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Abstract

To what extent can a computational model of the bottom—up visual attention predict what an observer is looking at? What is the
contribution of the low-level visual features in the attention deployment? To answer these questions, a new spatio-temporal computa-
tional model is proposed. This model incorporates several visual features; therefore, a fusion algorithm is required to combine the dif-
ferent saliency maps (achromatic, chromatic and temporal). To quantitatively assess the model performances, eye movements were
recorded while naive observers viewed natural dynamic scenes. Four completing metrics have been used. In addition, predictions from
the proposed model are compared to the predictions from a state of the art model [Itti’s model (Itti, L., Koch, C., & Niebur, E. (1998). A
model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11),
1254-1259)] and from three non-biologically plausible models (uniform, flicker and centered models). Regardless of the metric used, the
proposed model shows significant improvement over the selected benchmarking models (except the centered model). Conclusions are

drawn regarding both the influence of low-level visual features over time and the central bias in an eye tracking experiment.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Our visual environment contains much more informa-
tion than we are able to perceive at once. In order to opti-
mize the visual treatment of what surrounds us, we have
evolved several biological mechanisms. Out of those, the
visual attention is probably the most important one. It
allows the detection of some interesting parts in visual field.
It then guides the movement of the eyes, allowing an accu-
rate inspection of the chosen area by the fovea. This is
where most of the processing resources are concentrated
(Wandell, 1995). This implies that visual attention and
eye movements are closely linked. This link is however
not so obvious. In fact, two disjoint mechanisms for direct-
ing spatial attention have been identified. They are called
covert and overt shift of attention. The former does not
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involve eye movements and refers to the act of mentally
focusing on a particular area (Hoffman, 1998; Hoffman &
Subramanian, 1995). The latter, involving eye movements,
is used both to explore complex visual scenes and to direct
the gaze towards interesting spatial locations. A number of
studies (Findlay, 1997; Maioli, Benaglio, Siri, Sosta, &
Cappa, 2001) have shown that, in most circumstances,
overt shifts of attention are mainly associated with the exe-
cution of saccadic eye movements. Saccade targeting is
controlled by many factors: the task in mind (behavioral
goals, motivational state) and both the local and global
spatial properties of the visual scene. The former is also
called top-down processing. The latter is called bottom-—
up or stimulus-driven selection. It occurs when a target
item effortlessly attracts the gaze.

The design of computational models simulating the bot-
tom-up human selective visual attention is a difficult issue.
Existing approaches can be differentiated by the way they
integrate or reproduce the visual system. Categorizing
computational models would yield two main subsets. The
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first one would include models based on a statistical signal
approach. A number of studies (Mack, Castelhano, Hen-
derson, & Oliva, 2003; Parkhusrt & Niebur, 2003; Rajashe-
kar, Cormack, & Bovik, 2003; Reinagel & Zador, 1999)
have indeed shown that fixated areas present higher spatial
contrast, variance and local symmetry than non-fixated
areas. The objective is then to design local operators able
to detect these areas. The second category would include
biologically plausible models, which are mainly based on
two original concepts, the Feature Integration Theory from
Treisman and Gelade (1980) and a neurally plausible archi-
tecture proposed by Koch and Ullman (1985) (see Fig. 1).
Among them, some models (Itti, Koch, & Niebur, 1998; Le
Meur, Le Callet, Barba, & Thoreau, 2006; Milanese, 1993)
compute a topographic saliency map (or master map),
which quantitatively predicts the salience of each location
of the input picture whereas the others tackle the problem
more broadly by attempting to mix together top—-down and
bottom—up interactions (Deco & Schurmann, 2000; Ols-
hausen, Anderson, & van Essen, 1993).

This paper aims at describing a spatio-temporal model
of the bottom-up selective visual attention, purely based
on the low-level visual features. The proposed model is
an extension to the temporal dimension of previously pub-
lished work (Le Meur et al., 2006), as illustrated in Fig. 1.
An eye tracking experiment was conducted in order to
investigate the relevance of the dynamic saliency map stem-
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Fig. 1. Proposed framework based on Koch and Ullman (1985) model.
This influential model describes how salient features can be identified in
natural scenes. First, early visual features are extracted from the visual
input into several separate parallel channels. A feature map is obtained for
each channel. A unique saliency map is then built from the combination of
those channels. The major novelty proposed here lies in the inclusion of
the temporal dimension as well as the addition of a coherent normaliza-
tion scheme.

ming from the proposed model. This experiment is pre-
sented in Section 2. The rationale of this evaluation rests
on the assumption that eye movements and attention are
correlated. This assumption was validated through several
publications (Findlay, 1997, Hoffman & Subramanian,
1995; Maioli et al., 2001). Section 3 focuses on the pro-
posed spatio-temporal model. It has been previously
described in several papers (Le Meur, Le Callet, Barba,
& Thoreau, 2005; Le Meur et al., 2006), therefore, only
its major features will be discussed here. Compared to
the original model, three novelties are implemented. The
first one deals with the computation of two chromatic sal-
iency maps. The temporal dimension was also added to the
static model. The aim is to detect the contrast of motion.
This is deemed to be one of the strongest attractor of atten-
tion (Itti, 2005; Wolfe, 1998).

The underlying principle of this study rests on the
assumption of the existence of a unique topographic sal-
iency map. This assumption is strong because there is no
consensus on this point. In a recent paper, Fecteau and
Munoz (2006) concluded that the concept of saliency
map must be first broadened to include top—down influ-
ences, leading to a new map, called priority map. The locus
of the priority map is also an open-issue. Fecteau and
Munoz (2006) also concluded that this map is more the
result of a network involving different brain areas than
the result of a particular area of the brain. Keeping in mind
both the aforementioned assumption and its limitations,
the four different saliency maps have to be combined to
form an unique map. What is the best way to combine
these maps arising from different visual dimensions? A
fusion algorithm is proposed. Section 4 examines the simi-
larity degree between experimental and predicted saliency
maps. Several models, featuring different levels of complex-
ity, are used (proposed model, uniform, centered. . .). Some
conclusions are drawn in Section 5.

