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a b s t r a c t

Let S be a polynomial ring and I be the Stanley–Reisner ideal of a simplicial complex ∆.
The purpose of this paper is investigating the Buchsbaum property of S/I(r) when∆ is pure
dimension 1. We shall characterize the Buchsbaumness of S/I(r) in terms of the graphical
property of∆. That is closely related to the characterization of the Cohen–Macaulayness of
S/I(r) due to the first author and N.V. Trung.
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1. Introduction

Let ∆ be a simplicial complex on a vertex set [n] = {1, 2, . . . , n}. Let S = k[x1, x2, . . . , xn] be a polynomial ring of n
variables over an infinite field k. The Stanley–Reisner ideal I is a square-free monomial ideal of S associated with∆ and the
residue class ring S/I is called the Stanley–Reisner ring. In this article, we assume that ∆ is pure and dim∆ = 1, which
means that any maximal element of ∆ consists of two elements. We investigate the Buchsbaum property of S/I(r), where
I(r) is the r-th symbolic power of I . In our situation, the Stanley–Reisner ring S/I satisfies dim S/I = 2 and depth S/I > 0.
It is also known that S/I is always a Buchsbaum ring, and that S/I is Cohen–Macaulay if and only if ∆ is connected. In [3],
the first author and Trung studied the Cohen–Macaulay property of S/Ir and S/I(r) for the Stanley–Reisner ideal I of a pure
simplicial complex ∆ of dimension 1. They give the complete characterization on their Cohen–Macaulayness in terms of a
geometric property of∆.

Corollary 3.6 ([3, Theorems 2.3 and 2.4]). Let I be the Stanley–Reisner ideal of a pure simplicial complex ∆ of dimension 1. Let
r > 0 be an integer. Then the following statements hold true.

(1) S/I(2) is Cohen–Macaulay if and only if diam(∆) ≤ 2.
(2) Let r > 2. Then, S/I(r) is Cohen–Macaulay if and only if any pair of disjoint edges of∆ is contained in a cycle of length 4.

For the definition of diam(∆) and the cycle of length 4, see Definition 3.3.
The characterization of the Buchsbaumness of S/I(r) uses slightly weaker conditions. The following statement is themain

result of this paper.

Theorem 3.7. Let I be the Stanley–Reisner ideal of a pure simplicial complex∆ of dimension 1. Let r > 0 be an integer. Then the
following statements hold true.
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(1) S/I(2) is Buchsbaum if and only if∆ is connected.
(2) S/I(3) is Buchsbaum if and only if diam(∆) ≤ 2.
(3) Let r > 3. If S/I(r) is Buchsbaum, then it is Cohen–Macaulay.

Moreover, we also can compute the smallest non-negative integer k = k(r) such that mkH1m(S/I
(r)) = (0) when ∆ is

connected.

Theorem 3.8. Let r > 1 be an integer. Assume∆ is connected and S/I(r) is not Cohen–Macaulay. Then

k(r) = diam(H1m(S/I
(r))) =

{
r − 1 if diam(∆) > 2
r − 2 if diam(∆) ≤ 2.

Let us explain the organization of this paper. In Section 2, we give a brief outline of Takayama’s formula. In the paper [5],
he gave a generalization of Hochster’s formula about the local cohomology modules of Stanley–Reisner rings. Takayama’s
formula is very useful in itself, but we needmore detailed information obtained from Takayama’s formula. Lemma 2.3 states
the behavior of the multiplicative map in the formula of Takayama. In Section 3, we treat the symbolic power of Stanley–
Reisner ideals of dimension 1. After giving some statements on local cohomology modules, we prove the main results.

2. Preliminaries

We begin with the notation for a simplicial complex. A simplicial complex ∆ on a finite set [n] = {1, 2, . . . , n} is a
collection of subsets of [n] such that F ∈ ∆ whenever F ⊆ G for some G ∈ ∆. Notice that, for convenience in the later
discussions, we do not assume the condition that {i} ∈ ∆ for i = 1, 2, . . . , n. We put dim F = |F | − 1, where |F |means the
cardinality of F , and dim∆ = max{dim F | F ∈ ∆}, which is called the dimension of ∆. When we assume a linear order
on [n], say<,∆ is called an oriented simplicial complex. In such a case, we define F = {i1, . . . , ir} for F ∈ ∆with the order
sequence i1 < · · · < ir . Let ∆ be an oriented simplicial complex with dim∆ = d. We denote by C(∆) the augmented
oriented chain complex of∆:

