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0. Introduction

In [21] Serre proved that the image of the adelic representation associated to an elliptic curve over
a number field without potential complex multiplication is open. The aim of this paper is to prove an
analogue for Drinfeld modules of generic characteristic.

Let IFy be a finite field with q elements and of characteristic p. Let F be a finitely generated field
of transcendence degree 1 over ;. Let A be the ring of elements of F which are regular outside
a fixed place oo of F. Let K be a finitely generated field extension of F. Denote by K*¢P the separable
closure of K inside a fixed algebraic closure K and by Gg := Gal(K*®P/K) the absolute Galois group
of K. Let

p:A— K{t}, a—¢q

* Corresponding author.
E-mail addresses: pink@math.ethz.ch (R. Pink), egon.ruetsche@alumni.ethz.ch (E. Riitsche).

0022-314X/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2008.12.002


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:pink@math.ethz.ch
mailto:egon.ruetsche@alumni.ethz.ch
http://dx.doi.org/10.1016/j.jnt.2008.12.002

R. Pink, E. Riitsche / Journal of Number Theory 129 (2009) 882-907 883

be a Drinfeld A-module over K of rank r. Thus ¢ is of generic characteristic. (For the general theory
of Drinfeld modules see for example Drinfeld [6], Deligne and Husemdller [5], Hayes [10] or Goss [9,
Chapter 4].) For any non-zero ideal a of A, the a-torsion

ola] := ﬂ Ker(¢q : Gg.x = Ga k)

aca
is a finite étale subgroup scheme of Gq k. By Lang’s theorem, its geometric points
@la](K5P) = {x € K**P | Va € a: @q(x) =0}
form a free A/a-module of rank r. For any non-zero prime p of A, the p-adic Tate module
Ty (@) :==lim @[p"](K*P)

of ¢ is a free Ay-module of rank r, where A, denotes the completion of A at p. It carries a continuous
Galois representation

pp : Gk — Auta, (Tp(@)) = GLr(Ap).
Denote by A£ be the ring of finite adeles of F, and consider the adelic representation

pad: Gk — [ GLr(Ap) C GL(A]).
poo

Our main result is the following

Theorem 0.1 (Adelic openness in generic characteristic). Let ¢ be a Drinfeld A-module of rank r over a finitely
generated field K of generic characteristic. Assume that Endg (¢) = A. Then the image of the adelic represen-
tation

Pad : Gk — GL; (A1)
is open.

When ¢ cannot be defined over a finite extension of F, this has already been proven in [4, Theo-
rem 3] by different methods.

We also generalize the result to Drinfeld modules with arbitrary endomorphism ring Endy (¢).
To obtain a convenient result, we assume that all endomorphisms of ¢ are defined over K. Since
the endomorphisms act on the Tate module and commute with the Galois representation, the image
of Gk then lies in the centralizer Centgy,(a,)(Endg(¢)). By exactly the same argument as in [13],
Theorem 0.1 implies the following

Theorem 0.2. Let ¢ be a Drinfeld A-module of rank r over a finitely generated field K of generic characteristic.
Assume that End (¢) = Endg (¢). Then the image of the homomorphism

Pad : Gk — HCentGLr(Av)(End,-(((p))
p

is open.
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The methods used to establish these results are modeled to a great extent on the methods de-
veloped by Serre [19,21-23] to prove the corresponding results for elliptic curves and certain abelian
varieties.

The article has five parts and an appendix. In Section 1 we list some known results on Drinfeld
modules. Section 2 contains some preparatory results on matrix groups and fibers of algebraic mor-
phisms. In Section 3 we prove that the residual representation is surjective for almost all primes p
of A in the case that Endz(¢) = A and K is a finite extension of F. In Section 4 we prove Theo-
rem 0.1 in the case that K is a finite extension of F. Section 5 contains a specialization result and
uses it to prove the general case of Theorem 0.1. Appendix A contains two remarks on the article by
Gardeyn [8]. We point out two gaps in that paper and show how to close them. The above notations
and assumptions will remain in force throughout the article.

The material in this article was part of the doctoral thesis of the second author [18].

1. Known results on Drinfeld modules

The first stated result was proved independently by Taguchi [24,25] and Tamagawa [26].

Theorem 1.1 (Tate conjecture for Drinfeld modules). Let ¢1 and ¢, be two Drinfeld A-modules over K. Then
for all primes p of A the natural map

Homy (91, 92) ®4 Ap = Homa,, 6,1 (Tp (91). Tp(¢2))
is an isomorphism.
The next result was proved by the first author [13].

Theorem 1.2. Assume that End (¢) = A. Then for any finite set A of primes of A the image of the homomor-
phism

Gy — ]_[ GLr(Ap)
peA

is open.

Furthermore, the reduction modulo p of p, is the continuous Galois representation on the module
of p-torsion

Pp : Gk — Aute, (¢[p](K*P)) = GLy (k)
over the residue field « := A/p. We call it the residual representation at p. In [16] we proved

Theorem 1.3 (Absolute irreducibility of the residual representation). Assume that Endg (@) = A. Then the
residual representation

Op : Gk — GLy(kp)

is absolutely irreducible for almost all primes p of A.
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2. Preparatory results on algebraic groups

Proposition 2.1. Let n be any natural number, let k be a field with at least 4 elements, and let H be an additive
subgroup of the matrix ring My (k). Assume that H is invariant under conjugation by GL, (k). Then either H is
contained in the group of scalar matrices or H contains the group of matrices of trace 0.

Proof. Let T := G}, denote the full diagonal torus. We identify its character group with Z" by means
of the standard basis ey, ..., e,. The torus T acts on My (k) by conjugation, and its weights are e; —e;
for all i # j with multiplicity 1 and 0 with multiplicity n. The weight space Wq of weight 0 is the
group of diagonal matrices, and the weight space W; ; of weight e; —e; is the group of matrices with
all entries zero except, possibly, in the position (i, j). We thus can decompose M, (k) as

M (k) = Wo & D Wi ;.
ij

Since the multiplicative group k* has at least 3 elements, any two distinct weights of the form
e; —e; remain distinct and different from O upon restriction to T (k). Therefore H can be decomposed
as

H=(HNWo)®@HNW; ).
ij

Each W; ; is a k-vector space of dimension 1, and T (k) acts on it through a surjective homomorphism
T(k) — k*. Thus HN W, ; is either 0 or equal to W; ;. The permutation matrices in GL,(k) form
a subgroup isomorphic to S; which permutes the weights e; — e; transitively. Since H is invariant
under conjugation by GL,(k), we find that either all HN W; j =0 or all HN W; j = W, ;. In other
words, either H is contained in the group of diagonal matrices or H contains the sum of all W; j,
which is the group of matrices with diagonal 0.

If H is contained in the group of diagonal matrices, take any element h of H and denote its
diagonal entries by hq, ..., h,. Let i # j and let u € GL, (k) be the matrix with entry 1 on the diagonal
and in the position (i, j) and 0 elsewhere. Then uhu~! has entry h; —hj in the position (i, j). But this
entry has to be 0 because uhu~! € H, and hence h; = hj. This can be done for any pair (i, j), which
shows that H is contained in the group of scalar matrices.

If H contains the group of matrices with diagonal 0, we consider the trace form M;(k) x
M, (k) — k, (A, B) — (A, B) :=tr(AB), which is a perfect pairing invariant under GL,(k). The orthogo-
nal complement H+ of H is again a GL,(k)-invariant subgroup, and since the inclusion for orthogonal
complements is reversed, it is contained in the group of diagonal matrices. The arguments in the
other case show that H' is contained in the group of scalar matrices. Taking orthogonal comple-
ments again, we deduce that H contains the matrices of trace 0, as desired. O

Proposition 2.2. Let n be any natural number, let k be a finite field, and let H be a normal subgroup of GL; (k)
containing a non-scalar matrix. Assume that (n, |k|) is different from (2, 2) and (2, 3). Then we have

SLy(k) C H.