2. Eye tracking apparatus and experiment procedure
2.1. Eye tracking apparatus

Eye movements of real observers were tracked using a
dual-Purkinje eye tracker from Cambridge Research Corpo-
ration. The eye tracker is mounted on a rigid EyeLock
headrest that incorporates an infrared camera, an infrared
mirror and two infrared illumination sources. To obtain
accurate data regarding the diameter of the subject’s pupil,
a calibration procedure is mandatory. It requires the sub-
ject to view a number of targets from a known distance.
Once the calibration procedure is complete and a stimulus
has been loaded, the system is able to track the subject’s eye
movement. The camera records a close-up image of the eye.
The video is processed real-time and spatial location of eye
position is extracted. Both Purkinje reflections are used to
calculate this location. The guaranteed sampling frequency
is 50 Hz. The mean spatial accuracy of the eye tracker is
0.5 4+ 0.25°.
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2.2. Subjects

Unpaid subjects (see Table 1) participated to the exper-
iments. They came from both the University of Nantes and
Thomson R&D, Rennes. All had normal or corrected to
normal vision. All were unexperienced observers (not
expert in video processing) and naive to the experiment.
Before each trial, the subject’s head was positioned such
that their chin rested on the chin-rest and their forehead
rested against the head-strap. The height of chin-rest was
adjusted so that the subject was comfortable and their eyes
level with the center of the presentation display.

2.3. Stimuli

Seven video clips (25 Hz, 352 x 288 pixels, 4.5-33.8 s, for
a total of 2451 distinct frames, see Fig. 2) have been
selected for several reasons. First and foremost, these video
clips contain important spatio-temporal events that are
classically used in TV broadcast (zoom in/out, translation
motion with different velocities, still video, fade-in/fade-
out, scene cuts...) The second aspect concerns the various
content of clips (such as faces, sporting events, audiences,
landscapes, logos, incrustations, one, two or no actors in
the scene, low and high spatio-temporal activities. . .).

2.4. Experimental procedure

Each video clip was presented to subjects as part of a
free-viewing exercise. The subjects were instructed to “look
around the image”. The free-viewing task is an important
aspect of the experiment. The objective is to lessen the
top—down influences or to encourage a bottom—-up behav-
ior. Obviously, it is impossible to completely remove all
top—down influences.

Each trial begins with a calibration phase: the observers
are asked to sequentially fixate a series of nine fixation cir-

Table 1
Summary of the results obtained from the velocity-threshold fixation
identification

Clip No. of  Fixation Total number Number of
observers duration (ms) of fixations fixation per
(means + SEM) (means = SEM) second

(means + SEM)

Titleist 25 317 £32 106 + 13.4 3.6 +0.46
Stefan 27 340 £+ 26 36+3 3.09+0.29
Skate 25 368 £ 36 67+9 3.06 £ 0.41
Canoa 23 480 + 66 23+29 2.67+£0.33
Kayak 20 389 +35 23429 3.05+0.38
SpeedSkate 17 337 +24 14+0.7 291 £0.14
Table 20 273 £26 34 +38 38+04
Average 22 343 Sum = 303 3.16

The average fixation duration, the total number of fixations and the
number of fixation per second are shown for each clip and for all
observers. SEM pertains for standard error of the mean, obtained by
dividing the standard deviation by the square root of the sample size
(confidence of 95%).

cles. In order to ensure a high degree of relevance, the cal-
ibration of the eye tracker is intermittently repeated
between video clips as required. Clips are presented on a
CRT display with a resolution of (800 x 600). The active
screen size is 36 X 27 and the viewing distance is 81 cm
(25° x 19° usable field-of-view).

Between the calibration phase and the beginning of the
video clip, observers are asked to fixate a small square cen-
tered on the screen. This keeps the observer concentrated
before the stimulus onset. This approach can strengthen
the importance of the central locations and may induce a
significant change in the results (Tatler, Baddeley, & Gichr-
ist, 2005). This general tendency for observers to fixate near
the center of scenes, whatever the salience, has a number of
reasons (Parkhurst, Law, & Niebur, 2002; Tatler et al.,
2005). In this study, this choice is not so important as the
degree of similarity between prediction and human fixa-
tions is computed by taking into account all fixations,
not only those occurring just after the clip onset.

2.5. Experimental priority maps

As recommended in (Fecteau & Munoz, 2006), the
expression, ‘“priority map”, (Serences & Yantis, 2006) is
much more suitable to feature the results coming from
eye tracking experiments. Indeed saliency map is a concep-
tual framework in which neither the relevance of an object
nor the goals of observers are taken into account. In the
following, the term priority map will be used.

The raw eye tracking data was segmented into fixations,
saccades and eye blinks. Analysis of the eye movement
record was carried out off-line. Fixations were character-
ized by consecutive eye data having a velocity below a
given threshold (the fixation label includes smooth-pursuit
periods). This type of algorithm is generally called velocity-
threshold fixation identification (Salvucci & Goldberg,
2000). The velocity is the distance between two consecutive
points multiplied by the sampling frequency. The distance
threshold was set at 1° visual angle. This choice is rather
arbitrary even if it is coherent with both previous works
(Itti, 2005; Sen & Megaw, 1984) and spatial accuracy of
the eye tracking apparatus. Results from the segmentation
of the raw eye tracking experiments are described in Table
1. These results are consistent with those generally
obtained. For instance, there are about 24 eye fixations
per second.

A fixation map per observer is computed from the col-
lected data at a picture level (along the sequence). Fixation
maps are then averaged over the observers for each picture.
This indicates the most visually important regions for an
average observer. Finally, each frame of the average sal-
iency sequence is processed using a 2D Gaussian filter.
The standard deviation ¢ is determined in accordance with
the accuracy of the eye-tracking apparatus.

Fig. 3 shows several experimental priority maps,
extracted from Titleist clip. On the same figure, the influ-
ences of scene cuts on the visual attention are underlined.
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Fig. 2. Representative pictures from the video clips. From top to bottom, pictures, respectively, concern clips called Kayak, Titleist, Stefan, Skate, Speed
Skate, Table and Canoa. These clips feature a varied content (one or more regions of interest per picture, centered on the screen or not, spatio-temporal

events (cut, fade) or continuous clip, incrustation of text and logo).

An abrupt change in the content of the entire image
induces an increase of the temporal masking. This refers
to the inability of the human vision to instantaneously
adjust to changes in its visual field. Previous studies (Seyler
& Budrikis, 1959, 1965; Tam, 1995) demonstrated that the
perception is reduced for period of up to 100 ms following
the scene change. Fig. 4 presents priority maps before and
after a scene cut. Before the cut, the salient areas are quite
coherent (the boy and the logo are well detected). After the
scene cut, the same areas still remains the same during a
periods of 200 ms. As shown in (Tatler et al., 2005), the

fixation position is dependent on the content that was
displayed prior to the change.

