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0. Introduction

In [21] Serre proved that the image of the adelic representation associated to an elliptic curve over
a number field without potential complex multiplication is open. The aim of this paper is to prove an
analogue for Drinfeld modules of generic characteristic.

Let Fq be a finite field with q elements and of characteristic p. Let F be a finitely generated field
of transcendence degree 1 over Fq . Let A be the ring of elements of F which are regular outside
a fixed place ∞ of F . Let K be a finitely generated field extension of F . Denote by K sep the separable
closure of K inside a fixed algebraic closure K̄ and by GK := Gal(K sep/K ) the absolute Galois group
of K . Let

ϕ : A → K {τ }, a �→ ϕa
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be a Drinfeld A-module over K of rank r. Thus ϕ is of generic characteristic. (For the general theory
of Drinfeld modules see for example Drinfeld [6], Deligne and Husemöller [5], Hayes [10] or Goss [9,
Chapter 4].) For any non-zero ideal a of A, the a-torsion

ϕ[a] :=
⋂
a∈a

Ker(ϕa : Ga,K → Ga,K )

is a finite étale subgroup scheme of Ga,K . By Lang’s theorem, its geometric points

ϕ[a](K sep) = {
x ∈ K sep

∣∣ ∀a ∈ a: ϕa(x) = 0
}

form a free A/a-module of rank r. For any non-zero prime p of A, the p-adic Tate module

Tp(ϕ) := lim←− ϕ
[
pn](

K sep)
of ϕ is a free Ap-module of rank r, where Ap denotes the completion of A at p. It carries a continuous
Galois representation

ρp : GK → AutAp

(
Tp(ϕ)

) ∼= GLr(Ap).

Denote by A f
F be the ring of finite adeles of F , and consider the adelic representation

ρad : GK →
∏

p 
=∞
GLr(Ap) ⊂ GLr

(
A f

F

)
.

Our main result is the following

Theorem 0.1 (Adelic openness in generic characteristic). Let ϕ be a Drinfeld A-module of rank r over a finitely
generated field K of generic characteristic. Assume that EndK̄ (ϕ) = A. Then the image of the adelic represen-
tation

ρad : GK → GLr
(
A f

F

)
is open.

When ϕ cannot be defined over a finite extension of F , this has already been proven in [4, Theo-
rem 3] by different methods.

We also generalize the result to Drinfeld modules with arbitrary endomorphism ring EndK̄ (ϕ).
To obtain a convenient result, we assume that all endomorphisms of ϕ are defined over K . Since
the endomorphisms act on the Tate module and commute with the Galois representation, the image
of GK then lies in the centralizer CentGLr(Ap)(EndK̄ (ϕ)). By exactly the same argument as in [13],
Theorem 0.1 implies the following

Theorem 0.2. Let ϕ be a Drinfeld A-module of rank r over a finitely generated field K of generic characteristic.
Assume that EndK̄ (ϕ) = EndK (ϕ). Then the image of the homomorphism

ρad : GK →
∏
p

CentGLr (Ap)

(
EndK̄ (ϕ)

)
is open.
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The methods used to establish these results are modeled to a great extent on the methods de-
veloped by Serre [19,21–23] to prove the corresponding results for elliptic curves and certain abelian
varieties.

The article has five parts and an appendix. In Section 1 we list some known results on Drinfeld
modules. Section 2 contains some preparatory results on matrix groups and fibers of algebraic mor-
phisms. In Section 3 we prove that the residual representation is surjective for almost all primes p

of A in the case that EndK̄ (ϕ) = A and K is a finite extension of F . In Section 4 we prove Theo-
rem 0.1 in the case that K is a finite extension of F . Section 5 contains a specialization result and
uses it to prove the general case of Theorem 0.1. Appendix A contains two remarks on the article by
Gardeyn [8]. We point out two gaps in that paper and show how to close them. The above notations
and assumptions will remain in force throughout the article.

The material in this article was part of the doctoral thesis of the second author [18].

1. Known results on Drinfeld modules

The first stated result was proved independently by Taguchi [24,25] and Tamagawa [26].

Theorem 1.1 (Tate conjecture for Drinfeld modules). Let ϕ1 and ϕ2 be two Drinfeld A-modules over K . Then
for all primes p of A the natural map

HomK (ϕ1,ϕ2) ⊗A Ap → HomAp[GK ]
(
Tp(ϕ1), Tp(ϕ2)

)
is an isomorphism.

The next result was proved by the first author [13].

Theorem 1.2. Assume that EndK̄ (ϕ) = A. Then for any finite set Λ of primes of A the image of the homomor-
phism

GK →
∏
p∈Λ

GLr(Ap)

is open.

Furthermore, the reduction modulo p of ρp is the continuous Galois representation on the module
of p-torsion

ρ̄p : GK → Autκp

(
ϕ[p](K sep)) ∼= GLr(κp)

over the residue field κp := A/p. We call it the residual representation at p. In [16] we proved

Theorem 1.3 (Absolute irreducibility of the residual representation). Assume that EndK (ϕ) = A. Then the
residual representation

ρ̄p : GK → GLr(κp)

is absolutely irreducible for almost all primes p of A.
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2. Preparatory results on algebraic groups

Proposition 2.1. Let n be any natural number, let k be a field with at least 4 elements, and let H be an additive
subgroup of the matrix ring Mn(k). Assume that H is invariant under conjugation by GLn(k). Then either H is
contained in the group of scalar matrices or H contains the group of matrices of trace 0.

Proof. Let T := Gn
m denote the full diagonal torus. We identify its character group with Zn by means

of the standard basis e1, . . . , en . The torus T acts on Mn(k) by conjugation, and its weights are ei − e j

for all i 
= j with multiplicity 1 and 0 with multiplicity n. The weight space W0 of weight 0 is the
group of diagonal matrices, and the weight space W i, j of weight ei − e j is the group of matrices with
all entries zero except, possibly, in the position (i, j). We thus can decompose Mn(k) as

Mn(k) = W0 ⊕
⊕

i, j

W i, j .

Since the multiplicative group k∗ has at least 3 elements, any two distinct weights of the form
ei − e j remain distinct and different from 0 upon restriction to T (k). Therefore H can be decomposed
as

H = (H ∩ W0) ⊕
⊕

i, j

(H ∩ W i, j).

Each W i, j is a k-vector space of dimension 1, and T (k) acts on it through a surjective homomorphism
T (k) � k∗ . Thus H ∩ W i, j is either 0 or equal to W i, j . The permutation matrices in GLn(k) form
a subgroup isomorphic to Sn which permutes the weights ei − e j transitively. Since H is invariant
under conjugation by GLn(k), we find that either all H ∩ W i, j = 0 or all H ∩ W i, j = W i, j . In other
words, either H is contained in the group of diagonal matrices or H contains the sum of all W i, j ,
which is the group of matrices with diagonal 0.

If H is contained in the group of diagonal matrices, take any element h of H and denote its
diagonal entries by h1, . . . ,hn . Let i 
= j and let u ∈ GLn(k) be the matrix with entry 1 on the diagonal
and in the position (i, j) and 0 elsewhere. Then uhu−1 has entry hi −h j in the position (i, j). But this
entry has to be 0 because uhu−1 ∈ H , and hence hi = h j . This can be done for any pair (i, j), which
shows that H is contained in the group of scalar matrices.

If H contains the group of matrices with diagonal 0, we consider the trace form Mn(k) ×
Mn(k) → k, (A, B) �→ 〈A, B〉 := tr(AB), which is a perfect pairing invariant under GLn(k). The orthogo-
nal complement H⊥ of H is again a GLn(k)-invariant subgroup, and since the inclusion for orthogonal
complements is reversed, it is contained in the group of diagonal matrices. The arguments in the
other case show that H⊥ is contained in the group of scalar matrices. Taking orthogonal comple-
ments again, we deduce that H contains the matrices of trace 0, as desired. �
Proposition 2.2. Let n be any natural number, let k be a finite field, and let H be a normal subgroup of GLn(k)

containing a non-scalar matrix. Assume that (n, |k|) is different from (2,2) and (2,3). Then we have

SLn(k) ⊂ H .

Proof. For any non-scalar element h ∈ GLn(k), there exists an element g ∈ GLn(k) such that the com-
mutator ghg−1h−1 is again non-scalar. Thus H contains a non-scalar element of SLn(k). In particular,
we have n � 2. Let Z denote the center of SLn(k). Under the given assumptions SLn(k)/Z is simple
by [12], and SLn(k) is perfect by [3, Corollary 4.3] or [17]. Since H ∩ SLn(k) is a normal subgroup
of SLn(k) that is not contained in Z , it follows that H ∩ SLn(k) = SLn(k). �
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Proposition 2.3. Let k be a finite field, let n be any natural number, and let H be a subgroup of GLn(k) of
index c. Assume that (n, |k|) is different from (2,2) and (2,3) and that c! < |PGLn(k)|. Then we have

SLn(k) ⊂ H .