Proof. For any non-scalar element h € GL;(k), there exists an element g € GL,(k) such that the com-
mutator ghg~'h~! is again non-scalar. Thus H contains a non-scalar element of SL,(k). In particular,
we have n > 2. Let Z denote the center of SL,(k). Under the given assumptions SL,(k)/Z is simple
by [12], and SL,(k) is perfect by [3, Corollary 4.3] or [17]. Since H N SL,;(k) is a normal subgroup
of SL,(k) that is not contained in Z, it follows that H N SL, (k) = SL,(k). O
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Proposition 2.3. Let k be a finite field, let n be any natural number, and let H be a subgroup of GL; (k) of
index c. Assume that (n, |k|) is different from (2, 2) and (2, 3) and that ¢! < |PGL; (k)|. Then we have

SLy (k) C H.

Proof. Abbreviate G := GL,(k). Then the action of G on the set of right cosets {gH | g € G} corre-
sponds to a homomorphism from G to the symmetric group S on c¢ elements. Thus its kernel N is
a normal subgroup of G of index at most ¢! and contained in H. The assumption implies that N has
non-trivial image in PGL,(k), and thus N contains a non-scalar element. By Proposition 2.2, we find
that SL,(k) C N C H, as desired. O

Proposition 2.4. Let X be an irreducible algebraic variety over a field L, let G be an irreducible algebraic group
over L, and let f : X — G be a dominant morphism. Set d := dim(G) and e := dim(X). Then for alln > d the
fibers of the morphism

ffX' =G, . xn) = f(xg) e fxn)
have dimension at most ne — d.

Proof. Since f is dominant, there exists an open dense subset U of X such that all fibers of f|y have
dimension e — d. We first consider the restriction of f* to X'~ x U x X"~/ for any 1 <i <n. We can
write this restriction as the composite of morphisms

X1 x U x X% X1 6w x2S i o xni L

where

(X1, %) = (X1, ..o Xic1, f (XD, Xig1s ..., Xn)),
B, X1, & Xig s - Xn) = (X1 Xic, f ) o f im0 &F K1) - f (%), Xigds -2 Xn),

VX1, Xio1, & Xig 1, .., Xn) = &

Here o« has fiber dimension e — d, the morphism g is an isomorphism, and y has fiber dimension
(n—1)e. Thus all fibers of ™|y, xn-i-1 have dimension < e —d+ (n—1)e =ne—d. Varying i, we find
that all fibers of f"|xn\(x\u)» have dimension < ne —d. On the other hand, all fibers of f"|x\yy have
dimension < dim((X \ U)") <n(e —1). Since n >d, this is also < ne —d, and the result follows. O

Proposition 2.5. Let X and Y be schemes of finite type over SpecZ, and let f : X — Y be a morphism of finite
type. Then there exists a constant c, depending only on X, Y and f, such that for any finite field k and any
y € Y(k), we have

| ()| < clk im0,

Proof. We use noetherian induction on Y, the case Y = ¢ being vacuous. Otherwise, since X and Y
have only finitely many irreducible components, we can assume that both are irreducible. After re-
placing them by open charts we may also assume that they are affine. For points y ¢ f(X), there is
nothing to prove; hence after replacing Y by the Zariski closure of f(X) we can assume that f is
dominant. Set d := dim(X) and e :=dim(Y). Then after replacing X and Y by open subschemes we
may assume that all fibers of f have dimension d —e.

Let n denote the generic point of Y. By Noether normalization, there exists a finite surjective
morphism f~1(n) — A4~¢ x n, say of degree n. This morphism extends to a morphism f~1(V) —
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Ad=€ x V for an open neighborhood V of 1 in Y, which is still finite of degree n if V is sufficiently
small. Then for all y € V (k), we find that

[F o] <n-[A¢ o | =nlkl*,
and the proposition follows. O

3. Surjectivity of the residual representation

Throughout this section, we assume that K is a finite extension of F and that Endy(¢) = A. For
any prime p of A, we let I, denote the image of the residual representation

/Bp : GK g GLr(Kp)
We prove the following result.
Proposition 3.1. In the above situation, we have I', = GL;(kp) for almost all primes p of A.

Sketch of the proof. The main ingredients are the absolute irreducibility of the residual representation
and the image of inertia at places above p. By standard methods we can identify the image of the
tame inertia group with the multiplicative group of some finite extension k, of k. This image is
the group of kp-valued points of a certain connected algebraic group, called the torus of inertia. The
algebraic subgroup of Gl ., that is generated by I, and the tori of inertia at all places above p
constitutes an algebraic group enveloping I, in a natural way. It plays a role analogous to that of
the Zariski closure of the image of Galois in the whole p-adic representation over F, (compare [13]).
The main intermediate step is to establish that this subgroup is equal to GLr ., . The rest is algebraic
group theory.

Reduction steps. It is enough to prove Proposition 3.1 for any open subgroup of Gg. This allows us to
replace K by any finite extension. In particular we may assume that

(a) ¢ has semistable reduction everywhere.

Next, recall that at any place oo’ of K above oo, the Drinfeld module is uniformized by a lattice on
which the decomposition group Dy, acts through a finite quotient. Similarly, for any place Q of K
where ¢ has bad reduction, the Tate uniformization involves a lattice on which the decomposition
group Dy acts through a finite quotient. Thus, after replacing K by a finite extension, we may assume
that

(b) for any place oo’ above oo, the decomposition group Doy acts trivially on the associated lattice,
and

(c) for any place £ of bad reduction, the decomposition group Dgq acts trivially on the associated
lattice.

We can also disregard any finite set of primes p. Thus by Theorem 1.3 we can restrict ourselves to
primes p for which

(d) the residual representation at p is absolutely irreducible.
Furthermore, we can assume that
(e) all places B of K above p are unramified over p,

(f) ¢ has good reduction at all places above p, and
(8) qp == lxp| 2 4.
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Torus of inertia. Consider any place 3 of K above p and a place 8 of K above 3, with the respective
residue fields kg C kgb. Then the inertia group Iy sits in an exact sequence

1—>Ig3—>lqg—>lgn—>l

where lg3 and IEJ3 denote the wild inertia group and tame inertia group, respectively. Fix a section
lf13 — Igs. By (f) above, the Drinfeld module ¢ has good reduction at ‘8. The connected-étale decom-

position of the finite flat group scheme ¢[p] over the discrete valuation ring ﬁ,«p yields an exact
sequence

0 — [pl®(K*P) — @lpl(K*P) — p[p]** (K*P) — 0,
where Iy acts trivially on ¢[p]®(K*®P). Denote by hsy the height of the reduced Drinfeld module, and

set n:= qﬁm. Let k, denote the subfield of k‘ZB with n elements. By [16, Proposition 2.7] and (e) above
we have up to conjugation

ki | pp (1)
P (lsy) = ( ; pl‘n ) cr, (32)

kx|0
Py (ly) = (#) Cry, (33)

written in block matrices of size hgq, r — hes. Since kj; # {1}, the centralizer of o, (IEB) in GLy ¢, is

Ty 0
0 GL(r—h(p),Kp

for a torus Tz over k, with Tz (kp) =kji. The torus Ty is the Weil restriction Resfi"p Gm,k, and thus
of dimension hg. Its I',-conjugacy class in GL; «,, is independent of B.

and

Algebraic group envelope of ;. Let Hy denote the connected algebraic subgroup of GL; «, generated
by all I',-conjugates of Ty for all 3 | p (see [11, Proposition 7.5]). By construction it is normalized
by the finite group I3; hence Hyp and I, together generate an algebraic subgroup Hy of Gl , with
identity component Hj.

Eventually we want to show that Hp =Hp =GLr,.To begin with, we note that H, acts absolutely

irreducibly on K; because I, does so. Fix a place p of F above p with residue field k. Then Hp ;s

acts irreducibly on Kg.