3. Dynamic saliency map computation

The proposed biologically plausible computational
model implements many of key features occurring during
early vision process. The related synoptic is shown in
Fig. 5. Compared to the preliminary design (Le Meur
et al., 20006), several improvements and modifications have
been made. The first improvement brought to the model
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Fig. 3. Experimental priority maps. (a) show several pictures, extracted from the Titleist clip.

show the corresponding experimental priority maps.

S
|

Fig. 4. Experimental priority maps around a scene cut. (a) show several pictures, extracted from the Titleist clip separating by a temporal interval equal to
100 ms. (b) show the corresponding experimental priority maps. A scene cut occurs after the fourth picture. It is interesting to notice the non-influence of
scene cut on priority maps. Immediately after the scene cut, the fixation position is dependent on the content that was displayed prior to the change. It

illustrates the temporal masking induced by a scene cut.

aims at building two chromatic saliency maps, enhancing
its capacity to detect visually important locations. The sec-
ond point concerns temporal saliency computation. The
spatial model now yields four saliency maps (achromatic,
two chromatic and temporal saliency maps), which have
to be coherently fused into one. Two combination strate-
gies are proposed. Achromatic reinforcement and facilita-
tive interactions, present in the preliminary version, are
now disabled. Indeed, it would be redundant to use achro-
matic reinforcement since two chromatic saliency maps are
now computed. Concerning the facilitative interactions, its
impact is not significant enough to justify keeping it in the
new design.

3.1. Dynamic salience model

3.1.1. Computation of the spatial salience

3.1.1.1. Psycho-visual space. Despite the seemingly complex
mechanisms underlying human vision, the visual system is
not able to perceive all information present in the visual
field with the same accuracy. Several mechanisms have
been used and are accurately described in a recent paper
(Le Meur et al., 20006).

First, the RGB picture is projected into the Krauskopf’s
color space (A, Cry, Cr,) simulating the three different path-
ways used by the brain to encode the visual information
(Krauskopf, Williams, & Heeley, 1982). The first pathway
conveys the achromatic component (A), the second the

red and green antagonist component (Cr;) and the third
the blue and yellow antagonist component (Cr;).

In order to express all data in the same unit (in term of
visibility), three contrast sensitivity functions are used, one
per component. If components (A, Cr;, Cr) can be
described in terms of their sinusoidal Fourier components,
then the visibility of each spatial frequency can be mea-
sured by applying a contrast sensitivity function. Each spa-
tial frequency is then compared to a threshold CT,. If the
amplitude is above this threshold, the frequency is percep-
tible. This threshold is called the visibility threshold and its
inverse defines the values of the contrast sensitivity func-
tions (CSF) at this spatial frequency. While the CSF shows
how sensitivity varies with spatial frequency and orienta-
tion, they do not take into account the changes in sensitiv-
ity caused by the context.' This modulation is commonly
called visual masking. Fig. 6 illustrates this property. It is
necessary to replicate the hierarchical structure of the
visual system to account for visual masking. Indeed elec-
trophysiological measurements revealed that visual cells
are tuned to certain types of visual information such as fre-
quency, color and orientation. A hierarchical decomposi-
tion is then conducted splitting the 2D spatial frequency
domain both in spatial radial frequency and in orientation.

! CSF are deduced using psycho-physic experiments involving very
simple cues.
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Fig. 5. Flow chart of the proposed spatio-temporal model. The model takes a video sequence as input and processes all the frames in three parallel
channels using a range of spatial scales and orientation values. It yields a saliency map indicating the most salient region per image.

This decomposition is applied to each of the three percep-
tual components. Psycho-visual spatial frequency parti-
tioning for the achromatic component leads to 17
psycho-visual channels in standard TV viewing conditions
while only five channels are obtained for each chromatic
component (see Fig. 5). The achromatic (respectively chro-
matic) channels are spread over 4 (respectively 2) crowns.
Each resulting subband or channel may be regarded as
the neural image corresponding to a particular population
of cortical cells. These cells are tuned to a range of spatial
frequencies and to a particular orientation. Finally, the

masking effect alters the differential visibility threshold of
each subband. Three types of masking are considered in
the proposed model: intra-channel intra-component mask-
ing, inter-channel intra-component masking and inter-
component masking. Visual masking has been described
elsewhere (Le Meur et al., 2006).

3.1.1.2. Removing redundant information. Since the visual
system cannot process all visual information at once, two
kinds of mechanisms are required to cope with this biolog-
ical limitation. The first one selects a small part of the
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Fig. 6. Illustration of spatial visual masking: (a) original picture; (b) original picture corrupted by uniform noise. Interestingly, the noise is more noticeable

in the sky than on the seashore.

visual field on which a close inspection is performed. The
second is more passive than the previous one. Its role is
very important as it suppresses the redundancy of the
visual information yielding an economical representation
of the visual world. In a cluttered environment, this process
allows the selection of the most informative areas (Tsotsos,
1990). To suppress irrelevant data, a center-surround filter
is applied (Le Meur et al., 2006).

3.1.1.3. Saliency maps. After applying the center-surround
filters, three saliency maps are derived: first, a 2D achro-
matic saliency map, called S*, was computed from the
direct sum of the outputs of the achromatic channels
belonging to the crown III. Second, two chromatic saliency
maps were computed by the direct summation of the out-
puts of the chromatic channels belonging to the crown II:

SA(s) = z% (ozA x R (s, p, 9)) (1)

S5 = 3 (eq x R (s.,0)) @
s.p,0

5(5) = 3 (sen X R (5,5.0)) 3)

where, R*(s, p, 0) is the value of the site s of the component
x modified by the center-surround filters. The values p, 0
are, respectively, the radial frequency and the orientation
of the considered subband. In the initial version,
OA, Oy, ; Ocr, A€ Set to one.

3.2. Computation of the temporal salience

It is generally accepted that motion pathway in the mon-
key cortex sequentially involves areas V1, MT, MST and
7a. These areas contain population of neurons specialized
for certain tasks. What is interesting to point out is that
the task complexity as well as the receptive field size
increase with this hierarchy. Although the literature is large
on the topic, the objective here is not to provide a compu-
tationally plausible version of this motion processing hier-
archy as in (Tsotsos et al., 2005), but rather to propose a
straightforward approach. Nevertheless, from the moment

it is possible, a comparison between the proposed approach
and previous ones will be done.