Proof. Abbreviate G := GLn(k). Then the action of G on the set of right cosets {g H | g ∈ G} corre-
sponds to a homomorphism from G to the symmetric group Sc on c elements. Thus its kernel N is
a normal subgroup of G of index at most c! and contained in H . The assumption implies that N has
non-trivial image in PGLn(k), and thus N contains a non-scalar element. By Proposition 2.2, we find
that SLn(k) ⊂ N ⊂ H , as desired. �
Proposition 2.4. Let X be an irreducible algebraic variety over a field L, let G be an irreducible algebraic group
over L, and let f : X → G be a dominant morphism. Set d := dim(G) and e := dim(X). Then for all n � d the
fibers of the morphism

f n : Xn → G, (x1, . . . , xn) �→ f (x1) · · · · · f (xn)

have dimension at most ne − d.

Proof. Since f is dominant, there exists an open dense subset U of X such that all fibers of f |U have
dimension e − d. We first consider the restriction of f n to Xi−1 × U × Xn−i for any 1 � i � n. We can
write this restriction as the composite of morphisms

Xi−1 × U × Xn−i α−→ Xi−1 × G × Xn−i β−→ Xi−1 × G × Xn−i γ−→ G

where

α(x1, . . . , xn) = (
x1, . . . , xi−1, f (xi), xi+1, . . . , xn

)
,

β(x1, . . . , xi−1, g, xi+1, . . . , xn) = (
x1, . . . , xi−1, f (x1) . . . f (xi−1)g f (xi+1) . . . f (xn), xi+1, . . . , xn

)
,

γ (x1, . . . , xi−1, g, xi+1, . . . , xn) = g.

Here α has fiber dimension e − d, the morphism β is an isomorphism, and γ has fiber dimension
(n−1)e. Thus all fibers of f n|Xi×U×Xn−i−1 have dimension � e−d+(n−1)e = ne−d. Varying i, we find
that all fibers of f n|Xn\(X\U )n have dimension � ne −d. On the other hand, all fibers of f n|(X\U )n have
dimension � dim((X \ U )n) � n(e − 1). Since n � d, this is also � ne − d, and the result follows. �
Proposition 2.5. Let X and Y be schemes of finite type over Spec Z, and let f : X → Y be a morphism of finite
type. Then there exists a constant c, depending only on X, Y and f , such that for any finite field k and any
y ∈ Y (k), we have ∣∣ f −1(y)(k)

∣∣ � c|k|dim( f −1(y)).

Proof. We use noetherian induction on Y , the case Y = ∅ being vacuous. Otherwise, since X and Y
have only finitely many irreducible components, we can assume that both are irreducible. After re-
placing them by open charts we may also assume that they are affine. For points y /∈ f (X), there is
nothing to prove; hence after replacing Y by the Zariski closure of f (X) we can assume that f is
dominant. Set d := dim(X) and e := dim(Y ). Then after replacing X and Y by open subschemes we
may assume that all fibers of f have dimension d − e.

Let η denote the generic point of Y . By Noether normalization, there exists a finite surjective
morphism f −1(η) → Ad−e × η, say of degree n. This morphism extends to a morphism f −1(V ) →
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Ad−e × V for an open neighborhood V of η in Y , which is still finite of degree n if V is sufficiently
small. Then for all y ∈ V (k), we find that∣∣ f −1(y)(k)

∣∣ � n · ∣∣Ad−e(k)
∣∣ = n|k|d−e,

and the proposition follows. �
3. Surjectivity of the residual representation

Throughout this section, we assume that K is a finite extension of F and that EndK̄ (ϕ) = A. For
any prime p of A, we let Γp denote the image of the residual representation

ρ̄p : GK → GLr(κp).

We prove the following result.

Proposition 3.1. In the above situation, we have Γp = GLr(κp) for almost all primes p of A.

Sketch of the proof. The main ingredients are the absolute irreducibility of the residual representation
and the image of inertia at places above p. By standard methods we can identify the image of the
tame inertia group with the multiplicative group of some finite extension kn of κp . This image is
the group of κp-valued points of a certain connected algebraic group, called the torus of inertia. The
algebraic subgroup of GLr,κp

that is generated by Γp and the tori of inertia at all places above p

constitutes an algebraic group enveloping Γp in a natural way. It plays a role analogous to that of
the Zariski closure of the image of Galois in the whole p-adic representation over Fp (compare [13]).
The main intermediate step is to establish that this subgroup is equal to GLr,κp

. The rest is algebraic
group theory.

Reduction steps. It is enough to prove Proposition 3.1 for any open subgroup of GK . This allows us to
replace K by any finite extension. In particular we may assume that

(a) ϕ has semistable reduction everywhere.

Next, recall that at any place ∞′ of K above ∞, the Drinfeld module is uniformized by a lattice on
which the decomposition group D∞′ acts through a finite quotient. Similarly, for any place Q of K
where ϕ has bad reduction, the Tate uniformization involves a lattice on which the decomposition
group DQ acts through a finite quotient. Thus, after replacing K by a finite extension, we may assume
that

(b) for any place ∞′ above ∞, the decomposition group D∞′ acts trivially on the associated lattice,
and

(c) for any place Q of bad reduction, the decomposition group DQ acts trivially on the associated
lattice.

We can also disregard any finite set of primes p. Thus by Theorem 1.3 we can restrict ourselves to
primes p for which

(d) the residual representation at p is absolutely irreducible.

Furthermore, we can assume that

(e) all places P of K above p are unramified over p,
(f) ϕ has good reduction at all places above p, and
(g) qp := |κp| � 4.
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Torus of inertia. Consider any place P of K above p and a place P̄ of K̄ above P, with the respective
residue fields kP ⊂ kP̄ . Then the inertia group IP sits in an exact sequence

1 → Ip
P

→ IP → ItP → 1

where Ip
P

and It
P

denote the wild inertia group and tame inertia group, respectively. Fix a section

It
P

→ IP . By (f) above, the Drinfeld module ϕ has good reduction at P. The connected-étale decom-
position of the finite flat group scheme ϕ[p] over the discrete valuation ring OKP

yields an exact
sequence

0 → ϕ[p]0(K sep) → ϕ[p](K sep) → ϕ[p]et(K sep) → 0,

where IP acts trivially on ϕ[p]et(K sep). Denote by hP the height of the reduced Drinfeld module, and

set n := q
hP

p . Let kn denote the subfield of kP̄ with n elements. By [16, Proposition 2.7] and (e) above
we have up to conjugation

ρ̄p(IP) =
(

k∗
n ρ̄p(Ip

P
)

0 1

)
⊂ Γp (3.2)

and

ρ̄p

(
ItP

) =
(

k∗
n 0

0 1

)
⊂ Γp, (3.3)

written in block matrices of size hP , r − hP . Since k∗
n 
= {1}, the centralizer of ρ̄p(It

P
) in GLr,κp

is

(
TP 0

0 GL(r−hP),κp

)

for a torus TP over κp with TP(κp) = k∗
n . The torus TP is the Weil restriction Reskn

κp
Gm,kn and thus

of dimension hP . Its Γp-conjugacy class in GLr,κp
is independent of P̄.

Algebraic group envelope of Γp. Let H◦
p denote the connected algebraic subgroup of GLr,κp

generated
by all Γp-conjugates of TP for all P | p (see [11, Proposition 7.5]). By construction it is normalized
by the finite group Γp; hence H◦

p and Γp together generate an algebraic subgroup Hp of GLr,κp
with

identity component H◦
p .

Eventually we want to show that H◦
p = Hp = GLr,κp

. To begin with, we note that Hp acts absolutely

irreducibly on κr
p because Γp does so. Fix a place p̄ of F̄ above p with residue field κp̄ . Then Hp,κp̄

acts irreducibly on κr
p̄

.

Lemma 3.4. There exist a natural number sp and a decomposition

κr
p̄

= W1 ⊕ · · · ⊕ W sp

into irreducible H◦
p,κ -subrepresentations which are conjugate under Hp,κp̄

.

p̄
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Proof. Abbreviate V := κr
p̄

, and let W be a non-trivial H◦
p,κp̄

-invariant subspace of V of minimal
dimension. Since H◦

p,κp̄
is normalized by Γp , the subspace γ W is also H◦

p,κp̄
-invariant for all γ ∈ Γp .

The subspace
∑

γ ∈Γp
γ W is Γp-invariant and therefore, by the irreducibility of V , equal to V . Since

each γ W is irreducible over H◦
p,κp̄

, a suitable subcollection will do. �
We fix a decomposition of κr

p̄
as in Lemma 3.4. Then the algebraic subgroup of GLr,κp̄

which
normalizes each summand is isomorphic to GL

sp
tp,κp̄

, where tp is the common dimension of the W i .
The algebraic subgroup of GLr,κp̄

which maps each summand to some, possibly other, summand is

isomorphic to GL
sp
tp,κp̄

�Ssp .