Lemma 3.4. There exist a natural number s, and a decomposition
r_
Kﬁ—wl@"'@WSp

into irreducible Hg,,{ﬁ -subrepresentations which are conjugate under Hpcs-
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Proof. Abbreviate V := Kg, and let W be a non-trivial Hp -invariant subspace of V of minimal
dimension. Since Hy , is normalized by I'y, the subspace y W is also Hy , -invariant for all y € I5.
The subspace Zye rp yW is I',-invariant and therefore, by the irreducibility of V, equal to V. Since
each y W is irreducible over H;,K,-,' a suitable subcollection will do. O

We fix a decomposition of Kg as in Lemma 3.4. Then the algebraic subgroup of Gl ., which
normalizes each summand is isomorphic to GLfs_Kﬁ. where t, is the common dimension of the W;.
The algebraic subgroup of GLy k5 which maps each summand to some, possibly other, summand is
. . N
isomorphic to GL} . xS,
Lemma 3.5. We have

Hp.x; CGLP . %S5, .

[p,Kﬁ

Proof. By Lemma 3.4 we have Hﬁ,x,—, C GL?:.K’S. Take any place ‘B above p. By the construction of Ty
there exists a basis of K% with respect to which

*

~ ~Np
- Gm,/c;, s

Ty, =

where the upper left block consists of diagonal hsgz x hgz-matrices. Consider the cocharacter

t
1

/‘L] 5Gm,/(f, — T‘.BA,K"Ja tH .. )
1
which on /cg has weight 1 with multiplicity 1 and weight 0 with multiplicity r — 1. Without loss

of generality we can assume that p; has its non-trivial weight on W7 and weight zero on all

other W;. Since Tos oy C Hy . it follows that, as an Hy, «, -representation, the space W is not iso-

morphic to W; for any i # 1. By conjugation, we deduce that any two of the W; are non-isomorphic
H;-Kﬁ -representations. This shows that the decomposition in Lemma 3.4 is in fact the isotypical de-

composition of Kg under H;’Kﬁ. It is thus normalized by Hyp s and the result follows. O
Using Lemma 3.5, we define «, as the composite of the following homomorphisms

s
Gg — Hp,,(‘-J C GLf:,K;S ><155p — Ssp .

Lemma 3.6. The homomorphism «, is unramified at all places of K lying above p.

Proof. Consider any place 8 of K above p. By (3.3) we have /3,,([53) = Tp(xp) C Hy(kp); hence
ap(lgg) = 1. This implies that a,(I) is a quotient of the group of coinvariants of ,5‘,(133) un-
der /Sp(IEn). The description (3.2) shows that ,5',(133) is a kp-vector space on which ﬁp(lﬁp) acts

through multiplication by kj. Since k; # {1}, that group of coinvariants is zero. This implies that
ap(Ip) =1, and so «y is unramified at B. O
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Lemma 3.7. For almost all primes p of A the homomorphism «,, is unramified at all places of K where ¢ has
bad reduction.

Proof. Since there are only finitely many places Q of K where ¢ has bad reduction, it suffices to
prove the lemma for one of them. By (a) above, the Drinfeld module ¢ has semistable reduction
at 9. Let (¥, Aq) be its Tate uniformization Q. Then  is a Drinfeld A-module over Kn of some
rank r’ < r with good reduction at 9, and Agq is, via ¥, an A-lattice in Kgp of rank r — r’. For any

prime p of A with pt£, we have an exact sequence
0 — ¥[pl(K*P) — ¢[p](K*P) > Aq/pAq —0

of representations of the decomposition group Dyn. By good reduction the inertia group Iy acts triv-
ially on the first term, and by (c) it acts trivially on the third term. Therefore its image under p, lies
in a subgroup of the form

1%
( o1 )EHom(AQ/pAQ,w[p](l(sep)).

On the other hand, since s, <, every element of S5, has order dividing r!. In particular, we have
ap(Frobg) = 1. Therefore the restriction of «y, to Iy factors through the group of coinvariants

Hom(AQ/pAQ , ¥lp] (Ksep))Frobrél :

It suffices to prove that this group is zero for almost all p. Since Frobg acts trivially on Aq/pAg
by (c), it suffices to prove that the group of coinvariants 1//[p](K“’P)Fmng3 vanishes.

Denote by fn the characteristic polynomial of Frobg on the Tate module of ¢ at p, which has
coefficients in A and is independent of p. By purity, every eigenvalue of Froby has valuation < 0
at co. Thus 1 is not an eigenvalue of Frob?,, and so fa (1) is a non-zero element of A. For all
pt fa(1) no eigenvalue of Frobg:!2 is congruent to 1 modulo a place lying above p; hence for these p
we have tp[p](Ksep)Fmbg =0, as desired. O

Lemma 3.8. For almost all primes p of A the homomorphism e, is unramified everywhere and totally split at
all places above co.

Proof. For all places 9  poo where ¢ has good reduction, the inertia group at Q acts trivially on
@[p](K>¢P). Therefore the homomorphism « is unramified at these places. By Lemma 3.6 it is un-
ramified at all places Q | p. For places 9 { co where ¢ has bad reduction, the assertion is Lemma 3.7.
Finally, for places above oo, the assertion follows from (b) above. O

Lemma 3.9. For almost all primes p of A we have s, = 1.

Proof. Let p be any prime as in Lemma 3.8, and let K® the field fixed by the kernel of ayp. By
Lemma 3.8 it is unramified over K. Moreover, its degree [K® /K] < sp! <r!is bounded independently
of p. By Goss [9, Theorem 8.23.5], a function field analogue of the Hermite-Minkowski Theorem about
unramified extensions, there are only finitely many possibilities for K™ . Therefore their compositum
K’ is a finite extension of K such that ®plc,, : Gk» — Ss,, is trivial for almost all p. For these p we
find that

pp(Gg) C GL::,K‘; .
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If s, > 1, this shows that ¢[p](K*®P) is not absolutely irreducible as a representation of Gg. By The-
orem 1.3, applied to ¢ considered as a Drinfeld A-module over K’, this can only happen for finitely
many p. Therefore s, =1 for almost all p. O

Proposition 3.10. For almost all primes p of A we have

Hy =Hp =Gy, .
Proof. Lemmas 3.4 and 3.9 imply that HIOJ,K", acts irreducibly on Kg for almost all p. Moreover, as
explained in the proof of Lemma 3.5, it possesses a cocharacter of weight 1 with multiplicity 1 and

weight 0 with multiplicity r — 1. By [13, Proposition A.3], these properties imply that HE.K,—, =Gl ;-
Therefore both inclusions H;! i C Hyp «, CGLy, are equalities. O

Returning to the finite group I’,.
Lemma 3.11. There exist a scheme Z of finite type over Spec(Z) and a closed subscheme 7 C GL; x Z over Z,
such that for almost all primes p of A, any place B | p of K, and any element y € Iy, there exists a point
z€ Z(kyp) such that 7, = yTpy ~ L.
Proof. Define
Z:=GL x(A""", and

T ={(t,g. v1,...,vr—1) | tg =gt and Vi: tvi=v;} CGL xZ.

Then Z is a scheme of finite type over Spec(Z), and 7 is a closed subscheme of GL xZ. Let p sat-

isfy (e), (f) and (g), and take any B |p and y € I',. Let t be a generator of Ty (kp) =k;;, and let
Wi,...,Wr_1 € Kg be generators of the space of invariants of Tgqs. Then

Ty |0
Centgy, ., (t) = ki
e 0 |*
T:p 0
Stabg, ., (W1) N--- N Stabgy, . (Wr—1) = )
*

and their intersection is Tg. Conjugating by y we deduce that the fiber 7, of & above z =
(yty Lywi,...,ywr) is yTpy~l O

and

Lemma 3.12. There exists a constant c depending only on r such that for almost all primes p of A
[GLy(kp) : Ip] <c.