The assumption here is that the motion contrast is one
of the most important visual attractors. With regards to
dynamic complex scenes, previous studies (Itti, 2005) have
indeed shown that the motion contrast is a much more reli-
able predictor of salient areas than the others.

The basic aim of the temporal saliency map computa-
tion (Le Meur et al., 2005) rests on the relative motion
occurring in the retina. The relative motion is the difference
between _t)he local and the dominant motion. The local
motion Vi, at each point s of an image (or the motion
vector) is given by using a hierarchical block matching. It
is computed through a series of levels (different resolution),
each providing input for the next. In addition, on each
level, the block matching is done for a certain neighbour-
hood size, that increases with the hierarchy level. In a
way, these two points remind the properties of the motion
processing in the monkey cortex.

The local motion does not necessarily reflect the motion
contrast. It is the case when the dominant motion is null,
meaning that the camera is fixed. As soon as the camera
follows something in the scene, it is necessary to estimate
the global transformation that two successive images
undergo. This global transformation, or the dominant
motion, is estimated from the previous estimated local
motion. The dominant_} motion is represented by a 2D para-
metric model, noted ¥V g(s); ® is a parameter vector con-
taining the 2D affine motion model [ay,a,,as,as,as,ag).
These parameters are computed with a popular robust
technique based on the M-estimators (Odobez & Bouthe-
my, 1995).

Finally, the relative motion representing the motion
contrast is given by:

—

14 relative (S) = I_/)@) (S) - 7100211 (S) (4)

The relevance degree of a relative motion also depends on
the average amount of relative displacement over the pic-
ture. For example, a high relative motion is more conspic-
uous when there are only few relative displacement (Wolfe,
1998). Recently, Fencsik, Urrea, Place, Wolfe, and
Horowitz (2005) confirm and extend the finding of Ivry
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and Cohen (1992). This previous study showed that, when
targets moved faster than distractors, target-detection time
was minimally affected by set size. Targets pop-out. Never-
theless, search for a target moving slower than distractors
is markedly more difficult.

The idea to partially reproduce this property is to pre-
dict the amount of relative motion. A good candidate is
the median value of the relative motion, called in the fol-
lowing Fﬂedian. This value is readily deduced from a histo-
gram. ||V eaiive|| 1s then weighted by I@'ipegian in order to
predict the temporal salience S

—
T || Vrelative (S) H

- cativer?/ 11 5

S (S) 1 - Fmedian ( )

On one hand, the closer I'yedian to 0, the more the relative
motion is perceptually important (the case of a moving tar-
get among stationary distractors). In the other hand, a high
value of I'eqian, Meaning that numerous parts of the image
undergo a displacement, lessens the salience. Indeed it is
easier to find a moving stimulus among stationary distrac-
tors (I'pedian Close to 0) than a moving stimulus among
moving distractors (high value of I'ycdian)-

3.3. The fusion

The combination of different saliency maps into a
unique map is difficult. However, such process is manda-
tory when several maps are considered. This yields a single
measure of interest for each location, regardless of which
features contributed to the salience. Major problems arise
when attempting to merge features stemming from different
visual dimensions and having different dynamic ranges.
Before going into the details of the proposed fusion, two
influent attempts at solving this problem are described.

The most recent is the work of L. Itti and Koch (2001) in
which three bottom—up combination strategies are
proposed:

(1) The simple normalized summation (called NS in the
following) is the simplest method. All the conspicu-
ous maps are normalized to the same dynamic range
and are summed. This normalization scheme presents
two main advantages: its simplicity and its rapid
adaptability. Nevertheless, this type of strategy suf-
fers from several drawbacks. First, if a conspicuous
map is homogeneous, its contribution is relevant to
the final saliency map, even if it is not relevant in
itself. Second, if there are several conspicuous regions
and if the saliency value of one of these regions is
drastically greater than the others, this simple nor-
malization scheme only promotes the region having
the highest value. The others are lessened.

(2) The global non-linear normalization followed by
summation is more elaborate than the previous one
and attempts to correct the drawbacks of the previ-
ous fusion scheme. The principle is to promote the

feature maps having a sparse distribution of saliency
and to suppress the feature maps having numerous
conspicuous locations. Therefore, all the feature
maps, normalized to the same dynamic range, are
weighted by their global maximum. There are two
drawbacks clearly identified by the author. This
method is not biologically plausible and is sensitive
to noise. Another point has to be emphasized: a pre-
liminary normalization is required in order to scale
the feature maps to the same dynamic range. There-
fore, the proposed method has to deal with the same
problem encountered in the simple normalized
summation.

(3) The local non-linear normalization followed by sum-
mation (called LNLN in the following) is based on a
simple iterative within-feature spatial competition.
Similarly to the previous strategy and presenting the
same advantages, the feature maps are now locally
altered, considering the neighborhood around the
current position, instead of the entire picture. Several
iterations are required in order to converge to the
most conspicuous regions. This method is insensitive
to noise and is more biologically plausible than the
previous ones. Nevertheless, as before, this strategy
requires that all the feature maps have the same
dynamic range. The global maximum of each map
is used to normalize the dynamic range.

These techniques present some innovative points. How-
ever, they all suffer from a major drawback. In each of the
three proposed strategies, the saliency maps are first nor-
malized to the same dynamic range. As some of the sal-
iency maps may be noisy or irrelevant, it is not really
appropriate to start the fusion process with a global nor-
malization scheme. Moreover, these approaches do not
consider the complementarities between the different maps.
The saliency maps might enhance the same regions of the
picture, even if they are obtained from different
approaches. This point is important and should not be
overlooked.

R. Milanese has tackled the fusion issue more com-
pletely in 1993 (Milanese, 1993). The author proposed a
coherent framework to compute a single saliency map. This
map should be a “summarizing” function of the feature
maps. The hallmark of his approach relies on both intra
and inter-map competition. The former, the intra-map
incoherence, is similar in spirit to the global non-linear nor-
malization scheme proposed by L. Itti. A uniform saliency
map has no effect on the final result. The latter deals with
the local inter-map incoherence that potentially exist in
the set of the feature maps. The fusion process is thus dri-
ven by the knowledge of both the conflicting regions in dif-
ferent saliency maps and the regions where there is no
ambiguity (all saliency maps present a relevant saliency at
the same location).

