Since image $(g(E)_0) \cong GF(2)^n$ /kernel $(g(E)_0)$, |kernel $(g(E)_0| = 2^{n-1}$ and $|\{\mathbf{x} \in GF(2)^n : g(E)_0 | \mathbf{x} = 1\}| = 2^n - 2^{n-1} = 2^{n-1}$.

COROLLARY 3. Let s be a binary de Bruijn sequence of span n, then

$$\operatorname{wt}(\mathbf{s}) = \operatorname{wt}(D\mathbf{s}) = \cdots = \operatorname{wt}(D^{n-1}\mathbf{s}) = 2^{n-1}.$$

Proof. Let $g(E) = (E+1)^k = D^k$, k = 0, 1, 2, ..., n-1, and let $\mathbf{s} = (\mathbf{s}_0, \mathbf{s}_1, ..., \mathbf{s}_{2n-1})$. Writing, as before, $D_i^k \mathbf{s}$ for $(D^k \mathbf{s})_i$, then $D_i^k \mathbf{s} = D_0^k \mathbf{s}_i$ since degree $D^k \leq n-1$ so that $D_i^k \mathbf{s}$ can only involve at most $s_i, s_{i+1}, ..., s_{i+n-1}$, which are the coordinates of \mathbf{s}_i . Thus, $D^k \mathbf{s} = (D_0^k \mathbf{s}_0, D_0^k \mathbf{s}_1, ..., D_0^k \mathbf{s}_{2n-1})$, and now the theorem applies since $GF(2)^n = \{\mathbf{s}_0, \mathbf{s}_1, ..., \mathbf{s}_{2n-1}\}$. See also [1, Theorem 8].

In Theorem 4 the weight of $D^n(s)$ is considered.

THEOREM 4. If $\mathbf{s} = (s_0, s_1, ..., s_{2^{n-1}})$ is a de Bruijn sequence of span n, then wt $(D^n \mathbf{s}) = 2x$, where x is odd.

Proof. If $\mathbf{s} = (\mathbf{s}_0, \mathbf{s}_1, ..., \mathbf{s}_{2n-1})$, where $\mathbf{s}_i = (s_i, s_{i+1}, ..., s_{i+n})$ ((n+1) tuples), then, as in Corollary 3, $D^n(\mathbf{s}) = (D_0^n \mathbf{s}_0, D_0^n \mathbf{s}_1, ..., D_0^n \mathbf{s}_{2n-1})$. In addition, $D_0^n(\mathbf{s}_i) = (E+1)_0^n (s_i, s_{i+1}, ..., s_{i+n}) = (1 + Eg(E) + E^n)_0 (s_i, s_{i+1}, ..., s_{i+n}) = s_i + s_{i+n} + g(E)_0 (s_{i+1}, s_{i+2}, ..., s_{i+n-1})$, where $g(E) = ((E+1)^n - 1 - E^n)/E$ is a polynomial in E of degree $\leq n-2$. If $f: GF(2)^{n-1} \to GF(2)$ represents the Boolean function which generates s, then $s_{i+n} = s_i + f(s_{i+1}, s_{i+2}, ..., s_{i+n-1})$ so that $D_0^n \mathbf{s}_i = f(s_{i+1}, s_{i+2}, ..., s_{i+n-1}) + g(E)_0 (s_{i+1}, s_{i+2}, ..., s_{i+n-1})$. Note that $D_0^n(\mathbf{s}_i)$ only depends on $s_{i+1}, s_{i+2}, ..., s_{i+n-1}$.

Let $I = \{i: 0 \le i \le 2^n - 1, s_i = 0\}$ and $J = \{j: 0 \le j \le 2^n - 1, s_j = 1\}$. Then $I \cap J = \phi$ and since **s** is de Bruijn, $|I| = |J| = 2^{n-1}$ and $\{(s_{i+1}, s_{i+2}, ..., s_{i+n-1}): i \in I\} = \{(s_{j+1}, s_{j+2}, ..., s_{j+n-1}): j \in J\} = GF(2)^{n-1}$. Since $D_0^n(\mathbf{s}_i)$ does not depend on s_i , wt $(D_0^n \mathbf{s}_i: i \in I) = wt(D_0^n \mathbf{s}_j: j \in J)$ so that, since $wt(D^n(\mathbf{s})) = wt(D_0^n \mathbf{s}_i: i \in I) + wt(D_0^n \mathbf{s}_j: j \in J)$, it is enough to show that $wt(D_0^n \mathbf{s}_i: i \in I)$ is odd.

Note that $\operatorname{wt}(D_0^n \mathbf{s}_i: i \in I) = \operatorname{wt}(H\mathbf{x}: \mathbf{x} \in GF(2)^{n-1})$, where $H: GF(2)^{n-1} \to GF(2)$ is defined by $H\mathbf{x} = f(\mathbf{x}) + g(E)_0 \mathbf{x}$. It then follows, by summing over $GF(2)^{n-1}$ that $\operatorname{wt}(H) \equiv \operatorname{wt}(f) + \operatorname{wt}(g(E)_0) \pmod{2}$. Now $\operatorname{wt}(f)$ is odd by Theorem 1 and $\operatorname{wt}(g(E)_0)$ is even, either because $g(E)_0 \equiv 0$ or by Theorem 2. Hence, $\operatorname{wt}(D_0^n \mathbf{s}_i: i \in I)$ is odd.

COROLLARY 5. If s is a de Bruijn sequence of span 2^k , $k \in \mathbb{N}$, generated by the Boolean function $f: GF(2)^{n-1} \to GF(2)$, then wt $(D^n(s)) = 2$ wt(f).

Proof. For $n = 2^k$, $(E + 1)^n = E^n + 1$, and so $g(E) \equiv 0$ in the theorem. Thus, H = f and wt $(D^n \mathbf{s}_i: i \in I) = wt(f)$. Thus, wt $(D^n \mathbf{s}) = 2wt(f)$.

THEOREM 6. Let $\mathbf{s} = (s_0, s_1, ..., s_{2^{n-1}})$ be a periodic sequence of period 2^n , then $c(\mathbf{s}) = 2^{n-1} + 1$ if and only if $\mathbf{s} = (\mathbf{r} : \bar{\mathbf{r}})$, where \mathbf{r} is a vector of length 2^{n-1} , and $\bar{\mathbf{r}}$ denotes the complement of \mathbf{r} .

Proof. See [1, Theorem 2].

THEOREM 7. There are no de Bruijn sequences of span $n \ge 3$ with complexity $2^{n-1} + n + 1$.

Proof. Suppose s is a de Bruijn sequence of span n with complexity $2^{n-1} + n + 1$. Since c(Ds) = c(s) - 1 (see [1]), the complexity of $D^n(s)$ is $2^{n-1} + 1$. So Theorem 6 implies $D^n s = (\mathbf{r} : \bar{\mathbf{r}})$, where \mathbf{r} is a vector of length 2^{n-1} . Then it follows that wt $(D^n s) = 2^{n-1}$ which contradicts Theorem 4, for $n \ge 3$.

DE BRUIJN SEQUENCES

ACKNOWLEDGMENT

The author wishes to acknowledge the referee's suggestions concerning the final form of this paper.

References

- 1. A. H. CHAN, R. A. GAMES, AND E. L. KEY, On the complexities of de Bruijn sequences, J. Combin. Theory Ser. A 33 (1982), 233-246.
- 2. S. W. GOLOMB, "Shift Register Sequences," Holden-Day, San Francisco, 1967.
- 3. A. LEMPEL, On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers, *IEEE Trans. Comput.* C-19 (1970), 1204-1209.