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If s = (so, s, ,..., srnm,) is a binary de B ruijn sequence of span n, then it has been 
shown that the least length of a linear recursion that generates s, called the 
complexity of s and denoted by c(s), is bounded for n > 3 by 2”-’ + n <C(S) < 
2” - 1. A numerical study of the allowable values of c(s) for 3 < n < 6 found that 
all values in this range occurred except for 2”-’ + n + 1. It is proven in this note 
that there are no de Bruijn sequences of complexity 2”-’ + n + 1 for all n > 3. 

A binary de Bruijn sequence s = (so, sl,sI ,...) of span n is a periodic 
sequence of period 2” with the property that the 2” vectors si = (si, si+ , ,..., 
St++,), i = 0, 1, 2 ,..., 2” - 1 are all the distinct binary n tuples. In this note 
the sequence s will be represented by a single period, s = (so, s, ,..., s2”- ,). If 
s is a binary de Bruijn sequence of span n, then [l] showed that the least 
length of a linear recursion that generates s, called the complexity of s and 
denoted by c(s), is bounded for n > 3 by 2”- ’ + n < c(s) < 2” - 1. A 
numerical study of the allowable values of c(s) for 3 & n < 6 found that all 
values in this range occurred except for 2”-’ + n + 1, see [ 11. We show that 
there are no de Bruijn sequences of complexity 2”-’ + n + 1 for all n > 3 by 
first showing that the weight of one period of D”(s) is twice an odd number. 
Here D = E + 1, where E is the sequence shift operator, (Es)~ = si+ ,; so that 
if s = (so, s, ,..., s *“-i), then Ds = ((Ds),, (Ds), ,..., (DsL ,) = (so + s,, s, + 
s2 ,--., S2”- 1 + so). We remark that if s is regarded as a sequence of n tuples, 
s = (sg, s, ,..., S2”- 1 , ) then Ds corresponds to a sequence of (n - 1) tuples, 
namely, (fis,, bs i ,..:, as 2n- I), where esi = 6(Si, Si+ i )..-, si+n- i) = (si + si+ i 3 
si+, + sii2,..., si+n-2 + si++,). So D: GF(2)” -+ GF(2)“-’ is the homomor- 
phism of [3] which maps the de Bruijn graph G, to the de Bruijn graph 
G n-1. 

A de Bruijn sequence s = (so, s, ,..., szn-,) of span n satisfies an n-stage 
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nonlinear recursion; that is, s is a sequence of maximum period 2” generated 
by some n-stage (nonlinear) feedback shift register. This recursion has the 
form, for i= 0, 1, 2 ,..., 2” - 1 (all subscripts computed modulo 2”) si+” = 
si +f(Si+19 si+2T***V Si+n-l ) for some Boolean function f: GF(2)“-’ -+ GE(2) 
[2, p. 1151. The weight off, denoted by wt(f), is the number of ones in the 
image vector (f(x): x E GE(2)“-‘). The weight of a periodic sequence s, 
denoted by wt(s), is the number of ones in a single period of s. 

THEOREM 1. If s is a de Bruijn sequence of span n generated by the 
Boolean function f: GF(2)“-’ + GF(2), then wt(f) is odd. 

ProoJ See [2, p. 1221. 

In general, if g(E) = a0 + a,E + ..a + a,-,E”-’ with ai E GF(2), 
i = 0, l,..., n - 1, and if (x,, x, ,..., x,-, ) E GF(2)” (regarded as a sequence of 
period n), then g(E) x = ((g(E) x),,, (g(E) x)~,..., (g(E) XL,>, where 
(g(E)X)i=aoXi-ta,Xi+, +-em +a,-[Xi+.-1 (subscripts mod n). For 
convenience we write g(E), x for (g(E) x)~ so that, in particular, g(E)0 can be 
regarded as a linear transformation from GE(2)” to GF(2) defined by g(E),,: 
(x,9 Xl >-**> q-1) ~aOxO+a,x,+...+a,_,x,-,. 

THEOREM 2. If g(E) = a, + a,E + ... + a,-,E”-’ with a, E GF(2), 
i = 0, l,..., n - 1, and some ai # 0, then 1(x E GF(2)“: g(E),, x = O)l = 
j{xEGF(2)“:g(E),x= 1]\=2’-‘. 

Proof: Here, g(E)0 is a nonzero linear transformation so image(g(E),) = 
GF(2) and kernel(g(E),) = {x E GF(2)“: g(E)0 x = 0). Since image( g(E),,) z 
GF(2)“/kernel(g(E),), I k ernel(g(E),) = 2”-’ and Ifx E GF(2)“:g(E), x= l}/ 
= 2” _ 2”-I= 2”-1. 