The proposed normalization scheme is based on the two
aforementioned types of competition. Its schematic
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Fig. 7. Schematic diagram of the proposed fusion algorithm. In the proposed example, the fusion aims at building a final map from two saliency maps.
Each of those saliency maps goes through several steps. The saliency map is first normalized to the theoretical maximum. The detection of the most
relevant saliency peaks (by using a winner-takes-all algorithm) is performed in order to achieve an intra-map competition: the weakest saliency values are
lessened whereas the strongest saliency peaks are promoted. An inter-map competition is finally used to detect the complementarity and the redundancy

that the two saliency maps could present.

diagram is shown in Fig. 7. The fusion of two feature maps,
noted S; and S,, is called 7 (S;,S,) and is given by:

S(s) = Z(S1,S,)(s) = intraMap(s) + interMap(s) (6)

where, the term intraMap (respectively, interMap) pertains
to the intra-map competition (respectively, the inter-map
competition).

Before looking into details of the intra and inter-map
competitions, it is necessary to normalize the two feature
maps S; and S, (the two normalized maps are noted SII\I
and S?). The dynamic range of each saliency map are nor-
malized by using the theoretical maximum of the consid-
ered feature rather than the global maximum.

In the proposed design, the three theoretical maximum
values that characterize the maximum dynamic range of
the three spatial saliency maps have been defined in a heu-
ristic way. The method is described hereafter (A, Cr; or
Cr,). First, the maximum input dynamic range is calculated
for each component (A, Cr; or Cr,). The computation of

the theoretical maximum related to the achromatic compo-
nent is taken as an example. This component can convey
data having maximum amplitude of 85.51 (this value
(85.51) 1s the maximum output of the opponent color space
regarding the component A). A test pattern is then built. It
is strictly composed by achromatic target (square, circle. . .)
having the highest possible amplitude (85.51). The maxi-
mum saliency value generated by this pattern is then noted.
This experiment is repeated several times for each compo-
nent with different targets having different sizes, locations,
etc. From the collected data, the theoretical maxima? are 1,
18 and 26, respectively, for the component A, Cr; and Cr».
A slight modification of the theoretical maximum is not
critical for the results accuracy. However, an over-estima-

2 Compared to the chromatic theoretical maximum values, the achro-
matic maximum value is small. It is due to the fact that the achromatic
CSF is applied on a contrast, whereas the chromatic CSFs are directly
applied on the spectrum.
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tion will favor the most important saliency peaks to the
detriment of the others. Conversely, small theoretical
maximum may promote saliency peaks that are not
relevant.

Intra-map competition favors the most important sal-
ience locations. This process alters each spatial location
in function of the value of the nearest local maximum. It
is given by:

S1(s) 53 (s)

IntraM. = 7
niraMap(s) NearestMax; JrNeares‘[Ma)(z 0

where the term NearestMax; (respectively, NearestMax,)
indicates the value of the nearest local maximum regard-
ing the current position for the component S; (respec-
tively, S»). For each feature map, the first X maximums
are computed. When the kth local maximum is located
and memorized, its neighbors are inhibited in order to
determine the spatial location of the (k+ 1)th local
maximum, as in a winner-takes-all algorithm (see
Fig. 7). The size of the surrounding area equals 3° of
visual angle. This local normalization promotes local
saliency value, allowing to process configurations where
several strong local saliences are present. It is worth
noting that all local maximum are not systematically ta-
ken into account. Local maximum that are considered
are the local maximum for which the gradient of saliency
is greater than a given threshold. This approach keeps
only the most visually important locations.

As R. Milanese proposed, the inter-map competition
relies on using complementarities and redundancies that
the different feature maps could present. The complemen-
tarity of the feature maps is interesting because the visual
attention can be attracted by only one visual dimension.
For instance, a red circle sitting amongst a set of black cir-
cles stands out. In this case, the chromatic saliency maps
contain the most relevant saliency. Moreover, the salience
of a stimulus can also be located in more than one feature
map. Taking into account these considerations, the inter-
map competition is given by the multiplication of the two
saliency values locally normalized:

Sy (s) 53 (s)

InterM = 8
nterMap(s) NearestMax; NearestMax, ®)

In the proposed model, the overall approach to combine
the saliency maps is based on a hierarchical structure.
The resulting saliency map S is given by:

S(s) = 7 (87(s), 7 (S*(s), 7 (ST (5),§°(5)))) ©)

First, a chromatic saliency map is computed from the
maps S and S2. It is quite logical to fuse first the
two chromatic maps into one. As luminance and color
information are of same type contrary to motion, it is
also logical to fuse them into one map. A spatial saliency
map is then deduced from the chromatic and the achro-
matic saliency maps. Second, the dynamic saliency map

is the result of the fusion of the spatial and the temporal
saliency maps.

4. Human and predicted fixations: comparison and analysis

To quantitatively examine the similarity degree between
the predicted and the priority maps, four completing met-
rics have been used.

4.1. Different models

In this study, different models are compared. First, three
versions of the proposed model are used: a model which
includes all data (spatial and temporal, noted ST), a model
based only on the spatial-visual features (noted S) and a
model based only on the temporal dimension (noted T).
Second, the model proposed by Itti et al. (1998) is put to
the test. This model is freely downloadable from the Inter-
net and the command line used to conduct this experiment
is: ezvision.exe —wta-type=None —in=.lkayaklkayak#.pnm —
rescale-output=352 x 288 —save-salmap —out=raster. By
default, the fusion scheme is the local non-linear normali-
zation followed by summation (LNLN). By adding the
option —maxnorm-type=Maxnorm, the fusion of the feature
maps is based on the normalized summation (NS). Param-
eters are detailed on the iLab’s web site’. Fig. 8 gives an
example of saliency maps obtained by the proposed
approach, Itti’s model with NS fusion and with LNLN
fusion.

These models have been designed by considering and
simulating several fundamental properties of the human
visual system. This is not the case for the three remaining
models: the first one is the most simple as it computes a
uniform saliency map. The second one favors the center
of the screen. The centered saliency map is given by:

d(s,so)) (10)

Oc
s and s are, respectively, the current and the center posi-
tion. d(s, so) is the Euclidean distance between the location
s and sy. 0. controls the spread of the saliency distribution.
By default, o, is set to 50.

The two aforementioned models are limited to the spa-
tial dimension. For completeness, a final model is defined.
It is based on temporal changes (flicker) and is expected to
yield interesting results during motion video sections. The
saliency map computed from the flicker model saliency is
given by:

S(s) = [Li(s) = L1 (s)] (11)
I, and I,_; represent the frame at the time ¢ and ¢ — 1,

respectively. For the particular case of the first picture,
the saliency map is uniform.