Lemma 3.5. We have

Hp,κp̄
⊂ GL

sp
tp,κp̄

�Ssp .

Proof. By Lemma 3.4 we have H◦
p,κp̄

⊂ GL
sp
tp,κp̄

. Take any place P above p. By the construction of TP

there exists a basis of κr
p̄

with respect to which

TP,κp̄
=

⎛⎜⎜⎜⎜⎜⎝
∗

. . . ∗
1

. . .
1

⎞⎟⎟⎟⎟⎟⎠ ∼= G
hP

m,κp̄
,

where the upper left block consists of diagonal hP × hP-matrices. Consider the cocharacter

μ1 : Gm,κp̄
→ TP,κp̄

, t �→
⎛⎜⎝

t
1

. . .
1

⎞⎟⎠ ,

which on κr
p̄

has weight 1 with multiplicity 1 and weight 0 with multiplicity r − 1. Without loss
of generality we can assume that μ1 has its non-trivial weight on W1 and weight zero on all
other W i . Since TP,κp̄

⊂ H◦
p,κp̄

, it follows that, as an H◦
p,κp̄

-representation, the space W1 is not iso-
morphic to W i for any i 
= 1. By conjugation, we deduce that any two of the W i are non-isomorphic
H◦

p,κp̄
-representations. This shows that the decomposition in Lemma 3.4 is in fact the isotypical de-

composition of κr
p̄

under H◦
p,κp̄

. It is thus normalized by Hp,κp̄
, and the result follows. �

Using Lemma 3.5, we define αp as the composite of the following homomorphisms

GK → Hp,κp̄
⊂ GL

sp
tp,κp̄

�Ssp � Ssp .

Lemma 3.6. The homomorphism αp is unramified at all places of K lying above p.

Proof. Consider any place P of K above p. By (3.3) we have ρ̄p(It
P

) = TP(κp) ⊂ H◦
p(κp); hence

αp(It
P

) = 1. This implies that αp(IP) is a quotient of the group of coinvariants of ρ̄p(Ip
P

) un-

der ρ̄p(It
P

). The description (3.2) shows that ρ̄p(Ip
P

) is a kn-vector space on which ρ̄p(It
P

) acts
through multiplication by k∗

n . Since k∗
n 
= {1}, that group of coinvariants is zero. This implies that

αp(IP) = 1, and so αp is unramified at P. �
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Lemma 3.7. For almost all primes p of A the homomorphism αp is unramified at all places of K where ϕ has
bad reduction.

Proof. Since there are only finitely many places Q of K where ϕ has bad reduction, it suffices to
prove the lemma for one of them. By (a) above, the Drinfeld module ϕ has semistable reduction
at Q. Let (ψ,ΛQ) be its Tate uniformization Q. Then ψ is a Drinfeld A-module over KQ of some
rank r′ < r with good reduction at Q, and ΛQ is, via ψ , an A-lattice in K sep

Q
of rank r − r′ . For any

prime p of A with p � Q, we have an exact sequence

0 → ψ[p](K sep) → ϕ[p](K sep) → ΛQ/pΛQ → 0

of representations of the decomposition group DQ . By good reduction the inertia group IQ acts triv-
ially on the first term, and by (c) it acts trivially on the third term. Therefore its image under ρ̄p lies
in a subgroup of the form (

1 ∗
0 1

)
∼= Hom

(
ΛQ/pΛQ,ψ[p](K sep))

.

On the other hand, since sp � r, every element of Ssp has order dividing r!. In particular, we have

αp(Frobr!
Q) = 1. Therefore the restriction of αp to IQ factors through the group of coinvariants

Hom
(
ΛQ/pΛQ,ψ[p](K sep))

Frobr!
Q

.

It suffices to prove that this group is zero for almost all p. Since Frobr!
Q acts trivially on ΛQ/pΛQ

by (c), it suffices to prove that the group of coinvariants ψ[p](K sep)Frobr!
Q

vanishes.

Denote by fQ the characteristic polynomial of Frobr!
Q on the Tate module of ψ at p, which has

coefficients in A and is independent of p. By purity, every eigenvalue of FrobQ has valuation < 0
at ∞. Thus 1 is not an eigenvalue of Frobr!

Q, and so fQ(1) is a non-zero element of A. For all
p � fQ(1) no eigenvalue of Frobr!

Q is congruent to 1 modulo a place lying above p; hence for these p

we have ψ[p](K sep)Frobr!
Q

= 0, as desired. �
Lemma 3.8. For almost all primes p of A the homomorphism αp is unramified everywhere and totally split at
all places above ∞.

Proof. For all places Q � p∞ where ϕ has good reduction, the inertia group at Q acts trivially on
ϕ[p](K sep). Therefore the homomorphism αp is unramified at these places. By Lemma 3.6 it is un-
ramified at all places Q | p. For places Q � ∞ where ϕ has bad reduction, the assertion is Lemma 3.7.
Finally, for places above ∞, the assertion follows from (b) above. �
Lemma 3.9. For almost all primes p of A we have sp = 1.

Proof. Let p be any prime as in Lemma 3.8, and let K (p) the field fixed by the kernel of αp . By
Lemma 3.8 it is unramified over K . Moreover, its degree [K (p)/K ] � sp! � r! is bounded independently
of p. By Goss [9, Theorem 8.23.5], a function field analogue of the Hermite–Minkowski Theorem about
unramified extensions, there are only finitely many possibilities for K (p). Therefore their compositum
K ′ is a finite extension of K such that αp|GK ′ : GK ′ → Ssp is trivial for almost all p. For these p we
find that

ρ̄p(GK ′ ) ⊂ GL
sp
t ,κ .

p p̄
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If sp > 1, this shows that ϕ[p](K sep) is not absolutely irreducible as a representation of GK ′ . By The-
orem 1.3, applied to ϕ considered as a Drinfeld A-module over K ′ , this can only happen for finitely
many p. Therefore sp = 1 for almost all p. �
Proposition 3.10. For almost all primes p of A we have

H◦
p = Hp = GLr,κp

.

Proof. Lemmas 3.4 and 3.9 imply that H◦
p,κp̄

acts irreducibly on κr
p̄

for almost all p. Moreover, as
explained in the proof of Lemma 3.5, it possesses a cocharacter of weight 1 with multiplicity 1 and
weight 0 with multiplicity r − 1. By [13, Proposition A.3], these properties imply that H◦

p,κp̄
= GLr,κp̄

.
Therefore both inclusions H◦

p,κp
⊂ Hp,κp

⊂ GLr,κp
are equalities. �

Returning to the finite group Γp.

Lemma 3.11. There exist a scheme Z of finite type over Spec(Z) and a closed subscheme T ⊂ GLr ×Z over Z ,
such that for almost all primes p of A, any place P | p of K , and any element γ ∈ Γp , there exists a point
z ∈ Z(κp) such that Tz = γ TPγ −1 .

Proof. Define

Z := GLr ×(
Ar)r−1

, and

T := {
(t, g, v1, . . . , vr−1)

∣∣ tg = gt and ∀i: tvi = vi
} ⊂ GLr ×Z .

Then Z is a scheme of finite type over Spec(Z), and T is a closed subscheme of GLr ×Z . Let p sat-
isfy (e), (f) and (g), and take any P | p and γ ∈ Γp . Let t be a generator of TP(κp) = k∗

n , and let
w1, . . . , wr−1 ∈ κr

p be generators of the space of invariants of TP . Then

CentGLr,κp
(t) =

(
TP 0

0 ∗

)

and

StabGLr,κp
(w1) ∩ · · · ∩ StabGLr,κp

(wr−1) =
(

TP 0

∗ 1

)
,

and their intersection is TP . Conjugating by γ we deduce that the fiber Tz of T above z =
(γ tγ −1, γ w1, . . . , γ wr−1) is γ TPγ −1. �
Lemma 3.12. There exists a constant c depending only on r such that for almost all primes p of A[

GLr(κp) : Γp

]
� c.