C(∆)• : 0→ Cd
∂
→ Cd−1

∂
→ · · ·

∂
→ C0 → C−1 → 0

where

Ck =
⊕
F∈∆
dim F=k

ZF and ∂F =
k∑
j=0

(−1)jFj

for all F ∈ ∆. Herewe define Fj = {i0, . . . , îj, . . . , ik} for F = {i0, . . . , ik}. For any field k, we define the i-th reduced simplicial
homology group H̃i(∆; k) of∆ to be the i-th homology group of the complex C(∆)•⊗ k. Further we define the i-th reduced
simplicial cohomology group H̃ i(∆; k) of∆ to be the i-th cohomology group of the dual chain complex HomZ(C(∆)•, k) for
all i. We note that

dimk H̃i(∆; k) = dimk H̃ i(∆; k) for all i,

H̃−1(∆; k) ∼= H̃−1(∆; k) ∼=
{
k if∆ = {∅}
0 otherwise,

and if∆ = ∅, we define dim∆ = −1 and H̃i(∆; k) = H̃ i(∆; k) = 0 for all i.
Next, we give notation for the Cech complex. Let S = k[x1, x2, . . . , xn] be a polynomial ring of n variables over a

field k and I an ideal generated by monomials of S. Let m = (x1, x2, . . . , xn). We fix an orientation on [n] and the subset
F = {i1, . . . , ir} ∈ [n] is considered together with the order sequence i1 < · · · < ir . We put xF =

∏
i∈F xi. The Cech complex

of R = S/I with respect to m is defined as follows:

C• : 0→ C0
∂
→ C1

∂
→ · · ·

∂
→ Cn → 0, where C t =

⊕
|F |=t

R[1/xF ].

For an element a/1 ∈ R[1/xF ] in C t , the differential ∂ : C t → C t+1 is defined by

∂(a/1) =
∑
j∈[n]\F

(−1)F(j)a/1 ∈
⊕
j∈[n]\F

R[1/xF∪{j}] ⊆ C t+1,

where F(j) = |{ip ∈ F | ip < j}|. Because this Cech complex can be considered as a complex of Zn-graded S-modules and
Zn-graded homomorphisms, the cohomology modules also have the structure of Zn-graded S-modules. Hence for a ∈ Zn,
we have

H im(R)a = H
i(C•)a ∼= H i(C•a )
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for each i, where H im(R) is the i-th local cohomology module of R with respect to m and H im(R)a is its a-homogeneous
component.
For a monomial ideal I of S, we denote by G(I) the set of minimal generators of I . For a = (a1, a2, . . . , an) ∈ Zn, let Ga be

the subset {i|ai < 0} of [n]. With this notation, according to [1, Lemma 5.3.6] or [5, Lemma 1], we have the following lemma.

Lemma 2.1 ([1,5]). Let F ⊆ [n] and a = (a1, a2, . . . , an) ∈ Zn. Then the following conditions are equivalent.

(1) R[1/xF ]a 6= 0.
(2) The following two conditions hold true.
(a) Ga ⊆ F .
(b) For xb =

∏n
j=1 x

bj
j ∈ G(I), there exists j ∈ [n] \ F such that bj > aj.

Next, we establish an isomorphism between the chain complex of S/I and the dual chain complex associated with a
simplicial complex. Let I be a monomial ideal of S and let a = (a1, a2, . . . , an) ∈ Zn. We define two kinds of simplicial
complexes ∆̃a(I) and∆a(I) as follows:

∆̃a(I) 3 F ⇔


(1) F ⊇ Ga

(2) ∀xb =
n∏
j=1

x
bj
j ∈ G(I), ∃j ∈ [n] \ F such that bj > aj

and

∆a(I) = {F \ Ga | F ∈ ∆̃a(I)}.

By Lemma 2.1, for F ⊆ [n], we have

R[1/xF ]a =
{
k F ∈ ∆̃a(I)
0 otherwise.