S(s) = exp(—

3 http://ilab.usc.edu/
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(b) Proposed

(a) Source

(¢) NS

(d) LNLN

Fig. 8. Predicted saliency maps. (a) source (b) saliency map coming from the proposed model; (c) and (d) saliency maps coming from Itti’s model
respectively for NS and LNLN fusion scheme. The difference between the two last saliency maps is obvious. The latter is more focused than the former.

4.2. Linear correlation coefficient and KL-divergence

The first metric used here is the linear correlation coeffi-
cient, noted cc. This metric assesses the linearity degree
between two data sets. The cc range is between —1 and /.
When the correlation value is close to —1 or 1, there is
almost a perfect linear relationship between the two
variables:

cov(p, h)

h) =—2 7 12
colp ) =2 (12)
with, h and p, respectively, represent the priority map and
the predicted density map, cov(p, &) is the covariance value
between p and /.

The second metric is the Kullback—Leibler divergence,
noted KL. The KL-divergence (Cover & Thomas, 1983)
estimates the dissimilarity between two probability density
functions. It is not a distance, since the KL-divergence is
not symmetrical, nor does it satisfy an inequality:

p()
KL(plh) = Log|—+* 13
(i) = 3 ot Log (55 (13)
with, /& the probability density deduced from the experi-
mental priority map, and p the predicted probability den-
sity function.

When the two probability densities are strictly equal,
KL-divergence value is zero.

Table 2 shows the overall similarity degree between dif-
ferent models in predicting attentional selection. As
expected, the uniform model yields the worst results. This
finding reinforces previous conclusions (Itti, 2005), suggest-
ing human beings tend to look at salient objects in their
visual environment on dynamic color scenes. Concerning
the flicker saliency maps, both cc and KL indicate that
flicker, as it is defined in this study (absolute frame differ-
ence), is not a reliable predictor of human saccade targets.
Indeed flicker only indicates temporal changes and there-
fore its predictions can be relevant only when the dominant
motion is null.

It is worth stressing that as far as biologically plausible
models are involved, the best performances stem from the
proposed model incorporating all features (spatial and
temporal). This is coherent with previous findings (Itti,
2005). This is not surprising, as emphasized in (Itti,
2005): during periods of rather still video, temporal sal-
iency map yields no output. The best predictors are then
those stemming from the spatial dimension (luminance
and color).

When the temporal and the spatial saliency maps are
mixed together, the gain is about 0.1 and at least 1.25,

Table 2
Compared models
Model cc KL

Means = SEM t-test Means = SEM t-test
Proposed ST 0.41 +0.001 — 19.21 +£0.033 —
Proposed S 0.32 +£0.003 p <0.086 21.51 +£0.038 »<0.013
Proposed T 0.31 +0.001 p <0.00042 20.46 £+ 0.08 p<0.21
Proposed ST + NS fusion 0.37 £0.001 p<0.36 22.28 £0.01 » <0.002
L. Itti NS 0.32 +0.002 p<0.14 23.37 £ 0.012 » <0.0004
L. Itti LNLN 0.28 +0.002 p<0.033 22.21+0.017 » <0.003
Uniform 0.01 £ 0.00 p<107° 25.36 +0.01 p<107°
Centered 0.59 +0.001 » <0.0001 16.88 £ 0.023 p <0.0004
Flicker 0.09 £+ 0.001 p <0.0001 24.01 £+ 0.057 p<0.05

Proposed ST, model with all feature channels (ST pertains for spatio-temporal). Proposed S, achromatic and chromatic components only (S pertains for
spatial). Proposed T, temporal dimension only (T pertains for temporal). The proposed fusion is used for these three models. Proposed ST + NS fusion,
model with all feature channels, however, the final saliency maps is obtained by summing all saliency maps, that have been normalized to the same
dynamic range. L. Itti, Itti’s model with all feature channels (color, intensity, orientation, flicker and motion) with NS or LNLN fusion. Uniform, uniform
model. Centered, centered model. Flicker, model based on the frame difference. Average cc and KL, computed over all clips and for different models are
given. Significance level, calculated from a non-parametric paired-sample test between the proposed spatio-temporal (Proposed ST) model and the others
is given. Standard error of the mean (SEM) is also given.
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for cc and KL, respectively. Whereas the best proposed
model (noted Proposed ST in Table 2) yields 0.41 and
19.21, for cc and KL respectively, L. Itti’s model with all
feature channels (color, intensity, orientation, flicker and
motion) gives 0.32 (NS version) and 22.21 (LNLN version),
respectively. It is interesting to note that the best perfor-
mances in term of cc is obtained when considering Itti’s
model with the NS fusion. However, it is the other fusion
scheme (LNLN) that provides the smallest KL.-divergence
value. It is not surprising because the saliency distribution
given by the two fusion schemes (NS and LNLN) is signif-
icantly different. The saliency distribution obtained by the

O. Le Meur et al. | Vision Research 47 (2007) 2483-2498

former (NS) is almost uniform whereas the latter is very
sparse (see an example on Fig. 8).

Figs. 9 and 10 show the average cc and KL per clip. Sev-
eral observations can be made: the flicker model gives its
best results on video sequences containing periods for
which the dominant motion is null (still camera). This is
the case for the sequences Table and Titleist. The best per-
formances are given by the spatio-temporal model, except
for the clip Canoa and Kayak. These video clips are partic-
ular in the sense that they consist of one contrasting actor
moving across the scene. As the contrast between the back-
ground and the main actor is important, this can explain

O Proposed ST BProposed S OProposed T OIti NS
W fiti LNLN @ Uniform B Centered O Flicker
08
06
04 i b
02+
0+
Titleist Stefan Skate Canoa Kayak SpeedSkate Table

Fig. 9. Average correlation coefficient per clip. Error bars depicts the 95% confidence interval. Notation is as in Table 2.

30
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25 |E = |E T __} I [ = I
==
225 s 2 I B H —
20 A B B 1 B B y
17.5 T B nE ] ] e I
15 1 ™ T — T — M
125 - - . ] m I
10 - T T T m
Titleist Stefan Skate Canoa Kayak SpeedSkate Table

Fig.