Proof. Consider any prime p as in Proposition 3.10. Then GLr,κp
is generated by the connected al-

gebraic subgroups γ TPγ −1 for all P | p and γ ∈ Γp . By [11, Proposition 7.5] it follows that the
morphism

fp : Xp :=
m×γi TPi γ

−1
i → GLr,κp

, (t1, . . . , tm) �→ t1 · · · tm
i=1
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is dominant for a suitable choice of m and Pi | p and γi ∈ Γp . In fact, since dim(GLr,κp
) = r2, we

can achieve this with m = r2; in particular, we can assume that m is independent of p. Next, by
Proposition 2.4 the fibers of

Xr2

p → GLr,κp
, (x1, . . . , xr2 ) �→ fp(x1) · · · fp(xr2 )

have dimension at most dim(Xr2

p ) − dim(GLr,κp
). We replace Xp by Xr2

p and m by mr2, which is still

independent of p. Then with ep := dim(Xp) all fibers of fp have dimension at most ep − r2.
Let Z and T ⊂ GLr ×Z be as in Lemma 3.11. Then for every 1 � i � m we can choose a point

zi ∈ Z(κp) such that Tzi = γi TPi γ
−1
i . Denote the two projections by ε : T → GLr and π : T → Z

and consider the morphism

f : T m → GLr ×Zm, (t1, . . . , tm) �→ (
ε(t1) · · · · · ε(tm),π(t1), . . . ,π(tm)

)
.

By construction it induces the morphism fp in the fiber above the point (z1, . . . , zm) ∈ Zm(κp). Recall
that qp = |κp|. Since f is independent of p, Proposition 2.5 yields a constant c1 independent of p such
that for all g ∈ GLr(κp) we have

∣∣ f −1
p (g)(κp)

∣∣ � c1q
dim( f −1

p (g))

p � c1q
ep−r2

p .

On the other hand, we have |TPi (κp)| = q
hPi
p − 1, and hence

∣∣Xp(κp)
∣∣ =

m∏
i=1

(
q

hPi
p − 1

)
�

m∏
i=1

1

2
q

hPi
p = 2−mq

∑
hPi

p = 2−mq
ep

p .

Since fp(Xp(κp)) ⊂ Γp , we deduce that

|Γp| � ∣∣ fp
(

Xp(κp)
)∣∣ � |Xp(κp)|

c1q
ep−r2

p

�
2−mq

ep

p

c1q
ep−r2

p

= qr2

p

2mc1
.

Finally, it follows that

[
GLr(κp) : Γp

] =
∏r−1

i=0 (qr
p − qi

p)

|Γp| � 2mc1

∏r−1
i=0 (qr

p − qi
p)

qr2
p

� 2mc1.

Thus the lemma holds with c := 2mc1. �
Proof of Proposition 3.1. Let c be the constant in Lemma 3.12. Then we have [GLr(κp) : Γp] � c. As
|κp| > 3 and |PGLr(κp)| > c! for almost all p, Proposition 2.3 implies that SLr(κp) ⊂ Γp for almost all p.
Since TP(κp) ⊂ Γp and det : TP(κp) ∼= k∗

n → κ∗
p is the norm map, which is surjective, the determinant

map det : Γp → κ∗
p is surjective. Therefore Γp = GLr(κp) for almost all primes p of A, as desired. �

4. Adelic openness in the case [K/F ] < ∞

Throughout this section we assume that K is a finite extension of F and that EndK̄ (ϕ) = A. For the
most part we still consider the representation ρp at a single prime p of A. As before we abbreviate
qp := |κp|.
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Congruence filtration. Let π be a uniformizer of A at p. The congruence filtration of GLr(Ap) is
defined by

G0
p := GLr(Ap), and

Gi
p := 1 + π iMr(Ap) for all i � 1.

Its successive subquotients possess natural isomorphisms

v0 : G[0]
p := G0

p/G1
p

∼−→ GLr(κp), and

vi : G[i]
p := Gi

p/Gi+1
p

∼−→ Mr(κp),
[
1 + π i y

] �→ [y] for i � 1.

For any subgroup H of GLr(Ap), we define Hi := H ∩ Gi
p and H [i] := Hi/Hi+1. Via vi we identify the

latter with a subgroup of GLr(κp) or Mr(κp), respectively.

Proposition 4.1. Let H be a closed subgroup of GLr(Ap). Assume that qp � 4, that det(H) = GL1(Ap), that
H [0] = GLr(κp), and that H [1] contains a non-scalar matrix. Then we have

H = GLr(Ap).

Proof. First, consider the conjugation action

H [0] × H [1] → H [1],
([g], [h]) �→ [

ghg−1].
Under v0 and v1 it corresponds to the conjugation action

GLr(κp) × Mr(κp) → Mr(κp), (g, X) �→ g X g−1.

Since H [0] = GLr(κp), it follows that H [1] ⊂ Mr(κp) is closed under conjugation by GLr(κp). Since it
also contains a non-scalar matrix, by Proposition 2.1 it therefore contains the subgroup slr(κp) of all
matrices of trace 0. Consider the commutative diagram with exact rows

0 H1/H2

det

H/H2

det

GLr(κp)

det

0

0 (1 + π Ap/(π)2)∗ (Ap/p2)∗ κ∗
p 0.

The right vertical map is surjective with kernel SLr(κp). By assumption, the middle vertical map is
surjective as well. By the snake lemma, we thus obtain a surjective homomorphism from SLr(κp)

onto the cokernel of the left vertical map. This cokernel is an abelian p-group, but since |κp| � 4,

the group SLr(κp) has no non-trivial abelian p-group as a quotient. Therefore the left vertical map is

surjective. This means that the composite trace map H [1] ↪→ Mr(κp)
tr−→ κp is surjective. Together it

follows that H [1] = Mr(κp).

Next consider the commutator subgroup H ′ of H . Since det(H) = GL1(Ap), the proposition follows
once we have shown that H ′ = SLr(Ap). This in turn is equivalent to H ′[i] = SLr(Ap)[i] for all i � 0.

For i = 0 this results from H ′[0] = (H [0])′ = GLr(κp)′ = SLr(κp). For i = 1 consider the map

H [0] × H [1] → H ′[1],
([g], [h]) �→ [

ghg−1h−1]
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induced by commutator map H × H → H ′ . Under v0 and v1, it corresponds to the map

GLr(κp) × Mr(κp) → slr(κp), (g, X) �→ g X g−1 − X .

It is an elementary fact that the image of this latter map generates slr(κp) as an additive group. Since
H [0] = GLr(κp) and H [1] = Mr(κp), it follows that H ′[1] = slr(κp). Assume now that H ′[i] = slr(κp) for
some i � 1. In this case consider the map

H [1] × H ′[i] → H ′[i+1],
([g], [h]) �→ [

ghg−1h−1]
induced by the commutator map H × H ′ → H ′ . Under v1, vi , and vi+1 it corresponds to the Lie
bracket

[ , ] : Mr(κp) × slr(κp) → slr(κp), (X, Y ) �→ XY − Y X .

By [15, Proposition 1.2] the image of this latter map generates slr(κp) as an additive group. Since
H [1] = Mr(κp) and H ′[i] = slr(κp), it follows that H ′[i+1] = slr(κp), as desired. �
Wild ramification. Consider a prime p of A and a place P of K above p. Assume that P is unramified
over p and that ϕ has good reduction at P of height hP . The image of the inertia group on the p-
torsion ϕ[p](K sep) was described in (3.2). Similarly, the connected-étale decomposition of the finite
flat group scheme ϕ[p2] over the discrete valuation ring OKP

yields an exact sequence

0 → ϕ
[
p2]0(

K sep) → ϕ
[
p2](K sep) → ϕ

[
p2]et(

K sep) → 0,

where the inertia group IP acts trivially on ϕ[p2]et(K sep). Thus up to conjugation the image of IP in
GLr(A/p2) lies in the subgroup ( ∗ ∗

0 1

)
⊂ GLr

(
A/p2)

of block matrices of size hP , r − hP . Choose a lift κp ↪→ A/p2; it induces a lift k∗
n ↪→ GLhP

(A/p2).
Then (3.2) implies that up to conjugation the image of the tame inertia group It

P
is the subgroup

J :=
(

k∗
n 0

0 1

)
⊂ GLr

(
A/p2).

Let P ⊂ GLr(A/p2) denote the image of the wild inertia group Ip
P

. In view of (3.2) it is contained in
the subgroup

N :=
{(

a b

0 1

)
∈ GLr

(
A/p2) ∣∣∣∣∣ a ≡ 1 mod p

}
.

Consider the subgroups

L1 :=
( ∗ 0

0 0

)
, L2 :=

(
0 ∗
0 0

)
, L1 ⊕ L2 ∼=

( ∗ ∗
0 0

)
⊂ Mr(κp).
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Then the image of P under the homomorphism

π : N → L1,

(
a b

0 1

)
�→

(
(a − 1)/π 0

0 0

)
mod p

describes the action on ϕ[p2]0(K sep).

Lemma 4.2. The group π(P ) has order at least q
hP

p .