Proof. Consider any prime p as in Proposition 3.10. Then GL; ., is generated by the connected al-
gebraic subgroups yTspy” for all P |p and y € I',. By [11, Proposition 7.5] it follows that the
morphism

m

fo 1 Xp ::XVI'T%Vi_1 = Glrk,, (1, tm) >t
i=1
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is dominant for a suitable choice of m and B; | p and y; € [},. In fact, since dim(GLy,) = r2, we

can achieve this with m = r2; in particular, we can assume that m is independent of p. Next, by
Proposition 2.4 the fibers of

r2

Xy = Glik,, (,....%2) > fy(a)-- fy(X2)

have dimension at most dim(XLz) — dim(GLy «, ). We replace X, by X;z and m by mr?, which is still
independent of p. Then with e, :=dim(X,) all fibers of f, have dimension at most e, — r2.

Let Z and < C GL; xZ be as in Lemma 3.11. Then for every 1 <i <m we can choose a point
zj € Z(kp) such that F7; = y; Ty, yi_l. Denote the two projections by ¢ :  —GL,and 7 :  — Z

and consider the morphism
[ TM S GLxZ™, (t1,... tm) > (€1 -+ E(tm), T(ED), ..., 7T (tm)).

By construction it induces the morphism f, in the fiber above the point (z1,...,zm) € Z™ (k). Recall
that g, = |kp|. Since f is independent of p, Proposition 2.5 yields a constant ¢y independent of p such
that for all g € GL;(kp) we have

dim(f, ' (2))

|f5 1 (@) (kp)| < 10y <agy
hop.,
On the other hand, we have |Tg; (kp)| = qpm' — 1, and hence
UL "1 Sh
, , _ . e
Xp ()| =] (@™ —1) > Hiqpml =27"gy M =27y

i=1 i=1

Since fp,(Xp(kp)) C Iy, we deduce that

—m.e 2
Xplep) _ 27"a’

ep—r2 = ep—12 "~ 2mcy’
19y c1qp !

1Tl = | fo (Xpep))| =

Finally, it follows that

g —q r=1r _ i
[GLr(K ): T ] = [izo @ —ap) <2M¢; [Tico (@, —qy)
e I =
P a5

<2Mcy

Thus the lemma holds with ¢:=2M¢y. O

Proof of Proposition 3.1. Let ¢ be the constant in Lemma 3.12. Then we have [GL:(xy) : I'}] < c. As
|kp| >3 and |PGL;(kp)| > c! for almost all p, Proposition 2.3 implies that SL; (k) C I}, for almost all p.
Since Tep(kp) C Iy and det: Tsp(kp) =k — &, is the norm map, which is surjective, the determinant
map det: I'; — «,; is surjective. Therefore I, = GLr(«p) for almost all primes p of A, as desired. O

4. Adelic openness in the case [K/F] < oo
Throughout this section we assume that K is a finite extension of F and that Endy (¢) = A. For the

most part we still consider the representation p, at a single prime p of A. As before we abbreviate
qp = |Kpl.
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Congruence filtration. Let 7 be a uniformizer of A at p. The congruence filtration of GL:(Ay) is
defined by

Gy :=GL(Ap), and
Gh=1+7'M(Ap) foralli>1.
Its successive subquotients possess natural isomorphisms
vo: Gyl i=GY/GY —> GL(ky), and
v,':GE] = GL/GL“ — My (kp), [1+7Tiy]r—> [yl fori>1.

For any subgroup H of GL-(Ay), we define H' := HN G’E and HU:= Hi/H*1, via v; we identify the
latter with a subgroup of GL:(kp) or M;(kp), respectively.

Proposition 4.1. Let H be a closed subgroup of GL;(Ay). Assume that q, > 4, that det(H) = GL1(Ay), that
H'%' = GL,(kp), and that H'Y contains a non-scalar matrix. Then we have

H = GL(Ap).
Proof. First, consider the conjugation action
HO s gt — HM - ([g], [h]) > [ghg ']
Under vg and v; it corresponds to the conjugation action
GLr(kp) X My (Kp) = Mr(kp), (g, X) > gXg~ 1.

Since H'® = GL,(ky), it follows that H™Y C M, (kp) is closed under conjugation by GL(ky). Since it
also contains a non-scalar matrix, by Proposition 2.1 it therefore contains the subgroup sl;(«},) of all
matrices of trace 0. Consider the commutative diagram with exact rows

0 H1/H? H/H? —— GLy(kp) —— 0
ldet \Ldet \Ldet
0 —— (1+7A /(1)) — (Ay/p>)* Ky 0.

The right vertical map is surjective with kernel SL;(kp). By assumption, the middle vertical map is
surjective as well. By the snake lemma, we thus obtain a surjective homomorphism from SL;(kp)
onto the cokernel of the left vertical map. This cokernel is an abelian p-group, but since |«p| > 4,
the group SL;(kp) has no non-trivial abelian p-group as a quotient. Therefore the left vertical map is
surjective. This means that the composite trace map H!!! < M, (k) LN Kp is surjective. Together it
follows that H'Y = M, (k).

Next consider the commutator subgroup H’ of H. Since det(H) = GL;(Ay), the proposition follows
once we have shown that H' = SL;(Ap). This in turn is equivalent to H'l!! = SL.(A,)!! for all i > 0.

For i = 0 this results from H'I% = (H[0)" = GL, (k)" = SLr (k). For i = 1 consider the map

H% s gt — g ([g], [h]) > [ghg~'h 1]
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induced by commutator map H x H — H’. Under vg and v1, it corresponds to the map

GLr(kp) x My (i) — slr(kp), (g, X) > gXg™' — X.
It is an elementary fact that the image of this latter map generates sl («},) as an additive group. Since
H'%' = GL, (kp) and H™Y = M, (ky), it follows that H!! = sl, (k). Assume now that H'l!l = sl, (k) for
some i > 1. In this case consider the map

H 5 glil H/[H_]], ([g], [h]) > [ghg—lh—l]

induced by the commutator map H x H' — H’. Under vy, v;, and vj;q it corresponds to the Lie
bracket

[1: Mr(kp) x sly(kyp) = sly(icp), (X, Y) > XY —YX.

By [15, Proposition 1.2] the image of this latter map generates sl;(«p) as an additive group. Since
HM = M, (kp) and H' = sl,(k), it follows that H''"1 = sl;(k), as desired. O

Wild ramification. Consider a prime p of A and a place B3 of K above p. Assume that 3 is unramified
over p and that ¢ has good reduction at 3 of height hgq. The image of the inertia group on the p-
torsion ¢[p](K*P) was described in (3.2). Similarly, the connected-étale decomposition of the finite
flat group scheme ¢[p?] over the discrete valuation ring Ok, yields an exact sequence

0— ¢[p?]°(K5P) — @[p?](K°%P) — @[p*]" (K*P) — 0,

where the inertia group Iy acts trivially on @[p?1°L(K5P), Thus up to conjugation the image of Iy in

GL-(A/p?) lies in the subgroup
¥ | %
C GL(A/p?)
01

of block matrices of size hy, r — hyg. Choose a lift xp — A/p?; it induces a lift k < Gl gy (A/p).
Then (3.2) implies that up to conjugation the image of the tame inertia group Ifl3 is the subgroup

ky |0
J:= («\—) C GL:(A/p?).
01

Let P C GL;(A/p?) denote the image of the wild inertia group lpm. In view of (3.2) it is contained in

the subgroup
al|b
N:= €GL(A/p?)
01
Consider the subgroups
% |0 0| * * | %
Ly:= ) Ly:= ) Lel= C M;(kyp).
0(0 0|0 00

a:lmodp}.
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Then the image of P under the homomorphism

(a|b) ((a—l)/n|0)
T :N—Lq, — mod p
of1 o o

describes the action on @[p%]°(K*°P).

Lemma 4.2. The group 7t (P) has order at least qﬁ"p .