Then each homogeneous piece of a component of C• can be written as follows:

C ta =
∑
F∈∆̃a(I)
dim F=t−1

R[1/xF ]a =
∑
F∈∆̃a(I)
dim F=t−1

k · bF

for t ≥ 0 and a ∈ Zn, where {bF } means the basis as a k-vector space. On the other hand, for a simplicial complex ∆,
HomZ(C(∆)t , k) is k-vector space having basis {ϕF |F ∈ ∆, dim F = t}, where

ϕF (G) =
{
1 F = G
0 otherwise.

By [1, Lemma 5.3.7] or [5, Lemma 2], we have the isomorphism of complexes.

Lemma 2.2 ([1,5]). Let a ∈ Zn and j = |Ga|. Then there exists an isomorphism of complexes

C•a [j+ 1] → HomZ(C(∆a(I))•, k)

which is induced by the assignment bF 7→ ϕF\Ga . In particular, for t ≥ −1 we have an isomorphism of homology modules

H t+j+1m (R)a = H t+j+1(C•a ) ∼= H̃
t(∆a(I), k).

Let b ∈ Nn and take the monomial xb =
∏n
j=1 x

bj
j ∈ R. The multiplication map R 3 f 7→ xbf ∈ R induces a chain map

C•
xb
−→ C•. Taking theirZn-graded homogeneous piece, we have a chainmap η : C•a → C•a+b for each a ∈ Nn. Notice that the

homomorphism between the homology modules induced by η coincides with the homomorphism H tm(R)a
xb
−→ H tm(R)a+b.

Lemma 2.3. Let I be a monomial ideal of S and a, b ∈ Nn. For any integers j ≥ 0, we have the following commutative diagram:

H jm(S/I)a
xb

−−−−→ H jm(S/I)a+by y
H̃ j−1(∆a(I); k) −−−−→ H̃ j−1(∆a+b(I); k)

where the vertical maps are isomorphisms as in Lemma 2.2 and the bottom map is induced from the natural embedding
∆a+b(I) ⊆ ∆a(I) of simplicial complexes.
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Proof. Let ρ : HomZ(C(∆a(I))•, k)→ HomZ(C(∆a+b(I))•, k) be the homomorphism induced from the natural embedding
∆a+b(I) ⊆ ∆a(I). Then, for F ∈ ∆a(I)with dim F = t , we have

ρ(ϕF ) =

{
ϕF if F ∈ ∆a+b(I)
0 otherwise.

On the other hand, passing through isomorphisms

C t+1a
∼=

∑
F∈∆̃a(I)
dim F=t

k · bF and C t+1a+b
∼=

∑
F∈∆̃a+b(I)
dim F=t

k · bF ,

η : C t+1a −→C
t+1
a+b can be written as

η(bF ) =
{
bF if F ∈ ∆a+b(I)
0 otherwise.

Thus we have the following commutative diagram:

C t+1a
η

−−−−→ C t+1a+by y
HomZ(C(∆a(I))t , k)

ρ
−−−−→ HomZ(C(∆a+b(I))t , k)

for all t ≥ −1, where we may assign bF to ϕF for the vertical maps as in Lemma 2.2, since |Ga| = 0. This diagram yields the
commutative diagram of complexes with isomorphic vertical maps:

C•a [1]
η

−−−−→ C•a+b[1]y y
HomZ(C(∆a(I))•, k)

ρ
−−−−→ HomZ(C(∆a+b(I))•, k)

and we get the required diagrams of homology modules. �

3. The Buchsbaum property

Let ∆ be a simplicial complex of [n], which is pure, and dim∆ = 1, i.e., each facet of ∆ consists of two elements. Let I
be the Stanley–Reisner ideal of ∆ in the polynomial ring S = k[x1, x2, . . . , xn], which is the ideal generated by the square-
free monomial xi1xi2 . . . xir such that 1 ≤ i1 < i2 < · · · < ir ≤ n and {i1, i2, . . . , ir} 6∈ ∆. In this section, we discuss
the Buchsbaum property of the residue ring S/I(r), where I(r) is the r-th symbolic power of I . For 1 ≤ i < j ≤ n, we put
Pij = (x1, . . . , x̂i, . . . , x̂j, . . . , xn). Then

I =
⋂
{i,j}∈∆

Pij and I(r) =
⋂
{i,j}∈∆

P rij.