Proof. (Compare Gardeyn [8, Proposition 4.5].) We will show this by determining the valuation at P

of torsion points in ϕ[p2]0(K sep). Let a ∈ A be any function with a simple zero at p. Then (a) = pa for
an ideal a of A which is prime to p. This implies that ϕ[a] = ϕ[p] ⊕ ϕ[a], where ϕ[a] is étale, and
therefore

ϕ[a]0 = ϕ[p]0

as group schemes over SpecOKP
. Write ϕa = ∑

i ϕa,iτ
i with ϕa,i ∈ OKP

. Let vP denote the normal-
ized valuation of KP . Then

vP(ϕa,0) = vP

(
ι(a)

) = 1,

because ordp(a) = 1 and P|p is unramified. Moreover, since ϕ has good reduction at P, there exists
a unique integer i0 > 0 such that

vP(ϕa,i) � 1 for 0 < i < i0,

vP(ϕa,i0) = 0, and

vP(ϕa,i) � 0 for i > i0.

Thus

qi0 = ∣∣ϕ[a]◦∣∣ = ∣∣ϕ[p]◦∣∣ = q
hP

p ,

and so the Newton polygon of the polynomial ϕa(x) = ∑
ϕa,i xqi

has the vertices (1,1) and (q
hP

p ,0)

and possibly (u,0) for some other (irrelevant) value u � q
hP

p . It follows that every non-zero element
s ∈ ϕ[p]0(K sep) has the valuation

vP(s) = α := 1/
(
q

hP

p − 1
)
.

Fix any such s. Repeating the above arguments, we find that

ϕ
[
a2]◦ = ϕ

[
p2]◦

and that the zeroes of valuation > 0 of the polynomial ϕa(x) − s are precisely the elements s′ ∈
ϕ[p2]0(K sep) with as′ = s. The Newton polygon of this polynomial has the vertices (0,α) and (q

hP

p ,0)

and (u,0); hence any such s′ has the valuation

vP(s′) = α/q
hP

p .
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We deduce that the wild ramification index of the field extension KP(s′)/KP is equal to q
hP

p . As this
index divides the order of π(P ), the lemma follows. �
Lemma 4.3. If qp � 3, then any additive subgroup H ⊂ L1 ⊕ L2 that is normalized by J is the direct sum of its
subgroups H ∩ L1 and H ∩ L2 .

Proof. It suffices to prove that L1 and L2 possess no non-trivial isomorphic subquotients as represen-
tations of J over Fp . For this recall that J ∼= k∗

n for a field extension kn of κp of degree hP . We let it
act by multiplication on kn and endow k∨

n := Homκp
(kn, κp) with the contragredient representation.

Then there are natural J -equivariant isomorphisms L1 ∼= kn ⊗κp
k∨

n and L2 ∼= k
r−hP

n . Let k̄n denote an

algebraic closure of kn . Then the representation L2 ⊗Fp k̄n over k̄n consists of the irreducible characters

k∗
n → k̄∗

n, u �→ upm

for all integers m � 0. On the other hand we can identify kn ⊗κp
k∨

n with k
hP

n such that the action

of u ∈ k∗
n on the ith summand is given by multiplication by uqi

p−1. Thus the representation L1 ⊗Fp k̄n

over k̄n consists of the irreducible characters

k∗
n → k̄∗

n, u �→ u(qi
p−1)p j

for all integers i, j � 0. We must show that no two such characters of the respective kinds are equal.

They are equal if and only if u(qi
p−1)p j = upm

for all u ∈ k∗
n . Since k∗

n is cyclic of order q
hP

p − 1, this is
equivalent to

(
qi
p − 1

)
p j ≡ pm mod

(
q

hP

p − 1
)
.

As qp −1 divides both qi
p −1 and q

hP

p −1, this congruence relation implies that qp −1 divides pm . But
qp is a power of p, and thus qp − 1 is relatively prime to pm; hence this is possible only if qp − 1 = 1.
But that was excluded by the assumption qp � 3; hence the characters cannot be equal. �
Proposition 4.4. In the above situation, if qp � 3, the subgroup

{g ∈ P | g ≡ 1 mod p}

has order at least q
hP

p .

Proof. Consider the homomorphism

π ′ : N → L1 ⊕ L2,

(
a b

0 1

)
�→

(
(a − 1)/π b

0 0

)
mod p,

which is clearly equivariant under J . Thus we can apply Lemma 4.3 to the subgroup π ′(P ) ⊂ L1 ⊕ L2.
Since the composite of π ′ with the projection pr1 : L1 ⊕ L2 → L1 is the homomorphism π above, we
deduce that

π(P ) = pr1
(
π ′(P )

) 4.3= pr1
(
π ′(P ) ∩ L1

) = π
(

P ∩ π ′−1(L1)
) = π

({g ∈ P | g ≡ 1 mod p}).
Thus the lower bound from Lemma 4.2 implies the result. �
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Subgroup generated by inertia.

Proposition 4.5. In the above situation, for almost all primes p of A and any (single) place P of K above p,
the images under ρp of all GK -conjugates of the inertia group IP generate GLr(Ap).

Proof. We may assume that P is unramified over p, that ϕ has good reduction at P, and that qp � 4.
By Proposition 3.1 we may also assume that the residual representation ρ̄p : G K → GLr(κp) is surjec-
tive. Let H ⊂ GLr(Ap) denote the subgroup in question. We will show that the stated conditions imply
that H = GLr(Ap).

We use the notations from the beginning of this section. The first condition in Proposition 4.1
holds by assumption. For the second recall that the determinant of ρp coincides with the Galois
representation on the Tate module of a Drinfeld module ψ of rank 1 over K (see Anderson [2]). As
ϕ has good reduction at P, the Tate module of ϕ at any prime not below P is unramified at P;
hence the same holds for the Tate module of ψ . By the criterion of Néron–Ogg–Shafarevich (see
Goss [9, Theorem 4.10.5]) it follows that ψ has good reduction at P. Since moreover P is unramified
over p, it follows that the representation IP → GL1(Ap) associated to ψ is surjective (see Hayes [10,
Proposition 9.1] or Gardeyn [8, Theorem 4.1]). Thus det(H) = GL1(Ap), proving the second condition
in Proposition 4.1. In particular this shows the desired assertion in the case r = 1. For the rest of the
proof we therefore assume that r � 2.

For the third condition consider the subgroup H [0] ⊂ GLr(κp). By (3.3) it contains the subgroup

ρ̄p

(
ItP

) =
(

k∗
n 0

0 1

)

written in block matrices of size hP , r − hP , where kn is an extension of κp of degree hP . If hP > 1,
any generator of this subgroup is non-scalar. If hP = 1, we have |k∗

n| = |κ∗
p| � 4; hence this subgroup

contains a non-trivial element. Since r � 2, this element is again non-scalar. Thus in both cases it
follows that H [0] contains a non-scalar element.

By construction H is a normal subgroup of ρp(GK ). As the residual representation is surjective
by assumption, it follows that H [0] is a normal subgroup of GLr(κp). Since qp � 4, Proposition 2.2
implies that SLr(κp) ⊂ H [0] . Since the determinant induces on ρ̄p(It

P
) the norm map k∗

n → κ∗
p , which

is surjective, the determinant map H [0] → κ∗
p is surjective. Together it follows that H [0] = GLr(κp),

proving the third condition in Proposition 4.1.
Next Proposition 4.4 implies that H [1] contains a subgroup of the group of block matrices of the

form ( ∗ ∗
0 0

)
⊂ Mr(κp)

of order at least q
hP

p . If hP > 1, it thus contains a non-scalar element, and if hP < r, every non-trivial
element is non-scalar. Thus H [1] contains a non-scalar matrix, proving the fourth and last condition
in Proposition 4.1. Altogether it now follows that H = GLr(Ap), as desired. �
Adelic representation. We can now prove the following special case of Theorem 0.1.

Theorem 4.6. If K is a finite extension of F and EndK̄ (ϕ) = A, the image of the adelic representation

ρad : GK →
∏
p

GLr(Ap)

is open.
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Proof. Let Γ denote this image. Fix a finite set Λ of primes p of A, such that Proposition 4.5 holds
for all p /∈ Λ and that ϕ has good reduction at all places P above p /∈ Λ. For any such P|p, the inertia
group IP acts trivially on the Tate modules Tp′ (ϕ) for all p′ 
= p. Thus its image under ρad is contained
in the subgroup

GLr(Ap) ×
∏
p′ 
=p

{1}.

The same follows for the subgroup ΔP generated by all Γ -conjugates of ρad(IP). But Proposition 4.5
implies that the projection to the factor at p induces a surjective homomorphism ΔP → GLr(Ap).
Therefore

ΔP = GLr(Ap) ×
∏
p′ 
=p

{1}.

By varying p and P we deduce that ∏
p/∈Λ

GLr(Ap) ⊂ Γ.

Therefore Γ is the inverse image of its image under the projection

πΛ :
∏
p

GLr(Ap) →
∏
p∈Λ

GLr(Ap).

But πΛ(Γ ) is an open subgroup by Theorem 1.2; hence Γ is an open subgroup, as desired. �
5. The general case

Throughout this section, we assume that EndK̄ (ϕ) = A, but now the transcendence degree of K is
arbitrary. We prove the general case of Theorem 0.1 by reducing it to the case of a finite extension
of F , using a specialization argument similar to [13]. We begin with some group theory.