Proof. (Compare Gardeyn [8, Proposition 4.5].) We will show this by determining the valuation at 3
of torsion points in @[p?]°(K*P). Let a € A be any function with a simple zero at p. Then (a) = pa for
an ideal a of A which is prime to p. This implies that ¢[a] = ¢[p] ® @[a], where @[a] is étale, and
therefore

plal® = p[p°

as group schemes over Spec ﬁKm' Write @ =) ; <pa,,-ri with ¢q; € ﬁ’(m' Let vy denote the normal-
ized valuation of Kgq3. Then

vip (@a,0) = v (L@) =1,

because ord,(a) =1 and ‘B|p is unramified. Moreover, since ¢ has good reduction at 3, there exists
a unique integer ip > 0 such that

vp(@a,i) =21 for 0 <i<ip,
Ve (@q,ip) =0, and

Vi (@a,i) =0 for i > ip.
Thus
g = |plal®| = |olpl°| = gp*,

and so the Newton polygon of the polynomial ¢4(x) = Z(pa,,-xqi has the vertices (1,1) and (q}';qB ,0)

and possibly (u, 0) for some other (irrelevant) value u > q’;‘n. It follows that every non-zero element
s € p[p]°®(K*P) has the valuation

vop(s) = :=1/(qp* —1).

Fix any such s. Repeating the above arguments, we find that

and that the zeroes of valuation > 0 of the polynomial ¢q(x) — s are precisely the elements s’ €

@[p?1°(K*eP) with as’ =s. The Newton polygon of this polynomial has the vertices (0, &) and (qz‘JB ,0)
and (u, 0); hence any such s’ has the valuation

h
v (s') :a/qpm.
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We deduce that the wild ramification index of the field extension Ky (s")/Kgq is equal to qﬁ‘p. As this
index divides the order of 7 (P), the lemma follows. O

Lemma 4.3.If q, > 3, then any additive subgroup H C L1 @ L; that is normalized by ] is the direct sum of its
subgroups HN L1 and H N L.

Proof. It suffices to prove that L1 and L, possess no non-trivial isomorphic subquotients as represen-
tations of J over IFp. For this recall that ] =kj, for a field extension ky of «, of degree hyz. We let it
act by multiplication on k, and endow k) := Hopr (kn, kp) with the contragredlent representation.

Then there are natural J-equivariant 1somorphlsms L1 =ky ®Kp ky and L _kn o . Let kp denote an
algebraic closure of k. Then the representation L; ®r, kn over k, consists of the irreducible characters

- m
ki— ki, ur>uP

for all integers m > 0. On the other hand we can identify kj ®,(p ky with kn such that the action

of u ek} on the ith summand is given by multiplication by u% 1, Thus the representation Ly ®r, kn
over I_<n consists of the irreducible characters

ki —>ks urulh »=1p/
for all integers i, j > 0. We must show that no two such characters of the respective kmds are equal.

They are equal if and only if u@ =D — yp" for all u e ky. Since kj; is cyclic of order qp — 1, this is
equivalent to

i ; h
(@ —1)p’ =p™ mod (g," —1).
As qp — 1 divides both q; —1 and qzm —1, this congruence relation implies that q, —1 divides p™. But
qp is a power of p, and thus g, — 1 is relatively prime to p™; hence this is possible only if g, —1=1.
But that was excluded by the assumption gy, > 3; hence the characters cannot be equal. O
Proposition 4.4. In the above situation, if q, > 3, the subgroup
{geP|g=1modp}

h
has order at least qpm

Proof. Consider the homomorphism
a | b (a-1/m |b
7' N> L1 @lLy, — mod p,
0]1 o o

which is clearly equivariant under J. Thus we can apply Lemma 4.3 to the subgroup 7'(P) C L1 @ L,.
Since the composite of 7" with the projection pry : L1 @ L, — Lq is the homomorphism 7 above, we
deduce that

7 (P) =pry(7'(P)) 43 pri(7'(P)NLy) =m(P ﬁn/_1(L1)) =m({geP|g=1mod p}).

Thus the lower bound from Lemma 4.2 implies the result. O
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Subgroup generated by inertia.

Proposition 4.5. In the above situation, for almost all primes p of A and any (single) place 3 of K above p,
the images under py, of all Gy -conjugates of the inertia group lsg generate GLy(Ap).

Proof. We may assume that ‘B is unramified over p, that ¢ has good reduction at ‘j3, and that q, > 4.
By Proposition 3.1 we may also assume that the residual representation pp, : Gk — GL(kp) is surjec-
tive. Let H C GL;(Ay) denote the subgroup in question. We will show that the stated conditions imply
that H = GL;(Ap).

We use the notations from the beginning of this section. The first condition in Proposition 4.1
holds by assumption. For the second recall that the determinant of p, coincides with the Galois
representation on the Tate module of a Drinfeld module ¢ of rank 1 over K (see Anderson [2]). As
¢ has good reduction at ‘3, the Tate module of ¢ at any prime not below 9 is unramified at ‘3;
hence the same holds for the Tate module of . By the criterion of Néron-Ogg-Shafarevich (see
Goss [9, Theorem 4.10.5]) it follows that i has good reduction at ‘B. Since moreover P is unramified
over p, it follows that the representation Iy — GL1(Ay) associated to v is surjective (see Hayes [10,
Proposition 9.1] or Gardeyn [8, Theorem 4.1]). Thus det(H) = GL;(Ay), proving the second condition
in Proposition 4.1. In particular this shows the desired assertion in the case r = 1. For the rest of the
proof we therefore assume that r > 2.

For the third condition consider the subgroup H® ¢ GL;(kp). By (3.3) it contains the subgroup

ky 10
ppafp>=( 0 1)

written in block matrices of size hgqs, r — hys, where kj, is an extension of k of degree hys. If hyg > 1,
any generator of this subgroup is non-scalar. If hyz =1, we have |k;| = |/<;§| > 4; hence this subgroup
contains a non-trivial element. Since r > 2, this element is again non-scalar. Thus in both cases it
follows that HI®! contains a non-scalar element.

By construction H is a normal subgroup of p,(Gg). As the residual representation is surjective
by assumption, it follows that H!° is a normal subgroup of GL:(kp). Since g, > 4, Proposition 2.2
implies that SL(ky) C H'. Since the determinant induces on gy (153) the norm map kj; — «;, which
is surjective, the determinant map H!% — « is surjective. Together it follows that H'®! = GL;(ky),
proving the third condition in Proposition 4.1.

Next Proposition 4.4 implies that H'! contains a subgroup of the group of block matrices of the

form
* | %
[t
00

h . . . ..
of order at least qpm. If hey > 1, it thus contains a non-scalar element, and if hyy <7, every non-trivial
element is non-scalar. Thus H!' contains a non-scalar matrix, proving the fourth and last condition
in Proposition 4.1. Altogether it now follows that H = GL;(Ay), as desired. O

Adelic representation. We can now prove the following special case of Theorem 0.1.

Theorem 4.6. If K is a finite extension of F and End (¢) = A, the image of the adelic representation

Pad : Gk = [ [ GLr(Ap)
P

is open.
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Proof. Let I" denote this image. Fix a finite set A of primes p of A, such that Proposition 4.5 holds
for all p ¢ A and that ¢ has good reduction at all places B above p ¢ A. For any such |p, the inertia
group Iy acts trivially on the Tate modules T, (¢) for all p’ # p. Thus its image under p,q is contained
in the subgroup

GL(Ap) x 1_[{1}.
p'#p
The same follows for the subgroup Ag generated by all I"-conjugates of p,q(Isz). But Proposition 4.5

implies that the projection to the factor at p induces a surjective homomorphism Agp — GL:(Ap).
Therefore

Agp =GL(Ap) x [ 1)
p'#p

By varying p and ‘3 we deduce that

]_[ GL(Ap) C T
peA

Therefore I" is the inverse image of its image under the projection

ma: [ [GLr(Ap) — [ GL(Ap).
p

pea
But w4 (I") is an open subgroup by Theorem 1.2; hence I" is an open subgroup, as desired. O
5. The general case
Throughout this section, we assume that End (¢) = A, but now the transcendence degree of K is
arbitrary. We prove the general case of Theorem 0.1 by reducing it to the case of a finite extension

of F, using a specialization argument similar to [13]. We begin with some group theory.
Let p be any prime of A, and let 7 be a uniformizer at p. For any n > 1 we define

Gy :=1+7"M:(Ap) and
G’;/ = G’; N SLr(Ap).
For any two integers n > £ > 1 we have a natural group isomorphism
10g, ¢ : G /GRHE —> My (p"/p"™).  [14 X1 [X]. (5.1)
As explained in [14], this can be considered as a logarithm map truncated after the first-order term.
In the same way, the inverse isomorphism is an exponential map truncated after the first-order term.
We denote it by exp,, ;.
Lemma 5.2. For any natural numbers n,m > £ > 1, the following properties hold.
(i) The commutator G’; x Gy — G’;, (g, h) — ghg='h~1 induces a bimultiplicative map
{(,}": G';/G';'H x Ggl/Ggl-M - Gg+m/Gr'1j+m+/é’

(Lgl. [h]) = [ghg~'h7].