Now, a facet F of∆ can be written as F = {i, j}. For simplicity, we may write F = ij instead of F = {i, j}.
These kinds of ideals have been studied by several authors. Here we pick up important results stated in [2,3], which will

be applied several times in our argument.

Theorem 3.1. S/I(r) and∆a(I(r)) satisfy the following properties.

(1) dim S/I(r) = 2 and depth S/I(r) > 0.
(2) Let a ∈ Zn. If Ga 6= ∅, then H1m(S/I

(r))a = 0.
(3) Let a ∈ Nn. Then∆a(I(r)) is a subcomplex of∆ of pure dimension 1.
(4) Let a ∈ Nn. Then H1m(S/I

(r))a ∼= H̃0(∆a(I(r)), k).
(5) H̃0(∆a(I(r)), k) = 0 if and only if∆a(I(r)) is connected.
(6) Let a = (a1, . . . , an) ∈ Nn. For i, j ∈ [n], we put σ a

ij = |a| − (ai + aj), where |a| =
∑n
k=1 ak. Then we have the following

equivalent conditions:
(a) ij ∈ ∆a(I(r)).
(b) σ a

ij < r and ij ∈ ∆.

Proof. (1) Obvious.
(2) See [2, Lemma 1.3].
(3) See [3, Lemma 1.3].
(4) Apply Lemma 2.2.
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(5) By the definition of the reduced homology group.
(6) See [3, Lemma 2.1]. �

Lemma 3.2. (1) [H1m(S/I
(r))]j = (0) for j > 2r − 2.

(2) Let 0 ≤ j < r. Then [H1m(S/I
(r))]j = (0) if and only if∆ is connected.

Proof. (1) Take a ∈ Nn such that H1m(S/I
(r))a 6= (0). Then there exist at least two connected components in ∆a(I(r)), since

∆a(I(r)) is not connected. We may say that 12, 34 ∈ ∆a(I(r)) belong to different components. From the inequalities σ12 < r
and σ34 < r , we obtain that a3 + a4 ≤ σ12 ≤ r − 1, whence it follows that

|a| = σ34 + (a3 + a4) ≤ 2r − 2.

This implies the first statement.
(2) Let 0 ≤ j < r . Take a ∈ Nn with |a| = j. Then one can check that∆ = ∆a(I(r)). In fact, take pq ∈ ∆. Then

σpq ≤ |a| = j < r.

Thus it follows that∆ ⊆ ∆a(I(r)). The opposite inclusion is obvious. �

For the proof of the next lemma, we need the following definition.

Definition 3.3. (1) For i, j ∈ [n], we define

dist(i, j) = min
{
k
∣∣∣∣ ∃x0, x1, . . . , xk ∈ [n] such that
x0 = i, xk = j, xlxl+1 ∈ ∆ for 0 ≤ l ≤ k− 1

}
and dist(i, j) = ∞ if there is no path connecting them. Further, we put diam(∆) = maxi,j∈[n] dist(i, j) and call it the
diameter of∆.

(2) Let i ∈ [n]. A star of∆ is a subcomplex of∆ defined as follows:

Star∆(i) = {F ∈ ∆ | F ∪ {i} ∈ ∆}.

(3) For a simplicial complex∆, the subset

{xixi+1 ∈ ∆ | i = 1, . . . , k , x1 = xk+1}

of∆ is called a cycle of length k.

We will give some properties of H1m(S/I
(r)) as follows.

Lemma 3.4. Let r > 1. The following conditions are equivalent.

(1) [H1m(S/I
(r))]r = (0).

(2) diam(∆) ≤ 2.

Proof. (1)⇒ (2): Take p, q ∈ [n]. Let a = (r − 1)ep+ eq, where ep denotes the p-th unit vector. Then H1m(S/I
(r))a = 0 since

|a| = r . On the other hand, one can check that∆a(I(r)) = Star∆(p) ∪ Star∆(q). In fact,

ij ∈ ∆a(I(r)) ⇐⇒ σ a
ij < r and ij ∈ ∆

⇐⇒ {i, j} ∩ {p, q} 6= ∅ and ij ∈ ∆
⇐⇒ ij ∈ Star∆(p) or ij ∈ Star∆(q).