Let p be any prime of A, and let π be a uniformizer at p. For any n � 1 we define

Gn
p := 1 + πnMr(Ap) and

Gn′
p := Gn

p ∩ SLr(Ap).

For any two integers n � � � 1 we have a natural group isomorphism

logn,� : Gn
p/Gn+�

p

∼−→ Mr
(
pn/pn+�

)
, [1 + X] �→ [X]. (5.1)

As explained in [14], this can be considered as a logarithm map truncated after the first-order term.
In the same way, the inverse isomorphism is an exponential map truncated after the first-order term.
We denote it by expn,� .

Lemma 5.2. For any natural numbers n,m � � � 1, the following properties hold.

(i) The commutator Gn
p × Gn

p → Gn
p , (g,h) �→ ghg−1h−1 induces a bimultiplicative map

{ , }− : Gn
p/Gn+�

p × Gm
p /Gm+�

p → Gn+m
p /Gn+m+�

p ,([g], [h]) �→ [
ghg−1h−1].
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(ii) The Lie bracket Mr(p
n Ap) × Mr(p

n Ap) → Mr(p
n Ap) induces a bilinear map

[ , ]− : Mr
(
pn/pn+�

) × Mr
(
pm/pm+�

) → Mr
(
pn+m/pn+m+�

)
,([X], [Y ]) �→ [XY − Y X].

(iii) We have

logn+m,l

({[g], [h]}−) = [
logn,l

([g]), logm,l

([h])]−.

Proof. Consider elements g = 1 + X ∈ Gn
p , and h = 1 + Y ∈ Gm

p . Their inverses are given by the geo-
metric series

g−1 = 1 − X + X2 − +· · · and

h−1 = 1 − Y + Y 2 − +· · · .

Therefore

ghg−1 = gg−1 + gY g−1 = (1 + Y ) + (XY − Y X) + T (X, Y ),

where T is a power series of degree � 2 in X and degree � 1 in Y . This implies that

ghg−1h−1 = (1 + Y )(1 + Y )−1 + (XY − Y X)(1 + Y )−1 + T (X, Y )(1 + Y )−1

= 1 + (XY − Y X) + T ′(X, Y ) + T (X, Y )(1 + Y )−1,

where T ′ is a power series of degree � 2 in Y and degree at least � 1 in X . Since n, m � �, both
T ′(X, Y ) and T (X, Y ) vanish modulo pn+m+�; hence

ghg−1h−1 ≡ 1 + (XY − Y X) mod pn+m+�.

Everything follows from this. �
Next consider a closed subgroup H of GLr(Ap), and set

Hn := H ∩ Gn
p and

Hn′ := H ∩ Gn′
p .

Lemma 5.3. Consider any natural numbers n,m � � � 1. Assume that Hn/Hn+� = Gn
p/Gn+�

p and that

Gm′
p /Gm+�′

p ⊂ Hm/Hm+� . Then we have

Hn+m′/Hn+m+�′ = Gn+m′
p /Gn+m+�′

p .

Proof. By Lemma 5.2, we have the following commutative diagram

Gn
p/Gn+�

p × Gm′
p /Gm+�′

p

logn,� × logm,�

{ , }−
Gn+m′

p /Gn+m+�′
p

Mr(p
n/pn+�) × Mr(p

m/pm+�)
[ , ]−

slr(p
n+m/pn+m+�).

expn+m,�
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By (5.1) the vertical arrows are isomorphisms. By [15, Proposition 1.2], the set of commutators [Mr, slr]
generates the group slr . Thus the subset

expn+m,�

([
logn,�

(
Gn

p/Gn+�
p

)
, logm,�

(
Gm′

p /Gm+�′
p

)])
generates the group Gn+m′

p /Gn+m+�′
p . By assumption this subset is

{
Hn/Hn+�, Hm/Hm+�

}−
,

and therefore contained in Hn+m′/Hn+m+�′ . The lemma follows. �
Proposition 5.4. Assume that there exists a natural number n � 1 such that Hn/H2n = Gn

p/G2n
p . Then we

have

Gn′
p ⊂ Hn.

Proof. We must show that Gn′
p = Hn′ . Since H is a closed subgroup of GLr(Ap), it is enough to show

that Hin′/H(i+1)n′ = Gin′
p /G(i+1)n′

p for all i � 1. The assumption implies this already for i = 1. If it holds
for some i � 1, the assumption and Lemma 5.3 show that it also holds for i + 1. By induction the
assertion follows for all i, as desired. �
Specialization with prescribed absolute endomorphism ring. Now we choose an integral scheme X
of finite type over Fp with function field K such that ϕ extends to a family of Drinfeld A-modules of
rank r over X . For any point x ∈ X, we get a Drinfeld A-module ϕx of rank r over the residue field kx

at x. Its characteristic is the image λx of x under the morphism X → Spec(A). For any prime p 
= λx

of A, the specialization map induces an isomorphism

Tp(ϕ)
∼−→ Tp(ϕx). (5.5)

Proposition 5.6. In the above situation, if EndK̄ (ϕ) = A, there exists a point x ∈ X such that kx is a finite
extension of F and

Endk̄x
(ϕx) = A.

Proof. Denote by Γ̃p the image of GK in the representation on Tp(ϕ). By Theorem 1.2 it is an open
subgroup of GLr(Ap); hence there exists an integer n � 1 such that Gn

p ⊂ Γ̃p . Let K ′ be the finite

Galois extension of K such that Gal(K ′/K ) = Γ̃p/G2n
p , and let π : X ′ → X be the normalization of X

in K ′ . By [13, Lemma 1.6], there exists a point x ∈ X such that kx is a finite extension of F and
π−1(x) ⊂ X ′ is irreducible.

Denote by Δp the image of Gkx in the representation on Tp(ϕx). This is a closed subgroup
of GLr(Ap). Since p 
= λx , the specialization isomorphism (5.5) turns Δp into a subgroup of Γ̃p . The
irreducibility of π−1(x) means that Gal(kπ−1(x)/kx) ∼= Gal(K ′/K ). We find that ΔpG2n

p = Γ̃p , and thus

Δn
pG2n

p = Gn
p . In other words we have

Δn
p/Δ2n

p = Gn
p/G2n

p .

By Proposition 5.4 this implies that Gn
p

′ ⊂ Δn
p

′
. In particular Δp contains an open subgroup of SLr(Ap).

By Goss [9, Theorem 7.7.1], the image of Δp under the determinant is an open subgroup of GL1(Ap).
Together this implies that Δp is an open subgroup of GLr(Ap).
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Finally, all endomorphisms of ϕx are defined over some finite separable extension k′
x of kx . This

extension corresponds to an open subgroup of Δp , which by the above is again open in GLr(Ap). By
the easy direction of the Tate conjecture, it follows that Endk̄x

(ϕx) = Endk′
x
(ϕx) = A, as desired. �

Proof of Theorem 0.1. If K is a finite extension of F , the result is Theorem 4.6. In the general case
choose x as in Proposition 5.6. Then Theorem 4.6 for the Drinfeld module ϕx shows that the image of
the adelic representation associated to ϕx is open in GLr(A

f
F ). By the specialization isomorphism (5.5)

this image is a subgroup of the image of the adelic representation associated to ϕ . Thus the latter is
open in GLr(A

f
F ) as well. �

Appendix A. Two remarks on Gardeyn [8]

In [8] Gardeyn generalized Theorem 1.2 to simple τ -modules of dimension 1. In this appendix we
show how to close two gaps in his proof.

Specialization. The first gap is in the proof of [8, Proposition 2.4] at the bottom of p. 318, where
he addresses a specialization problem analogous to that in Proposition 5.6. He considers an integral
scheme of finite type X with function field K and a family of τ -modules M over X whose generic
fiber M has absolute endomorphism ring EndK̄ (M) = A. He finds a point x of X whose residue field kx

is a finite extension of F , such that the commutant of the image of Galois associated to the reduction
M x is the same as for M . He then deduces that the absolute endomorphism ring Endk̄x

(M x) is equal

to A, although this follows only for the endomorphism ring Endkx (M x) over kx . This gap can be
closed by exactly the same group theoretical argument as in the proof of Proposition 5.6 above.

Action of inertia on torsion points. The second gap is in the proof of [8, Proposition 4.5]. There,
Gardeyn studies the action of the inertia group IP on the Tate module of a one-dimensional formal
τ -module over K . A typical example for this is the submodule of the Tate module of a Drinfeld
module Tp(ϕ) on which the tame inertia group acts non-trivially. On p. 327, line 6, Gardeyn considers
the field L̃◦

i . But this field exists only if Gal(L∞/L̃i) is normalized by the group J . If it were normalized
for all i, we could deduce that L̃i = Li for all i, which is not true in general. Several other problems
within the proof of that proposition arise. We therefore give a reasonably complete independent proof
of the proposition. It will be instructive to work in a slightly more general setting that includes the
case of Lubin–Tate formal groups in mixed characteristic (see Abrashkin [1] or Fontaine [7]).