R. Pink, E. Riitsche / Journal of Number Theory 129 (2009) 882-907 899
(ii) The Lie bracket M (p"Ap) x M;(p"Ap) — M;(p" Ap) induces a bilinear map
[ 17 My (/™) > My (B /™) — M (™7 /341,
(IX1[Y]) ~ [XY = YX].
(iii) We have
108, m.({1€]. [h1} ) = [log,1(1g]1). logy (Th1)] -

Proof. Consider elements g=1+ X € G’;, and h=1+Y € Gg‘. Their inverses are given by the geo-
metric series

gl=1-X+X*—+--- and
hl=1-Y+Y2—4...
Therefore
ghg '=gg ' +gYg ' =(1+Y)+ (XY —YX)+T(X.Y),
where T is a power series of degree > 2 in X and degree > 1 in Y. This implies that
ghg i = A+ NA+) T+ XY —YXOA+ DT HTE VA +Y) 7!
=14+ XY —YX)+ T (X, Y)+TX, Y)A+Y) !,

where T’ is a power series of degree >2 in Y and degree at least > 1 in X. Since n, m > ¢, both
T’(X,Y) and T(X,Y) vanish modulo p"*™*¢; hence

ghg i 1=1+ (XY —YX) mod p™m+¢,
Everything follows from this. O
Next consider a closed subgroup H of GL;(Ap), and set
H":=HNG, and
HY:=HnN G;’.

Lemma 5.3. Consider any natural numbers n,m > £ > 1. Assume that H"/H"tt = G’E,/G';*’Z and that
GV /Gt € H™ /H™+. Then we have

n+ms n+m+~£r __ ~n+m/ ;~n+m+4=£s
H /H =G, /Gy .
Proof. By Lemma 5.2, we have the following commutative diagram

(.}
G';/GZ+Z x Ggw/cghtfl Gg+m//cg+m+6/

T €XPntm,¢

M (p"/p"F0) 5 My (p /p ) —————— sl (p" M /pmmEl),

l lOgn,K X 10gm,4’,
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By (5.1) the vertical arrows are isomorphisms. By [15, Proposition 1.2], the set of commutators [M;, sl]
generates the group sl.. Thus the subset

exPyym ¢ ([10gn, ¢ (G1/GIHE) . logy, o (G /GH)])

v, By assumption this subset is

generates the group G+ /Gy

{Hn/Hn+€ Hm/Hm+Z}—
and therefore contained in H"*™ /H"™+™+¥ The lemma follows. O

Proposition 5.4. Assume that there exists a natural number n > 1 such that H"/H*" = Gy/ G'ZJ”. Then we
have

n n
GPCH.

Proof. We must show that G”/ = H". Since H is a closed subgroup of GL;(Ap), it is enough to show

that i /H{+Dw — G”“/G(“Ll)"’ for all i > 1. The assumption implies this already for i = 1. If it holds
for some i > 1, the assumptlon and Lemma 5.3 show that it also holds for i + 1. By induction the
assertion follows for all i, as desired. O

Specialization with prescribed absolute endomorphism ring. Now we choose an integral scheme X
of finite type over F, with function field K such that ¢ extends to a family of Drinfeld A-modules of
rank r over X. For any point x € X, we get a Drinfeld A-module @y of rank r over the residue field ky
at x. Its characteristic is the image Ay of x under the morphism X — Spec(A). For any prime p # Ax
of A, the specialization map induces an isomorphism

Tp(@) — Tp(x). (5.5)

Proposition 5.6. In the above situation, if Endg (¢) = A, there exists a point x € X such that ky is a finite
extension of F and

End; (¢ =A

Proof. Denote by 1“p the image of Gk in the representation on Ty (¢). By Theorem 1.2 it is an open
subgroup of GL;(Ay); hence there exists an integer n > 1 such that G" C Fp Let K’ be the finite
Galois extension of K such that Gal(K'/K) = Fp/GZ”, and let 7 : X' — X be the normalization of X
in K’. By [13, Lemma 1.6], there exists a point x € X such that ky is a finite extension of F and
7~ 1(x) C X' is irreducible.

Denote by A, the image of Gy, in the representation on T,(¢y). This is a closed subgroup
of GLy(Ap). Since p # Ay, the specialization isomorphism (5.5) turns Ay into a subgroup of Fp The
irreducibility of 77 ~!(x) means that Gal(k, -1, /kx) = Gal(K'/K). We find that A,G3" = Iy, and thus

A” Gz” G" In other words we have
A" /AZn Gn /G2n

By Proposition 5.4 this implies that G';/ C A";/. In particular A, contains an open subgroup of SL-(Ap).
By Goss [9, Theorem 7.7.1], the image of A, under the determinant is an open subgroup of GL1(Ap).
Together this implies that A is an open subgroup of GL:(Ay).
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Finally, all endomorphisms of ¢y are defined over some finite separable extension kj, of ky. This
extension corresponds to an open subgroup of Ay, which by the above is again open in GL;(Ay). By
the easy direction of the Tate conjecture, it follows that End; (¢x) =Endy, (¢x) = A, as desired. D

Proof of Theorem 0.1. If K is a finite extension of F, the result is Theorem 4.6. In the general case
choose x as in Proposition 5.6. Then Theorem 4.6 for the Drinfeld module ¢y shows that the image of
the adelic representation associated to ¢y is open in GLr(Al{). By the specialization isomorphism (5.5)
this image is a subgroup of the image of the adelic representation associated to ¢. Thus the latter is
open in GLr(Ai) as well. O

Appendix A. Two remarks on Gardeyn [8]

In [8] Gardeyn generalized Theorem 1.2 to simple T-modules of dimension 1. In this appendix we
show how to close two gaps in his proof.

Specialization. The first gap is in the proof of [8, Proposition 2.4] at the bottom of p. 318, where
he addresses a specialization problem analogous to that in Proposition 5.6. He considers an integral
scheme of finite type X with function field K and a family of r-modules .# over X whose generic
fiber M has absolute endomorphism ring End; (M) = A. He finds a point x of X whose residue field ky
is a finite extension of F, such that the commutant of the image of Galois associated to the reduction
M« is the same as for M. He then deduces that the absolute endomorphism ring Endﬁx(%,() is equal

to A, although this follows only for the endomorphism ring Endkx(% x) over ky. This gap can be
closed by exactly the same group theoretical argument as in the proof of Proposition 5.6 above.

Action of inertia on torsion points. The second gap is in the proof of [8, Proposition 4.5]. There,
Gardeyn studies the action of the inertia group Iz on the Tate module of a one-dimensional formal
t-module over K. A typical example for this is the submodule of the Tate module of a Drinfeld
module T (¢) on which the tame inertia group acts non-trivially. On p. 327, line 6, Gardeyn considers
the field Zlf’. But this field exists only if Gal(Ls/L;) is normalized by the group J. If it were normalized
for all i, we could deduce that L; = L; for all i, which is not true in general. Several other problems
within the proof of that proposition arise. We therefore give a reasonably complete independent proof
of the proposition. It will be instructive to work in a slightly more general setting that includes the
case of Lubin-Tate formal groups in mixed characteristic (see Abrashkin [1] or Fontaine [7]).