Now Star∆(p) ∪ Star∆(q) is connected; thus dist(p, q) ≤ 2, which implies that diam(∆) ≤ 2.
(2)⇒ (1): Take a ∈ Nn with |a| = r . We put

a = u1eα1 + u2eα2 + · · · + uteαt ,

where ui > 0, u1 + u2 + · · · + ut = r and 1 ≤ α1 < α2 < · · · < αt ≤ n. Then

ij ∈ ∆a(I(r)) ⇐⇒ σ a
ij < r and ij ∈ ∆

⇐⇒ {i, j} ∩ {α1, α2, . . . , αt} 6= ∅ and ij ∈ ∆
⇐⇒ ij ∈ Star∆(α1) ∪ Star∆(α2) ∪ · · · ∪ Star∆(αt).

From the assumption, it follows that dist(αi, αi+1) ≤ 2. Thus Star∆(αi)∪ Star∆(αi+1) is connected for all 1 ≤ i < t , whence
we obtain that∆a(I(r)) is connected and H1m(S/I

(r))a = (0). �

Lemma 3.5. Let r > 2 and r + 1 ≤ j ≤ 2r − 2. The following conditions are equivalent.

(1) [H1m(S/I
(r))]j = (0).

(2) Any pair of disjoint edges of∆ is contained in a cycle of length 4.
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Proof. (1)⇒ (2): We assume the contrary of (2) and take a pair of disjoint edges, say 12, 34 ∈ ∆, which is not contained in
a cycle of length 4. Besides, we may assume 13, 14 6∈ ∆. Let

a =
{
(r − 1)e1 + j−r+2

2 e3 + j−r
2 e4 if j− r is even,

(r − 1)e1 + j−r+1
2 e3 + j−r+1

2 e4 if j− r is odd.

Then one can check that ∆a(I(r)) = Star∆(1) ∪ {3, 4}, since 1 ≤ j − r ≤ r − 2. Hence ∆a(I(r)) is not connected, which
contradicts (1).
(2)⇒ (1): If [H1m(S/I

(r))]j 6= (0) then there exists a ∈ Nn such that |a| = j and ∆a(I(r)) is not connected. We may assume
that two edges 12, 34 ∈ ∆a(I(r)) belong to different components. From the assumption of (2), we may assume 13, 24 ∈ ∆.
Then

r + r ≤ σ a
13 + σ

a
24 = σ

a
12 + σ

a
34 < r + r,

which is a contradiction. �

From the above lemmas, we can obtain the characterization of the Cohen–Macaulayness of S/I(r) in terms of∆ given by
the first author and N.V. Trung.

Corollary 3.6 ([3, Theorems 2.3 and 2.4]). Let I be the Stanley–Reisner ideal of a pure simplicial complex ∆ of dimension 1. Let
r > 0 be an integer. Then the following statements hold true.

(1) S/I(2) is Cohen–Macaulay if and only if diam(∆) ≤ 2.
(2) Let r > 2. Then, S/I(r) is Cohen–Macaulay if and only if any pair of disjoint edges of∆ is contained in a cycle of length 4.

Now, we come to state the main result of this paper.

Theorem 3.7. The following statements hold true.

(1) S/I(2) is Buchsbaum if and only if∆ is connected.
(2) S/I(3) is Buchsbaum if and only if diam(∆) ≤ 2.
(3) Let r > 3. S/I(r) is Cohen–Macaulay if and only if S/I(r) is Buchsbaum.

Proof. (1) By Theorem 3.1(6), one can check that∆ = ∆0(I(2)) = ∆e1(I
(2)). Thus, by Lemma 2.3, we have the isomorphism

H1m(S/I
(2))0

x1
−→ H1m(S/I

(2))e1 .

If∆ is not connected, then H1m(S/I
(2))0 6= (0). This implies that m · H1m(S/I

(2)) 6= (0). Hence S/I(2) is not Buchsbaum.
Conversely, we suppose that∆ is connected. Then by Lemma 3.2,

H1m(S/I
(2)) = [H1m(S/I

(2))]2.

Hence, m · H1m(S/I
(2)) = (0), which implies that S/I(2) is Buchsbaum (see [4, I. Corollary 3.6]).

