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Abstract This paper introduces Particle Swarm Without Velocity equation optimization algorithm

(PSWV) that significantly reduces the number of iterations required to reach good solutions for

optimization problems. PSWV algorithm uses a set of particles as in particle swarm optimization

algorithm but a different mechanism for finding the next position for each particle is used in order

to reach a good solution in a minimum number of iterations. In PSWV algorithm, the new position

of each particle is determined directly from the result of linear combination between its own best

position and the swarm best position without using velocity equation. The results of PSWV algo-

rithm and the results of different variations of particle swarm optimizer are experimentally com-

pared. The performance of PSWV algorithm and the solution quality prove that PSWV is highly

competitive and can be considered as a viable alternative to solve optimization problems.
� 2011 Faculty of Computers and Information, Cairo University.
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1. Introduction

Particle Swarm Optimization (PSO) is a new evolutionary com-
putation technique motivated from the simulation of social

behavior and originally designed and developed by Eberhart
ters and Information, Cairo
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Faculty of Computers and

lsevier
and Kennedy [1–3]. The population in the PSO is called a
swarm and each individual is called a particle [4]. It is inspired

by the behavior of bird flocking and fish schooling. A large
number of birds or fish flock synchronously, change direction
suddenly, and scatter and regroup together. Each particle ben-

efits from the experience of its own and that of the other mem-
bers of the swarm during the search for food.

PSO algorithm has a number of desirable properties, includ-

ing simplicity of implementation, scalability in dimension, and
good empirical performance. So, it is an attractive choice for
solving nonlinear programming problems. PSO algorithm had
been applied to solve capacitor placement problem [5], short-

term load forecasting [6], soft-sensor [7], to estimate the voltage
stability of the electric power distribution systems [8,9] to direct
the orbits of discrete chaotic dynamical systems towards desired

target region [10] and to solve the permutation flowshop
sequencing problem [11].
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PSO has been successfully used as an alternative to other

evolutionary algorithms in the optimization of D-dimen-
sional real functions. Particles move in a coordinated way
through the D-dimensional search space towards the opti-
mum function. Their movement is influenced not only by

each particle’s own previous experience, but also by a social
compulsion to move towards the best position found by its
neighbors. To implement these behaviors, each particle is de-

fined by its position and velocity in the search space. In each
iteration, changes resulting from both influences in the par-
ticle’s trajectory are made to its velocity. The particle’s posi-

tion is then updated accordingly to the calculated velocity.
PSO, its main variants and the structural model behind it
are extensively discussed in [12]. Some work is done that al-

ters basic particle motion with some success, such as by
El_Sherbiny [13,14], Li-Yong Wan and Wei Li, [15], Hui
Wang et al. [16], Jianhua Liu et al. [17], and Yi Jiang and
Qingling Yue [18] . But, the possibility for improvement in

this area is still open.
This paper aims to introduce a Particle Swarm Without

Velocity equation optimization algorithm (PSWV) and to dis-

cuss the results of experimentally comparing the performance
of its versions with the standard particle swarm optimizer
(PSO) [19,13,14].

The rest of the paper is organized as follows: in Section 2,
the PSO algorithm is described. In Sections 3 and 4 PSWV
algorithm and its convergence study are exposed. Test func-
tions and test conditions are presented in Section 5. In Section

6, optimization test experiments are illustrated. In Section 7,
experimental results are reported, and are discussed in Section
8. Finally, conclusion is reported in Section 9.

2. Particle swarm optimization

Let us assume an n-dimensional search space, S � Rn and de-
notes the size of the swarm population. Each particle represents
a candidate solution and has the following attributes: (a) its

current position in the search space xi = (xi1,xi2, . . .,xin) 2 S,
(b) its current own best position pi = (pi1,pi2, . . .,pin), (c) the
global best position, pg = (pg1,pg2, . . .,pgn), i.e., the position

of the best particle that gives the best fitness in the entire pop-
ulation; and (d) its current velocity i = (i1, i2, . . ., in), which rep-
resents its position change. For each particle in the swarm in the
next iteration step, the velocity is updated using (1), hence the

position is updated using Eq. (2).

vidðtþ 1Þ ¼ xvidðtÞ þ b1r1ðpidðtÞ � xidðtÞÞ
þ b2r2ðpidðtÞ � xidðtÞÞ ð1Þ

xidðtþ 1Þ ¼ xidðtÞ þ vidðtþ 1Þ ð2Þ

The original PSO formulas developed by Kennedy and Eber-
hart [3] were combined by Shi and Eberhart [23] with the intro-

duction of an inertia parameter, x, that was shown empirically
to improve the overall performance of PSO. Clerc and Ken-
nedy provided a theoretical analysis of particle trajectories to

ensure convergence to a stable point [12],

v ¼ b1r1PiðtÞ þ b2r2Pg

b1r1 þ b2r2

The main result of this work is the introduction of the constric-
tion coefficient and different classes of constriction models.