Let E be a non-archimedean local field with discrete valuation ring ¢ and maximal ideal p = (7).
Let k = &' /p denote the residue field of, say, order q and characteristic p. Let L be a maximal unrami-
fied extension of E, and L*®P a maximal separable extension of L. Let ¥ be a formal Lubin-Tate group
of &-modules of height s over the ring of integers &;. For every integer n > 1, the 7 "-torsion points
Y[mr"](LP) form a free module of rank s over &'/p™. Thus the Tate module

Ti=tim y[7")(15)
n
is a free module of rank s over & together with a continuous representation
p :Gal(L**P /L) — Aut(T) = GLs(0).

All this applies to the modules [7"](L*P) := @["]°(L*P) over & = A, for a Drinfeld A-module
over ¢ with good reduction of height s.

The aim is to characterize the image of p under the stated general conditions. One basic ingredient
is the following fact. Let v denote the valuation on L%¢P for which v(w) =1.
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Lemma A.1. For any n > 1 and any primitive element t € vy [t™"](L*°P) we have

1

v(t) = G -1
Proof. In the case of a Drinfeld module this was proved in Lemma 4.2 for n < 2. The same argument
works for all n and all formal Lubin-Tate groups. O

Choose primitive elements t, € ¥ [7"](L%P) such that ¢ () (tq+1) = t, for all n > 1. For every n > 1
let L, denote the finite extension of L generated by v [7"](L*¢P), and let L, C L, denote the subfield
generated by t.

Recall (e.g. from Serre [20, Chapter IV §2-3]) that the Galois group G of any finite local field
extension possesses a natural decreasing lower numbering filtration G, indexed by p > 0. Via the
Herbrand function ¢ (see [20, p. 80]) this filtration is translated into the upper number filtration G*
such that G, = G?M, We will say that the extension of G has break « for the lower numbering
filtration if G, g Gy for all 4 > «, and that it has break « for the upper numbering filtration if
GH g G* for all 4 > «. Since @(u) =  whenever p is less than or equal to the smallest break for
the lower numbering filtration, we find that the lowest breaks for the two numberings coincide. In
particular G has the unique break « for the lower numbering filtration if and only if it has the unique
break « for the upper numbering filtration.

Lemma A.2. For every n > 1, the element t, is a uniformizer of L. Moreover,

(a) we have L = Ly and it is Galois over L of degree ¢° — 1, and
(b) for every n > 1, the extension L, , /Ly is Galois of degree q° with unique break g™ — 1 ( for either filtra-
tion).

Proof. We work out the argument in the case of equal characteristic p, where addition and sub-
traction in the formal group coincide with the usual ones. In the mixed characteristic case they still
coincide in first order approximation, which suffices to adapt the argument.

For any non-zero element t € ¥ [7](L**P) and any element o in the wild ramification group of L
we have v(o(t) —t) > v(t). Since o (t) —t is again an element of ¥ [7](L5¢P), Lemma A.1 shows that
it must be zero. Thus the wild ramification group acts trivially on L;. In particular the extension L/ /L
is tame and hence Galois. The number of distinct conjugates of t1 in L} /L is therefore equal to the
ramification degree, and so by Lemma A.1 it is > g° — 1. All these conjugates are non-zero elements
of the group v [7r](L5P) of order g°. It follows that the number of conjugates is equal to ¢° — 1 and
that they generate Lq. This proves (a). Since the ramification degree is ¢° — 1, it also follows that t; is
a uniformizer of L.

Fix any n > 1 and assume that t, is a uniformizer of L;. Then Lemma A.1 implies that L, ,/L} has
ramification degree > ¢°. For any o € Gal(L**P/L;,) we calculate

(0 (tn41) — ta1) =0 (Wtny1) — Ttppg =0 (tg) — ta =0,

which shows that all conjugates of t,; over L}, lie in ty41 + Y[ ](L5P). It follows that the num-
ber of conjugates is equal to ¢° and that L;_; is Galois of degree q° over L, and has uniformizer
tnt1. Furthermore, to any non-trivial element o of Gal(L;, 1 /L;) is associated the non-zero element
0 (th+1) — the1 € Y[ 1(L*¢P), and by comparing its valuation with that of t,; using Lemma A.1 we

find that o (tp+1) — tp+1 is a unit times fgjr Now the definition of the higher ramification groups im-

plies that Gal(L;, 1 /L) has the unique break ¢" — 1 for the lower numbering filtration. By induction
on n the lemma follows. O
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By Lemma A.2(a) the Galois group Gal(L;/L) has order prime to p, while H := p(Gal(L**P/Lq)) is
a pro-p group. Thus we can write the image of p as a semidirect product

p(Gal(L*P/L)) = J x H.
The tameness implies that the group ] is cyclic of order ¢° — 1. Under the embedding J <
Aut (T /pT) = GLs(k) it is therefore identified with the multiplicative group of a field extension
ks € Endy(T/pT) of k of degree s. It follows that &' ] C End&(T) is an unramified extension of &

of degree s, turning T into a free module of rank 1 over &J. Using this one finds a natural decom-
position of the matrix ring

M:=Endgs(T) = @ M), (A3)
i€Z/sZ

where M(i) = &'] with the action of | by the character u +— ud' =1,

Theorem A.4. In the above situation, there exists a function m : Z/sZ — Zx>1 U {oo} satisfying m(0) = 1 and
m(i) +m(@i") > m(i +1i') foralli, i, such that

p(Gal(L®P/L)) = | x (1 + P p’““)M(i)),
i€Z/sZ
where we use the convention p*> := (0).

The rest of the appendix is devoted to proving Theorem A.4.

Lemma A.5. For every i € Z/sZ we set M (i) := M(i)/pM(i), which is a ks-vector space of dimension 1 on

which ] = k¥ acts through the character u > u9 1,

(@) Ifi = 0 mod (s), then M(i) is a simple Fp[J]-module.

(b) Ifi % i’ mod (s), then M (i) 2 M(i’) as Fp[ J]-modules.

Proof. (Compare Gardeyn [8] or Fontaine [7].) The kernel of the character is the multiplicative group
of the fixed field of the automorphism ks — ks, u +— u?. For i 0 mod (s) this is a proper subfield
of ks; hence the kernel has order < q¥/% — 1. Thus the image of the character has order > (¢ — 1)/
(@¥% —1)=¢q*’2 +1, and so it does not lie in a proper subfield of ks. This implies (a). It also shows

that J acts non-trivially on M(i), and hence M(i) 2 M(0). By symmetry it remains to prove (b) in the
case s > i > i’ > 0. Then the modules are isomorphic if and only if there exists j such that

u@=npl _ a1
for all u e k¥. As k is cyclic of order g* — 1, this amounts to the congruence
(¢ —1)p’ =g —1 mod (¢°—1).

Since (q' —1)p’ > q" —1, it follows that (¢ —1)p/ > g — 1. Therefore ¢'p/ is a multiple of g*. A direct
calculation shows that the remainder of (¢' — 1)p’ under division by ¢° — 1 is

¢ —p’+q'pig™ —1.



904 R. Pink, E. Riitsche / Journal of Number Theory 129 (2009) 882-907
Thus this number is equal to q"’ —1, and so
¢ +a'pla =q" +p.
From this it is straightforward to deduce a contradiction. O
For every n > 1 we can view the Galois group Gal(L,+1/Lyp) as a subgroup of
Ker(Autﬁ(T/p”Jrl T) — Aut@(T/p“T)) =1+ x"(M/pM)

and thus of the additive group M/pM. As this identification is J-equivariant, we obtain in fact an
Fp[J1-submodule of M/pM. The decomposition (A.3) yields a decomposition

M :=M/pM = @ M)
i€Z /ST

and thus a J-invariant decreasing filtration of M/pM with subquotients M(i) for 1 <i <s. From this
we deduce a J-invariant filtration

Lp= Ln,O - Ln,] c---C Ln,sfl C Ln,s =Lpt
such that Gal(Ly,i/Ln,i—1) embeds into M(i) for every 1 <i<s.