Let E be a non-archimedean local field with discrete valuation ring O and maximal ideal p = (π).
Let k = O/p denote the residue field of, say, order q and characteristic p. Let L be a maximal unrami-
fied extension of E , and Lsep a maximal separable extension of L. Let ψ be a formal Lubin–Tate group
of O-modules of height s over the ring of integers OL . For every integer n � 1, the πn-torsion points
ψ[πn](Lsep) form a free module of rank s over O/pn . Thus the Tate module

T := lim←−n
ψ

[
πn](

Lsep)
is a free module of rank s over O together with a continuous representation

ρ : Gal
(
Lsep/L

) → AutO(T ) ∼= GLs(O).

All this applies to the modules ψ[πn](Lsep) := ϕ[πn]◦(Lsep) over O = Ap for a Drinfeld A-module
over OL with good reduction of height s.

The aim is to characterize the image of ρ under the stated general conditions. One basic ingredient
is the following fact. Let v denote the valuation on Lsep for which v(π) = 1.



902 R. Pink, E. Rütsche / Journal of Number Theory 129 (2009) 882–907
Lemma A.1. For any n � 1 and any primitive element t ∈ ψ[πn](Lsep) we have

v(t) = 1

qs(n−1)(qs − 1)
.

Proof. In the case of a Drinfeld module this was proved in Lemma 4.2 for n � 2. The same argument
works for all n and all formal Lubin–Tate groups. �

Choose primitive elements tn ∈ ψ[πn](Lsep) such that ψ(π)(tn+1) = tn for all n � 1. For every n � 1
let Ln denote the finite extension of L generated by ψ[πn](Lsep), and let L′

n ⊂ Ln denote the subfield
generated by tn .

Recall (e.g. from Serre [20, Chapter IV §2–3]) that the Galois group G of any finite local field
extension possesses a natural decreasing lower numbering filtration Gμ indexed by μ � 0. Via the
Herbrand function ϕ (see [20, p. 80]) this filtration is translated into the upper number filtration Gμ

such that Gμ = Gϕ(μ) . We will say that the extension of G has break α for the lower numbering
filtration if Gμ � Gα for all μ > α, and that it has break α for the upper numbering filtration if
Gμ � Gα for all μ > α. Since ϕ(μ) = μ whenever μ is less than or equal to the smallest break for
the lower numbering filtration, we find that the lowest breaks for the two numberings coincide. In
particular G has the unique break α for the lower numbering filtration if and only if it has the unique
break α for the upper numbering filtration.

Lemma A.2. For every n � 1, the element tn is a uniformizer of L′
n. Moreover,

(a) we have L′
1 = L1 and it is Galois over L of degree qs − 1, and

(b) for every n � 1, the extension L′
n+1/L′

n is Galois of degree qs with unique break qsn − 1 ( for either filtra-
tion).

Proof. We work out the argument in the case of equal characteristic p, where addition and sub-
traction in the formal group coincide with the usual ones. In the mixed characteristic case they still
coincide in first order approximation, which suffices to adapt the argument.

For any non-zero element t ∈ ψ[π ](Lsep) and any element σ in the wild ramification group of L
we have v(σ (t) − t) > v(t). Since σ(t) − t is again an element of ψ[π ](Lsep), Lemma A.1 shows that
it must be zero. Thus the wild ramification group acts trivially on L1. In particular the extension L′

1/L
is tame and hence Galois. The number of distinct conjugates of t1 in L′

1/L is therefore equal to the
ramification degree, and so by Lemma A.1 it is � qs − 1. All these conjugates are non-zero elements
of the group ψ[π ](Lsep) of order qs . It follows that the number of conjugates is equal to qs − 1 and
that they generate L1. This proves (a). Since the ramification degree is qs − 1, it also follows that t1 is
a uniformizer of L′

1.
Fix any n � 1 and assume that tn is a uniformizer of L′

n . Then Lemma A.1 implies that L′
n+1/L′

n has
ramification degree � qs . For any σ ∈ Gal(Lsep/L′

n) we calculate

π
(
σ(tn+1) − tn+1

) = σ(πtn+1) − πtn+1 = σ(tn) − tn = 0,

which shows that all conjugates of tn+1 over L′
n lie in tn+1 + ψ[π ](Lsep). It follows that the num-

ber of conjugates is equal to qs and that L′
n+1 is Galois of degree qs over L′

n and has uniformizer
tn+1. Furthermore, to any non-trivial element σ of Gal(L′

n+1/L′
n) is associated the non-zero element

σ(tn+1) − tn+1 ∈ ψ[π ](Lsep), and by comparing its valuation with that of tn+1 using Lemma A.1 we

find that σ(tn+1)− tn+1 is a unit times tqsn

n+1. Now the definition of the higher ramification groups im-
plies that Gal(L′

n+1/L′
n) has the unique break qsn − 1 for the lower numbering filtration. By induction

on n the lemma follows. �
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By Lemma A.2(a) the Galois group Gal(L1/L) has order prime to p, while H := ρ(Gal(Lsep/L1)) is
a pro-p group. Thus we can write the image of ρ as a semidirect product

ρ
(
Gal

(
Lsep/L

)) = J � H .

The tameness implies that the group J is cyclic of order qs − 1. Under the embedding J ↪→
Autk(T /pT ) ∼= GLs(k) it is therefore identified with the multiplicative group of a field extension
ks ⊂ Endk(T /pT ) of k of degree s. It follows that O J ⊂ EndO(T ) is an unramified extension of O
of degree s, turning T into a free module of rank 1 over O J . Using this one finds a natural decom-
position of the matrix ring

M := EndO(T ) =
⊕

i∈Z/sZ

M(i), (A.3)

where M(i) ∼= O J with the action of J by the character u �→ uqi−1.

Theorem A.4. In the above situation, there exists a function m : Z/sZ → Z�1 ∪ {∞} satisfying m(0) = 1 and
m(i) + m(i′) � m(i + i′) for all i, i′ , such that

ρ
(
Gal

(
Lsep/L

)) = J �
(

1 +
⊕

i∈Z/sZ

pm(i)M(i)

)
,

where we use the convention p∞ := (0).

The rest of the appendix is devoted to proving Theorem A.4.

Lemma A.5. For every i ∈ Z/sZ we set M(i) := M(i)/pM(i), which is a ks-vector space of dimension 1 on

which J ∼= k∗
s acts through the character u �→ uqi−1 .

(a) If i 
≡ 0 mod (s), then M(i) is a simple Fp[ J ]-module.
(b) If i 
≡ i′ mod (s), then M(i) � M(i′) as Fp[ J ]-modules.

Proof. (Compare Gardeyn [8] or Fontaine [7].) The kernel of the character is the multiplicative group
of the fixed field of the automorphism ks → ks , u �→ uqi

. For i 
≡ 0 mod (s) this is a proper subfield
of ks; hence the kernel has order � qs/2 − 1. Thus the image of the character has order � (qs − 1)/

(qs/2 − 1) = qs/2 + 1, and so it does not lie in a proper subfield of ks . This implies (a). It also shows
that J acts non-trivially on M(i), and hence M(i) � M(0). By symmetry it remains to prove (b) in the
case s > i > i′ > 0. Then the modules are isomorphic if and only if there exists j such that

u(qi−1)p j = uqi′−1

for all u ∈ k∗
s . As k∗

s is cyclic of order qs − 1, this amounts to the congruence

(
qi − 1

)
p j ≡ qi′ − 1 mod

(
qs − 1

)
.

Since (qi −1)p j > qi′ −1, it follows that (qi −1)p j � qs −1. Therefore qi p j is a multiple of qs . A direct
calculation shows that the remainder of (qi − 1)p j under division by qs − 1 is

qs − p j + qi p jq−s − 1.
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Thus this number is equal to qi′ − 1, and so

qs + qi p jq−s = qi′ + p j .

From this it is straightforward to deduce a contradiction. �
For every n � 1 we can view the Galois group Gal(Ln+1/Ln) as a subgroup of

Ker
(
AutO

(
T /pn+1T

) → AutO
(
T /pn T

)) ∼= 1 + πn(M/pM)

and thus of the additive group M/pM . As this identification is J -equivariant, we obtain in fact an
Fp[ J ]-submodule of M/pM . The decomposition (A.3) yields a decomposition

M := M/pM ∼=
⊕

i∈Z/sZ

M(i)

and thus a J -invariant decreasing filtration of M/pM with subquotients M(i) for 1 � i � s. From this
we deduce a J -invariant filtration

Ln = Ln,0 ⊂ Ln,1 ⊂ · · · ⊂ Ln,s−1 ⊂ Ln,s = Ln+1

such that Gal(Ln,i/Ln,i−1) embeds into M(i) for every 1 � i � s.