The objective of this theoretically derived constriction coeffi-
cient is to prevent the velocity to grow out of bounds, with

the advantage that, theoretically, velocity clamping is no long-
er required. As a result of this study, the velocity Eq. (1)
changes to Eq. (3).

vidðtþ1Þ¼ vðvidðtÞþb1r1ðpidðtÞ�xidðtÞÞþb2r2ðpidðtÞ�xidðtÞÞÞ
ð3Þ

Several interesting variations of the PSO algorithm have re-

cently been proposed by researchers in [13–18]. Many of
these PSO improvements are essentially extrinsic to the par-
ticle dynamics at the heart of the PSO algorithm. One of
these variations is the combined particle swarm optimization

algorithm (CPSO) that presented by El_Sherbiny [13]. In the
CPSO algorithm the particle updates its velocity according
to Eq. (4) instead of Eq. (2), where (Xg) is the global best

position, (X2g) is the previous global best position and R1,
R2 2 U[0,1].

ViðtÞ¼ aViðt�1Þþb1r1ðXpi �XiðtÞÞþb1r1 ðR1XgþR2X2gÞ�XiðtÞ
� �

ð4Þ
Another variation of PSO is the Modified Particle Swarm

Optimizer (MPSO) [14]. In the MPSO algorithm, the particle
updates its velocity according to Eq. (5) instead of Eq. (4)
where constriction coefficient v is presented.

ViðtÞ¼ vðViðt�1Þþb1r1ðXpi �XiðtÞÞþb2r2ððR1XgþR2X2gÞ�XiðtÞÞÞ
ð5Þ
3. PSWV algorithm

The Particle Swarm without velocity (PSWV) equation optimi-
zation Algorithm is built based on the random linear combina-

tion between the local best position and the global best
position, which is represented by Eq. (6). The particles fly be-
tween its own previous best position and the global best posi-

tion. It means that the new position of each particle is
allocated in the area between its own current local best and
the current global best.

xiðtþ 1Þ ¼ c1r1piðtÞ þ c2r2pgðtÞ ð6Þ

where r1 and r2 are defined as the combination weights, r1,

r2 2 U[0,1], and b1, b2 2 [0,1] are defined as the own and the
social attraction coefficients. pi(t) is the particle best position
and pg(t) is the global best position at generation t.

In the PSWV algorithm, we do not need the velocity
equation, which implies that Eqs. (1) and (2) be replaced with
Eq. (6). The main steps of PSWV algorithm is illustrated in

Fig. 1.
4. Convergence analysis of PSWV algorithm

For simplicity Eq. (6) can be rewritten as follows:

xiðtþ 1Þ ¼ k1PiðtÞ þ k2Pg ð7Þ

where c1r1 = k1 and c2r2 = k2. Consider that k1 + k2 = 1, Eq.
(7) can be translated into Eq. (8)

xiðtþ 1Þ ¼ kPiðtÞ þ ð1� kÞPg ð8Þ



Figure 1 Main steps of PSWV algorithm.

Particle swarm inspired optimization algorithm without velocity equation 3
For simplicity we can consider that Pi(t) = xi(t). So, in the ini-

tial equation conditions Pi(0) = xi(0) that means that at the
start iteration Eq. (8) would take the following form (Eq. (9)).

xið1Þ ¼ kxið0Þ þ ð1� kÞPg ð9Þ

at t = 1 Eq. (9) will be

xið2Þ ¼ kxið1Þ þ ð1� kÞPg ð10Þ

Substituting xi(1) from (8) and Eq. (10) yield Eq. (11) as
follows:

xið2Þ ¼ k½kxið0Þ þ ð1� kÞPg� þ ð1� kÞPg

xið2Þ ¼ k2xið0Þ þ kð1� kÞPg þ ð1� kÞPg

xið2Þ ¼ k2xið0Þ þ ðkþ 1Þð1� kÞPg ð11Þ

Also, at t= 2 Eq. (8) will be

xið3Þ ¼ k3xið0Þ þ ðk2 þ kþ 1Þð1� kÞPg

So, recurrence relation can be obtained as follows:

xiðtþ 1Þ ¼ ktxið0Þ þ ðkt�1 þ kt�2 þ . . .þ kþ 1Þð1� kÞPgxiðtþ 1Þ

¼ ktxið0Þ þ
1� ktð Þ
ð1� kÞ ð1� kÞPg

xiðtþ 1Þ ¼ ktxið0Þ þ ð1� ktÞPg ð12Þ
where 0 6 k 6 1
Table 1 Benchmark functions.