Lemma A.6. For every n > 1 and every 1 <i < s — 1 the extension L, ;/Ly i—1 is either trivial or Galois of
degree q° with a unique break that is # 0 modulo (¢° — 1).

Proof. If the extension is non-trivial, Lemma A.5(a) implies that its Galois group is isomorphic to M(i)
and that its ramification filtration has a unique break, say «. Let 7 be a uniformizer of L, ;. Then the
definition of the higher ramification groups yields a natural and hence J-equivariant embedding

o ()

M) = Gal(Ly.i/Lni_1) = (@)% /(@)*T!, o+ — —1 mod (7)*+.

The tame ramification group ] acts through a faithful character on (7)/(7)?; hence it acts on
(7)%/(@)**1 through the aith power of that character. Since it acts non-trivially on M(i), we find
that o cannot be a multiple of | J| = |kj;| = ¢° — 1. This finishes the proof. O

Lemma A.7. Let F be a non-archimedean local field. Let F1 and F, be two finite Galois extensions of degree d
over F with unique breaks o1 # a2. Then the extensions are linearly disjoint, and F1 F,/ F; is Galois of degree d
with a unique break = a1 modulo (d — 1), and F1F,/F1 is Galois of degree d with a unique break = oy modulo
d-1).

Proof. Since the breaks are different, the functoriality of the upper numbering filtration (see [20,
Chapter IV §3 Proposition 14]) implies that the upper numbering of the composite extension F1F,/F
has the breaks o1 and o with index d each. It follows that the extensions are linearly disjoint and
that F1F,/F, and FqF,/F; are Galois of degree d. By symmetry, we may without loss of generality
assume that o1 > a2, so that F, is the fixed field of Gal(F1F,/F)“!. Using the yoga of the Herbrand
function ¢ (see [20, §3]) one calculates that the lower numbering of the extension FiF,/F then has
the breaks ay and o1 + (¢° — 1) (a7 — a2) with index d each. It follows that F{F,/F, has the unique
break o + (¢° — 1)(o¢1 — o03) = g modulo (d — 1) and that F{F,/F; has the unique break o;. O

Lemma A.8. For alln > 1 we have [Ly s/Ln s—11=¢°.
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Proof. Consider the following assertions:

An): Lps=Lps—1 L;‘H—l and [Ly,s/Lns—1]1=¢".
B(m,i,n): Thse extension Lm,,‘L;lJrl/Lm,,-L,’1 is Galois of degree ¢° with a unique break = 0 modulo
(@ —1.
C(m,i,n): The extension Ly ;L,/Lm i—1L; is either trivial or Galois of degree q° with a unique break
# 0 modulo (¢° —1).

We will prove

A(n) foralln>1,
B(m,i,n) forall 1T<m<nand 0<i<s—1, and
C(m,i,n) forall 1T<m<nand 1<i<s—1.

Note first that L}, C Ly j—1 C Ln,;; hence the assertion C(n,i,n) is precisely Lemma A.6. In particular
C(m,i,n) holds whenever n = 1. For all other assertions we use induction on n. We fix an integer
n>1 and assume A(n’) for all n’ <n and C(m,i,n) for all m and i. We will then show A(n) and
B(m,i,n) and C(m,i,n+ 1) for all m and i. This proves the lemma, because the desired assertion is
contained in A(n).

Keeping n fixed we perform another induction over m and an innermost induction over i. We
may thus fix 1<m<nand 0<i<s—1 and assume B(m’,i’,n) whenever m’ <m and B(m,i’,n)
whenever i’ <i. If i=0 and m =1, we note that L1 =Ly =L} C L, CL; , by Lemma A2(a); hence
Lemma A.2(b) implies B(1,0,n). If i=0 and m > 1 we have Ly 0 = Lin—1,s = Lm—1,5—1L;, by A(m—1);
since Ly, C L, C Ly, the assertion B(m —1,s—1,n) then implies B(m, 0, n). If i > 0 we consider the
field extensions

Lm’,'L/

n+1
Lm,ily Lm’i—lL;Hrl
Lini—1 L;l.

By B(m,i— 1,n) the right vertical extension is Galois of degree q° with a unique break = 0 modulo
(@ — 1), and by C(m,i,n) the lower oblique extension is either trivial or Galois of degree q° with a
unique break # 0 modulo (g° — 1). If the lower extension is trivial, we can trivially deduce B(m, i, n)
and C(m,i,n+ 1). Otherwise the two breaks are different; hence we can apply Lemma A.7 and again
deduce B(m,i,n) and C(m,i,n+1).

By induction on m and i, we have thus proved B(m,i,n) and C(m,i,n+ 1) for all possible m and i
except for C(n+ 1,i,n+ 1). But that case was already covered at the beginning of the proof. Finally,
consider the field extensions

Lps—1= Ln,s—lL;, C Ln,s—lL;/»hq CLpy1 =Lps.

By construction the total extension has a subgroup of M(0) as Galois group; hence it has degree < ¢°.
But since the middle extension already has degree q° by B(n,s — 1,n), it follows that the extension
on the right is an equality and the total degree is g°. This is just the assertion A(n), finishing the
proof. O
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Proof of Theorem A.4. Recall that for every n > 1 we have an [Fy[ J]-equivariant embedding

Gal(Lyt1/Ln) > M= @5 M.
i€Z/SL

Lemma A.5 implies that its image decomposes accordingly and that all its summands for i # 0 mod s
are trivial or equal to M(i). Moreover, Lemma A.8 implies that the image contains the summand M (0).
Together we deduce that

Gal(Ln1/Ln) — €D M)
ieS(n)

for some subset S(n) C Z/sZ with 0 € S(n).

Next, the Lie bracket induces a map M(i) x M(i") — M(i + i) for all i and i’, which is non-zero
except for i =i’ =0 mod s. Using commutators as in Fontaine [7] or Gardeyn [8] or in Proposition 4.1
above, one finds that i € S(n) and i’ € S(n’) imply i + i’ € S(n +n’). Applying this with n’ =1 and
i"=0¢ S(1) one deduces that S(n) C S(n+ 1) for every n > 1. Thus with

m(i) :=inf{n > 1: i€ SM)} € Z>1 U {c0}

we have m(0) =1 and i € S(n) <& n > m(i). The above implication then implies that m(i) + m(i") >
m(i +i") for arbitrary i, i’. Thus the function m satisfies the first two conditions in Theorem A.4.
These conditions imply that

U=1+ € »""M0)
i€Z/SZ

is a J-invariant closed subgroup of GLs;(&’) which possesses the same subquotients in the congruence
filtration as H. It remains to show that H =U. For any n > 1 define

G" =1+ 7"My(O),
¢M.=¢g"/c"t! = EB M),
i€Z/SZ

H[n] = (H n Gn)Gn+1/Gn+1 , and

U[n] = (U n GH)GH+1/GTI+1.
By construction of the m(i) the subgroup H!™ of GI"! consists of those summands M(i) with m(i) <n.
Moreover, the subgroup HG"/G" of G'/G" is a successive extension of n —m(i) copies of M(i) for all i
with m(i) < n. In particular, Lemma A.5 implies that HG"/G" and GI™/H" possess no non-trivial

isomorphic subquotient as Fy[J]-module. It also implies that H™ = U™, Suppose that HG"/G" =
UG™/G" as subgroups of G!/G". Then we have an exact sequence

1 —— Gln]/H[nJ N HGn/(HmGn)GrH»l I HGn/Gn S|

Gnlyn] uGg/Gh

and each of H and U induces a J-equivariant splitting. As the extension is central, these split-
tings differ by a J-equivariant homomorphism HG"/G" — G /HM But since these groups pos-
sess no non-trivial isomorphic subquotients, this homomorphism must be zero. This implies that
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HG™1/G™1 = yG"1/G™! as subgroups of G!/G™!. By induction we deduce that H = U, as de-
sired. O
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