Lemma A.6. For every n � 1 and every 1 � i � s − 1 the extension Ln,i/Ln,i−1 is either trivial or Galois of
degree qs with a unique break that is 
≡ 0 modulo (qs − 1).

Proof. If the extension is non-trivial, Lemma A.5(a) implies that its Galois group is isomorphic to M(i)
and that its ramification filtration has a unique break, say α. Let π̃ be a uniformizer of Ln,i . Then the
definition of the higher ramification groups yields a natural and hence J -equivariant embedding

M(i) ∼= Gal(Ln,i/Ln,i−1) ↪→ (π̃ )α/(π̃)α+1, σ �→ σ(π̃)

π̃
− 1 mod (π̃ )α+1.

The tame ramification group J acts through a faithful character on (π̃ )/(π̃ )2; hence it acts on
(π̃ )α/(π̃)α+1 through the αth power of that character. Since it acts non-trivially on M(i), we find
that α cannot be a multiple of | J | = |k∗

n| = qs − 1. This finishes the proof. �
Lemma A.7. Let F be a non-archimedean local field. Let F1 and F2 be two finite Galois extensions of degree d
over F with unique breaks α1 
= α2 . Then the extensions are linearly disjoint, and F1 F2/F2 is Galois of degree d
with a unique break ≡ α1 modulo (d−1), and F1 F2/F1 is Galois of degree d with a unique break ≡ α2 modulo
(d − 1).

Proof. Since the breaks are different, the functoriality of the upper numbering filtration (see [20,
Chapter IV §3 Proposition 14]) implies that the upper numbering of the composite extension F1 F2/F
has the breaks α1 and α2 with index d each. It follows that the extensions are linearly disjoint and
that F1 F2/F2 and F1 F2/F1 are Galois of degree d. By symmetry, we may without loss of generality
assume that α1 > α2, so that F2 is the fixed field of Gal(F1 F2/F )α1 . Using the yoga of the Herbrand
function ϕ (see [20, §3]) one calculates that the lower numbering of the extension F1 F2/F then has
the breaks α2 and α1 + (qs − 1)(α1 − α2) with index d each. It follows that F1 F2/F2 has the unique
break α1 + (qs − 1)(α1 − α2) ≡ α1 modulo (d − 1) and that F1 F2/F1 has the unique break α2. �
Lemma A.8. For all n � 1 we have [Ln,s/Ln,s−1]=qs.
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Proof. Consider the following assertions:

A(n): Ln,s=Ln,s−1L′
n+1 and [Ln,s/Ln,s−1]=qs .

B(m, i,n): The extension Lm,i L′
n+1/Lm,i L′

n is Galois of degree qs with a unique break ≡ 0 modulo
(qs − 1).

C(m, i,n): The extension Lm,i L′
n/Lm,i−1L′

n is either trivial or Galois of degree qs with a unique break

≡ 0 modulo (qs − 1).

We will prove

A(n) for all n � 1,
B(m, i,n) for all 1 � m � n and 0 � i � s − 1, and
C(m, i,n) for all 1 � m � n and 1 � i � s − 1.

Note first that L′
n ⊂ Ln,i−1 ⊂ Ln,i ; hence the assertion C(n, i,n) is precisely Lemma A.6. In particular

C(m, i,n) holds whenever n = 1. For all other assertions we use induction on n. We fix an integer
n � 1 and assume A(n′) for all n′ < n and C(m, i,n) for all m and i. We will then show A(n) and
B(m, i,n) and C(m, i,n + 1) for all m and i. This proves the lemma, because the desired assertion is
contained in A(n).

Keeping n fixed we perform another induction over m and an innermost induction over i. We
may thus fix 1 � m � n and 0 � i � s − 1 and assume B(m′, i′,n) whenever m′ < m and B(m, i′,n)

whenever i′ < i. If i = 0 and m = 1, we note that L1,0 = L1 = L′
1 ⊂ L′

n ⊂ L′
n+1 by Lemma A.2(a); hence

Lemma A.2(b) implies B(1,0,n). If i = 0 and m > 1 we have Lm,0 = Lm−1,s = Lm−1,s−1L′
m by A(m − 1);

since L′
m ⊂ L′

n ⊂ L′
n+1, the assertion B(m − 1, s − 1,n) then implies B(m,0,n). If i > 0 we consider the

field extensions

Lm,i L′
n+1

Lm,i L′
n Lm,i−1L′

n+1

Lm,i−1L′
n.

By B(m, i − 1,n) the right vertical extension is Galois of degree qs with a unique break ≡ 0 modulo
(qs − 1), and by C(m, i,n) the lower oblique extension is either trivial or Galois of degree qs with a
unique break 
≡ 0 modulo (qs − 1). If the lower extension is trivial, we can trivially deduce B(m, i,n)

and C(m, i,n + 1). Otherwise the two breaks are different; hence we can apply Lemma A.7 and again
deduce B(m, i,n) and C(m, i,n + 1).

By induction on m and i, we have thus proved B(m, i,n) and C(m, i,n + 1) for all possible m and i
except for C(n + 1, i,n + 1). But that case was already covered at the beginning of the proof. Finally,
consider the field extensions

Ln,s−1 = Ln,s−1L′
n ⊂ Ln,s−1L′

n+1 ⊂ Ln+1 = Ln,s.

By construction the total extension has a subgroup of M(0) as Galois group; hence it has degree � qs .
But since the middle extension already has degree qs by B(n, s − 1,n), it follows that the extension
on the right is an equality and the total degree is qs . This is just the assertion A(n), finishing the
proof. �
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Proof of Theorem A.4. Recall that for every n � 1 we have an Fp[ J ]-equivariant embedding

Gal(Ln+1/Ln) ↪→ M =
⊕

i∈Z/sZ

M(i).

Lemma A.5 implies that its image decomposes accordingly and that all its summands for i 
≡ 0 mod s
are trivial or equal to M(i). Moreover, Lemma A.8 implies that the image contains the summand M(0).
Together we deduce that

Gal(Ln+1/Ln)
∼−→

⊕
i∈S(n)

M(i)

for some subset S(n) ⊂ Z/sZ with 0 ∈ S(n).
Next, the Lie bracket induces a map M(i) × M(i′) → M(i + i′) for all i and i′ , which is non-zero

except for i ≡ i′ ≡ 0 mod s. Using commutators as in Fontaine [7] or Gardeyn [8] or in Proposition 4.1
above, one finds that i ∈ S(n) and i′ ∈ S(n′) imply i + i′ ∈ S(n + n′). Applying this with n′ = 1 and
i′ = 0 ∈ S(1) one deduces that S(n) ⊂ S(n + 1) for every n � 1. Thus with

m(i) := inf
{
n � 1: i ∈ S(n)

} ∈ Z�1 ∪ {∞}

we have m(0) = 1 and i ∈ S(n) ⇔ n � m(i). The above implication then implies that m(i) + m(i′) �
m(i + i′) for arbitrary i, i′ . Thus the function m satisfies the first two conditions in Theorem A.4.

These conditions imply that

U := 1 +
⊕

i∈Z/sZ

pm(i)M(i)

is a J -invariant closed subgroup of GLs(O) which possesses the same subquotients in the congruence
filtration as H . It remains to show that H = U . For any n � 1 define

Gn := 1 + πnMs(O),

G[n] := Gn/Gn+1 ∼=
⊕

i∈Z/sZ

M(i),

H [n] := (
H ∩ Gn)

Gn+1/Gn+1, and

U [n] := (
U ∩ Gn)

Gn+1/Gn+1.

By construction of the m(i) the subgroup H [n] of G[n] consists of those summands M(i) with m(i) � n.
Moreover, the subgroup HGn/Gn of G1/Gn is a successive extension of n−m(i) copies of M(i) for all i
with m(i) < n. In particular, Lemma A.5 implies that HGn/Gn and G[n]/H [n] possess no non-trivial
isomorphic subquotient as Fp[ J ]-module. It also implies that H [n] = U [n] . Suppose that HGn/Gn =
U Gn/Gn as subgroups of G1/Gn . Then we have an exact sequence

1 G[n]/H [n] HGn/(H ∩ Gn)Gn+1 HGn/Gn 1

G[n]/U [n] U Gn/Gn

and each of H and U induces a J -equivariant splitting. As the extension is central, these split-
tings differ by a J -equivariant homomorphism HGn/Gn → G[n]/H [n] . But since these groups pos-
sess no non-trivial isomorphic subquotients, this homomorphism must be zero. This implies that
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HGn+1/Gn+1 = U Gn+1/Gn+1 as subgroups of G1/Gn+1. By induction we deduce that H = U , as de-
sired. �
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