10. Average KL-divergence per clip. Error bars depicts the 95% confidence interval. Notation is as in Table 2.



O. Le Meur et al. | Vision Research 47 (2007) 2483-2498 2495
Table 3
Comparison among models regarding the cumulative probability
Model Means = SEM

N=5 N=10 N=15 N=20

Human (upper-bound) 0.33 +0.008 0.55 +0.001 0.73 + 0.007 0.81 4+ 0.007
Proposed ST 0.09 £ 0.004* 0.15 4+ 0.006" 0.19 + 0.007* 0.23 +0.008"
Proposed S 0.06 4 0.002 0.11 4+ 0.003 0.15 + 0.004 0.18 4+ 0.005
Proposed T 0.09 £ 0.007 0.154+0.01 0.20 + 0.01 0.24 +0.01
L. Itti LNLN 0.06 +0.003 0.10 4+ 0.004 0.14 + 0.004 0.17 +0.005
Uniform 0.03 £ 0.000 0.06 £ 0.000 0.08 £+ 0.000 0.10 £ 0.001
Centered 0.10 +0.003 0.18 4+ 0.004 0.24 + 0.004 0.27 +0.005
Flicker 0.05 4 0.002 0.09 4+ 0.004 0.12 +0.005 0.14 4+ 0.005

The upper-bound, called Human, is the cumulative probability calculated from the experimental maps. * means that results coming from the proposed ST
model are statistically better than those stemming from Itti’s model (z-test, p < 0.05 or better). Notations are as in Table 2.

why the spatial proposed model performs better than the
spatio-temporal one. Noting also that the proposed fusion
outperforms the NS fusion, in term of cc and KL. How-
ever, the gain in cc brought in by the coherent fusion is
not statistically significant.

4.3. Cumulative probability

The cumulative probability metric is close to those pro-
posed by Parkhurst et al. (2002). Priority and predicted
maps are first transformed into two probability density
functions. Next, the coordinates (x*,y*) of the kth most
important saliency location are extracted from the experi-
mental probability density function. To identity the
k + 1th most important saliency location, the location of
kth maximum is inhibited as well as its neighborhood. Its
size in pixels is 30 (corresponding to 0.6° x 0.6°).

The cumulative probability is the sum of the predicted
saliency included in a circle of 30 pixels of radius, centered
on the most important experimental saliency locations. For
the ith picture, the cumulative probability C’ is given by:

Ch=>Y_ Z Xr:Pi(xk—l,yk—m) (14)

k=1 I=—r m=—r

where, N is the number of the most important fixation
points and r the radius of the circle. The subscript P indi-
cates that the computation refers to the predictions. The
overall predicted cumulative probability noted Cp is given
by:
1 &,

Cr = ; c, (15)
where, M is the frame number. A value of 1 indicates a per-
fect correlation between the experimental and the predicted
saliency maps, whereas a value of 0 indicates an anti-corre-
lation. Based on this metric, a lower and upper bound is
also defined. The former is simply obtained by the use of
an uniform saliency map, meaning that each pixel has the
same probability to get fixated. This is the worst case.
The upper-bound is obtained when the cumulative proba-
bility is not extracted from the predicted probability

density function but rather in the experimental probability
density function.

As previously and as expected, the uniform model yields
the worst results, as shown in Table 3. In all tested cases,
proposed computational models ST and T perform better
than both proposed model S and Itti’s model. The flicker
model still remains a bad predictor of priority maps.

It is interesting to note the high difference between the
upper-bound and the performances of the tested models.
For example, if twenty points are considered, there is a
ratio of 3.5 (0.81/0.24) between the upper-bound and the
best biological model. There are at least three explanations:
the eye tracking experiments have been conducted in a free-
viewing task. However, it is impossible to prove that there
is no top—down influence. Moreover, the extent to which
the top—down mechanism influences the allocation of
attention is impossible to quantify. One thing is certain:
top—down influences can be very strong, directing the gaze
to a particular location, irrespectively of the salience. The
second reason is related to the reaction time required to
process the visual information following a scene cut. All
subjects involved in the eye movement experiments were
new to the content of the video clips. Therefore, each scene
cut occurring in the clip induces a temporal masking lasting
several frames. During these periods, the fixation immedi-
ately following the scene cut depends mainly on where
observers gazed prior the cut. This is probably not the most
important effect but its contribution cannot be neglected on
clip containing numerous scene cuts. For instance, the
sequence Titleist contains twelve scene cuts. Assuming
the temporal masking lasts up to 100 ms on average, there
are only 4%" of the results that are not relevant. The last
plausible explanation concerns the intrinsic difference that
exists between the experimental (see Fig. 3) and the pre-
dicted saliency maps (see Fig. 5). The former is sparse while
the latter is more uniformly distributed. A post treatment
of the prediction can probably reduce the gap.

4 Loutsx100 mox25 Hz 741 jg the total frame number.
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4.4. The particular case of the centered model

Whereas biological models perform much better than
the uniform and the flicker models, it is not the case any-
more when the centered model is considered. It clearly
yields the best performances for all metrics. The perfor-
mances of the centered model reach 0.59 and 16.88, while
the best biological model hardly yields 0.41 and 19.21,
for cc and KL, respectively. What are the reasons of these
performance differences? The general tendency for observ-
ers to fixate near the center of scenes, even if the salience is
null could be a potential explanation. This effect is called
the central bias. This tendency is due to a number of rea-
sons notably detailed in (Tatler et al., 2005). The most
important reason probably lies in the film makers tendency
to place subjects of interest near the center. Therefore,
attending to central regions represents an efficient informa-
tion selection strategy, unconsciously deployed by observ-
ers. In addition, this tendency has been likely and
unfortunately reinforced during the eye tracking experi-
ments. Indeed each trial began with a centrally located fix-
ation marker. This marker could be randomly positioned.
However, studies which did not use a central fixation mar-
ker (Canosa, Pelz, Mennie, & Peak, 2003) have also shown
a central fixation bias.

As cc, KL and the cumulative probability metrics are
sensitive to the dynamic range and to the salience distribu-
tion, it is also possible that these metrics were strongly
influenced by this bias. Differences between experimental
and predicted distributions are important. On one hand,

the experimental saliency distribution is very sparse, due
to non-spatially uniform distribution of saliency in natural
scenes. On the other hand, predicted saliency distributions
are rather smooth. It is important not to play down the
influence of this point. In order to unravel the situation,
a fourth metric, less sensitive to the dynamic range, is used.