(2) Suppose that diam(∆) ≥ 3. We may assume that {1}, {2} ∈ ∆ and dist(1, 2) ≥ 3. Let a = e1 + 2e2. Then, one
can check that ∆a(I(3)) = Star∆(1) ∪ Star∆(2), by Theorem 3.1(6). Hence, it follows that as Star∆(1) ∪ Star∆(2) is not
connected since dist(1, 2) ≥ 3, then so is∆a(I(3)) andwe haveH1m(S/I

(3))a 6= 0. By Theorem 3.1(6) again, one can check that
∆a(I(3)) = ∆a+e1(I

(3)). Hence H1m(S/I
(3))a

x1
−→ H1m(S/I

(3))a+e1 is an isomorphism, which implies that m · H
1
m(S/I

(2)) 6= (0)
and S/I(2) is not Buchsbaum.
Conversely, we assume that diam(∆) ≤ 2. Then H1m(S/I

(3)) = [H1m(S/I
(3))]4 by Lemmas 3.2 and 3.4. Hence we have

m · H1m(S/I
(3)) = (0) and S/I(3) is Buchsbaum.

(3) Let r > 3 and assume that S/I(r) is not Cohen–Macaulay. Wemay assume that 12, 34 ∈ ∆ are not contained in any cycle
of length 4. Without loss of generality, we may assume that 13, 14 6∈ ∆. Let a = (r − 1)e1 + e3 + e4. Then one can check
that∆a(I(r)) = Star∆(1)∪ {34} = ∆a+e3(I

(r)) by Theorem 3.1(6). Hence H1m(S/I
(r))a

x3
−→ H1m(S/I

(r))a+e3 is an isomorphism.
This implies that S/I(r) is not Buchsbaum. �

Since the module H1m(S/I
(r)) is of finite length, there exists a smallest non-negative integer k(r) such that

mk(r)H1m(S/I
(r)) = (0). We will compute k(r)when∆ is connected. In fact, if∆ is connected then

k(r) = diam(H1m(S/I
(r))).

Here, diam(M), the diameter of Z-graded moduleM of finite length, is the integer

diam(M) = max{n|Mn 6= 0} −min{n|Mn 6= 0} + 1

whenM 6= (0) and diam(M) = 0 whenM = (0). It is clear that k(r) ≤ diam(H1m(S/I
(r))).
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Theorem 3.8. Let r > 1 be an integer. Assume∆ is connected and S/I(r) is not Cohen–Macaulay. Then

k(r) = diam(H1m(S/I
(r))) =

{
r − 1 if diam(∆) > 2
r − 2 if diam(∆) ≤ 2.

Proof. By our assumption, using Lemmas 3.2, 3.4 and 3.5, we have

t = diam(H1m(S/I
(r))) =

{
r − 1 if diam(∆) > 2
r − 2 if diam(∆) ≤ 2.

We need only check that mt−1H1m(S/I
(r)) 6= (0).

Case 1: diam(∆) > 2. It is clear if r = 2 by Theorem 3.7(1). Assume r ≥ 3. Since diam(∆) > 2, there exists 1 ≤ i < j ≤ n
such that dist(i, j) ≥ 3. Hence Star∆(i) ∪ Star∆(j) is not connected. Put

a = (r − 1)ei + ej and b = (r − 2)ej.

Then one can check that

∆a(I(r)) = ∆a+b(I(r)) = Star∆(i) ∪ Star∆(j),

by Theorem 3.1(6). Hence

0 6= H1m(S/I
(r))a

xb
−→ H1m(S/I

(r))a+b

is isomorphic, which implies that mr−2H1m(S/I
(2)) 6= (0). Therefore k(r) = t .

Case 2: diam(∆) ≤ 2. Since S/I(r) is not Cohen–Macaulay and Corollary 3.6(2), we have r ≥ 3 and there exists a pair of
disjoint edges of∆, say 12, 34,which is not contained in any cycle of length 4. Assume that 13, 14 /∈ ∆. Using Theorem3.7(2),
we only check the assertion when r ≥ 4. Put

a = (r − 1)e1 + e3 + e4 and b = (r − 3)e3.

Then one can check that

∆a(I(r)) = ∆a+b(I(r)) = Star∆(1) ∪ {34},

which is not connected, by Theorem 3.1(6). Hence

0 6= H1m(S/I
(r))a

xb
−→ H1m(S/I

(r))a+b

is isomorphic, which implies that mr−3H1m(S/I
(2)) 6= (0). The assertion is completely proved. �
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