COROLLARY 3. Let s be a binary de Bruijn sequence of span n, then 

Wt(S)=Wt(DS)=...=Wt(Dn-‘s)=2”-1. 

ProoJ Let g(E) = (E + 1)” = Dk, k = 0, 1, 2 ,..., n - 1, and let 
s = (so, Sl)...) s2,,-,). Writing, as before, Dfs for (Dks)i, then D$s = D$s, since 
degree Dk < n - 1 so that Dfs can only involve at most si, Si+, ,..., Si+n- 1, 
which are the coordinates of si. Thus, Dks = (Dis,,, Dis,,..., Dzs2.-,), and 
now the theorem applies since GE(2)” = (so, sr,..., szfl-r ). See also 
[ 1, Theorem 81. 

In Theorem 4 the weight of D”(s) is considered. 

THEOREM 4. If s = (so, s, ,..., s,,-,) is a de Bruijn sequence of span n, 
then wt(D”s) = 2x, where x is odd. 
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ProoJ If s = (so, s ,,..., sznP1), where s, = (si, si+ 1 ,..., si+“) ((n + 1) 
tuples), then, as in Corollary 3, D”(s) = (Dis,, D;fs ,,..., Dl(s,,- ,). In 
addition, Dg(si) = (E + 1): (si,s,+,,...,si+,,j = (1 + Eg(E) + E”)” (si, 
si+ 17***9 Si+n) = Si+Si+n + g(E)0 (Si+l> Si+z,*.*> Si+n-l)r where g(E)= 
((E + 1)” - 1 -E”)/E is a polynomial in E of degree <n - 2. If 
f: GF(2)“-’ -+ GF(2) represents the Boolean function which generates s, then 

= si +f(si+ 19 si+ 2 V***v 
:$)Cl (Si+ L* Si+2Year s. 

Si+n-1) SO that DgnSi=f(Si+,,Si+2,,..rSi+n-1) + 
I+n-l). Note that Dg(si) only depends on Si+ ,, Si+z,..., 

Si+n-1. 
LetZ={i:O~i~22”-1,si=0}andJ=(~:O~~~2”-1,sj=1}.Then 

ZnJ=# and since s is de Bruijn, 1Z/=IJI=2”-1 and ((Si+l,Si+2,.**, 
Si+n-l): iEZJ = {(sj+l, sj+2Y**V sj+,- ,): j E J) = GF(2)“-‘. Since Di(si) 
does not depend on si, wt(D;si: iE Z) = wt(Disj:jE J) so that, since 
wt(D”(s)) = wt(D{si: iE I) + wt(Disj: jE J), it is enough to show that 
wt(Disi: iE Z) is odd. 

Note that wt(D,Rsi: i E Z) = wt(Hx: x E GF(2)“-‘), where H: GF(2)“-’ -+ 
GF(2) is defined by Hx =f(x) + g(E)0 x. It then follows, by summing over 
GF(2)“-’ that wt(H) = wt(f) + wt(g(E),) (mod 2). Now wt(f) is odd by 
Theorem 1 and wt( g(E),) is even, either because g(E),-, z 0 or by Theorem 2. 
Hence, wt(Disi: i E I) is odd. 

COROLLARY 5. Zf s is a de Bruijn sequence of span 2k, k E N, generated 
by the Boolean function f: GF(2)“- 1 -+ GF(2), then wt(D”(s)) = Zwt(f ). 

Proof. For n = 2k, (E + 1)” = E” + 1, and so g(E) = 0 in the theorem. 
Thus, H = f and wt(D)“si: i E Z) = wt(f ). Thus, wt(D”s) = 2wt(f ). 

THEOREM 6. Let s = (so, s, ,..., s2”-, ) be a periodic sequence of period 
2”, then c(s) = 2”-’ + 1 if and only ifs = (r i r), where c is a vector of Zength 
2”- I, and f denotes the complement of r. 

Proof. See [ 1, Theorem 21. 

THEOREM 7. There are no de Bruijn sequences of span n > 3 with 
complexity 2”-’ + n + 1. 

ProoJ Suppose s is a de Bruijn sequence of span n with complexity 
2”-’ + n + 1. Since c(Ds) = c(s) - 1 (see [l]), the complexity of D”(s) is 
2”-’ + 1. So Theorem 6 implies D”s = (r i r), where r is a vector of length 
2”-‘. Then it follows that wt(D”s) = 2”-’ which contradicts Theorem 4, for 
n 2 3. 
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