4.5. ROC analysis

Receiver operating characteristic analysis (ROC analy-
sis) consists in labeling (by thresholding) the predicted
and the priority maps. In this study, all locations of sal-
iency maps are labelled as fixated or not. Twenty values
are used to threshold the predicted saliency maps. These
thresholds are uniformly selected between the minimum
and the maximum values of the predicted data. Only one
value of threshold has been used to segment the priority
map. The salience distribution of the experimental data is
very sparse and the different salience values between a fix-
ated and a non-fixated area is very high (see examples of
priority maps in Fig. 3). It is for this reason that only
one threshold has been used. ROC curves were obtained
by varying the threshold and comparing the resulting pixel
labels with the ground truth. Curves shown on Fig. 11,
indicate the false alarm rate (labeling a non-fixated loca-
tions as fixated) as a function of the hit rate (labeling fix-
ated locations as fixated). The more the top left-hand
corner the curve approaches, the better the detection: the
ideal discrimination is obtained by a false positive rate
equal to 0 and a true positive range equal to 1. Fig. 11

0.8
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0.4

True positives Rate

—+— Proposed ST
ITTILNLN

—— CENTER
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0.4

0.6 nse 1
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Fig. 11. Results of the ROC analysis on the set of sequences, for different models (results for Centered, Proposed ST, Uniform model and Itti’s model

(LNLN) are presented).
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shows the ROC analysis results when considering the over-
all clips. As previously, the proposed spatio-temporal
model outperforms all tested models except the centered
model. The ROC analysis is very different from the previ-
ously tested metrics. Nevertheless, the hierarchy in terms
of performances remains the same.

Whatever the metric, the centered model systematically
outperforms the others models. It follows that the four met-
rics are probably not confounded by the central bias. The
results just reflect the similarity degree that exists between
the predicted and the priority maps. The central bias is likely
to be the result of the interaction between two factors. First,
regions of interest are often located near the center of the
screen, by film makers and photographers. Second, the cen-
tral fixation marker that has been used during the eye track-
ing experiments could also share some responsibilities.

5. Discussion

The most important aspects of this study were both to
quantify the agreement between experimental and predicted
saliency maps and to benchmark several models on dynamic
complex scenes. Except the particular case of the centered
model, the new computational model of the bottom—up
visual attention proposed in this paper outperforms flicker,
uniform and L. Itti’s models. It should be noted that this
study does not offer an exhaustive survey of models predic-
tions. Other models might yield better results.

Several side-results, detailed below, are obtained, rein-
forcing several previous findings and giving more sub-
stances to others.

5.1. Strong and persistent role of low-level visual features

Results described in this study first indicate that atten-
tional allocation is strongly influenced by the low-level visual
features during free-viewing of dynamics color scenes. This
study confirms and reinforces the findings of L. Itti (2005).

5.2. The best predictor of human fixation integrates all visual
features

Whatever the metric, sensitive or not to the dynamic
range of salience, the best predictor of human saccade tar-
gets is the model that incorporates all features. Again, these
results reinforces previous findings.

A number of issues are brought in by the fact that sev-
eral visual dimensions are considered (achromatic, chro-
matic and temporal). The main issue concerns the
building of a unique saliency map: how to combine the dif-
ferent saliency maps, coming from different modalities and
potentially having different dynamic ranges? The simple
approach consists in summing all maps after that a suitable
scaling has been applied on. Such approach presents sev-
eral drawbacks. To cope with these issues, a new way of
combining saliency maps is proposed, leading to a statisti-
cally significant gain, in terms of KL-divergence and ROC

analysis (Table 2 and Fig. 11). As the fusion issue is likely
to be a key point in the visual attention modeling, further
explorations are scheduled. In a future study, the spatial
dimension will be split into color and luminance in order
to quantify the extent to which the chromatic and achro-
matic features contribute to the attentional allocation.

5.3. The influence of images features does not change during
viewing

It was previously deemed that stimulus dependence was
not constant over viewing time and greatest just after stim-
ulus onset. This is why numerous studies assess the similar-
ity degree between experimental and predicted fixations
either for short viewing durations [when the eye tracking
experiments involve still pictures (Jost, Ouerhani, Wart-
burg, Mri, & Hgli, 2005; Parkhurst et al., 2002)] or just
after a scene cut for video clip (Carmi & Itti, 2006).

Assuming that the bottom—up influences are maximum
just after the stimulus onset and decrease with viewing time,
the similarity degree between prediction and experimental
data should be maximum after the stimulus onset and
should decrease over time. These were the conclusions of
previous studies (Jost et al., 2005; Parkhurst et al., 2002).
Nevertheless, as emphasized by B. Tatler et al. (2005), the
effect observed by Parkhurst et al. was probably due to an
artifact of their methodology. Moreover, in a previous study
dealing with still color pictures (Le Meur et al., 2006), the
similarity degree for different viewing times (4, 10 and
14 s) was evaluated. The viewing duration was deliberately
long, assuming that the stimulus dependence is almost con-
stant over time. The performances were roughly the same,
whatever the viewing duration (in fact, the performances
increased because of observers continuing to gaze salient
areas throughout the trial rather than to scan the whole pic-
ture). It indicated that the bottom—up influence still remains
important over time. In other words, in a free-viewing task,
attentional allocation was continuously and strongly driven
by the low-level visual features. These previous results are
coherent with the findings of B. Tatler et al. (2005). Indeed,
Tatler et al. have shown that fixation location consistency
changes between observers over time but the influence of
image features does not. This means that top—down mecha-
nism can strongly influence the attentional allocation, lead-
ing to idiosyncratic patterns of eye movements. However, as
soon as the top—-down mechanism vanishes, bottom-up
influences become dominant again, drawing the attention
towards the most salient locations.

In conclusion, two key points have to be considered to
compute the similarity degree that exists between saliency
and priority maps: the initial fixation, prior the stimulus
onset, is important, as emphasized in (Tatler et al., 2005).
The second point concerns the temporal masking due to
the stimulus onset or due to a scene cut. Temporal masking
induces a significant reaction time and significantly influ-
ences salience measures (if the measure is done just after
the scene cut). However, this aspect is often overlooked.
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5.4. How to lessen the central bias?

The central bias influence is the most crippling aspect of
this work. As previously described, the center bias has sev-
eral origins and is likely reinforced in our experiments by
the central position of the marker used just before stimulus
onset.

In order to maximize agreement between human eye
movements and biological plausible model predictions, a
new protocol has to be defined. But, is it possible to design
an eye tracking protocol that significantly lessens this bias?
Several simple rules have to be followed. For instance, it is
recommended to randomly position the marker before the
stimulus onset. In addition, the selection of the video clips
is important. Others rules could be defined to further
reduce central bias effect, notably, on the relative alignment
of the screen and video clip centers. This issue will be
addressed in a future study.
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