Function

Sphere F0ð~xÞ ¼
PD

i¼1x
2
i

Rosenbrock F1ð~xÞ ¼
PD�1

i¼1 ð100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2Þ

Rastrigin F2ð~xÞ ¼
PD

i¼1ðx2i � 10 cosð2
Q

xiÞ þ 10Þ
Griewank F3ð~xÞ ¼ 1

4000

PD
i¼1x

2
i �

QD
i¼1 cosðxiffiip Þ þ 1

Schaffer’s F6ð~xÞ ¼ 0:5� ðsin
ffiffiffiffiffiffiffiffiffiffi
x2
1
þx2

2

p
Þ2�0:5

ð1þ0:001ðx2
1
þx2

2
ÞÞ2

Optimal value of all functions is 0.
We will calculate the limits of xi(t+ 1) at t tend to infinity

as follows:

lim
t!þ1

xiðtþ 1Þ ¼ lim
t!þ1

ðktxið0Þ þ ð1� ktÞPgÞ

lim
t!þ1

xiðtþ 1Þ ¼ lim
t!þ1

ktxið0Þ þ lim
t!þ1

ð1� ktÞPg

lim
t!þ1

xiðtþ 1Þ ¼ lim
t!þ1

ktxið0Þ þ lim
t!þ1

ð�ktPgÞ þ lim
t!þ1

Pg

lim
t!þ1

xiðtþ 1Þ ¼ Pg ð13Þ

From Eq. (13) we can conclude that xi(t+ 1) will converge to
Pg.

5. Test functions and test conditions

In order to know how competitive the PSWV algorithm is, we
decided to compare its two versions (PSWV1 and PSWV2)
against many versions of particle swarm algorithms as follows:

Two versions of PSO algorithm (PSO1 and PSO2) that is rep-
resented in [19], two versions of Modified PSO algorithm
(MPSO1 and MPSO2) that is represented in [13], and two ver-
sions of Combined PSO algorithm (CPSO1 and CPSO2) that is

represented in [14]. Five benchmarking functions were selected
to examine the performance of such Algorithms. The consid-
ered benchmark functions were used in [20,21,19]. The bench-

mark functions and its dimensions are illustrated in Table 1,
while, its admissible range of the variable (x), the goal values,
and the optimal solution are summarized in Table 2.

Two parameter sets (Eqs. (1)–(3)) v = a and b= b1 = b2
were selected to be used in the test based on the suggestions
in other literature where these values have been found, empir-
ically, to provide good performance [11,12,21], and used in

testing the PSO by Trelea [19].
Parameter set 1 (a = 0.6 and b = 1.7) was selected by the

author in the algorithm convergence domain after a large num-

ber of simulation experiments [21]. c1 and c2 in Eq. (3) are set
to be 1/1.7 for PSWV1 algorithm.

Parameter set 2 (a= 0.729 and b= 1.494) was recom-

mended by Clerc [22] and also tested in [21] giving the best re-
sults published so far known to the author. c1 and c2 in Eq. (4)
are set to be 1/1.494 for PSWV2 algorithm.

A more detailed study of convergence characteristics for
different values of these parameters exists in [19].

6. Optimization test experiments

In order to test the performance of the PSWV and the other
algorithms [13,14,19] two sets of experiments were used with
Dim Range [xmin,xmax] Goal for F

30 [�100,100]D 0.01

30 [�30,30]D 100

30 [�5.12,5.12]D 100

30 [�600,600]D 0.1

2 [�100,100]2 10�5



Table 2 Result of test functions F0, F1, and F2.

No. of Par. N Algorithm

version

Sphere function F0 Rosenbrock function F1 Rastrigin function F2

Average

number of

iterations

Success

rate (%)

Ex. No.

of Fn.

evaluation

Average

number of

iterations

Success

rate (%)

Ex. No.

of Fn.

evaluation

Average

number of

iterations

Success

rate (%)

Ex. No. of

Fn. evaluation

15 PSWV1 14 1 213 9 1 132 8 1 113

PSWV2 18 1 266 11 1 164 9 1 137

MPSO1 56 1 844 34 1 517 23 1 344

MPSO2 94 1 1416 59 1 888 38 1 576

CPSO1 125 1 1874 88 1 1318 57 1 857

CPSO2 168 1 2516 112 1 1673 81 1 1217

PSO1 769 0.4 28,838 531 0.50 15,930 172 0.35 7371

PSO2 764 1 11,460 1430 1 21,450 299 0.80 5606

30 PSWV1 14 1 419 9 1 266 7 1 203

PSWV2 17 1 515 11 1 321 9 1 260

MPSO1 53 1 1575 32 1 953 22 1 667

MPSO2 88 1 2650 55 1 1645 37 1 1111

CPSO1 131 1 3917 84 1 2520 48 1 1451

CPSO2 180 1 5396 105 1 3149 68 1 2054

PSO1 344 1 10,320 614 1 18,420 140 0.90 4667

PSO2 395 1 11,850 900 1 27,000 182 0.95 5747

60 PSWV1 14 1 819 8 1 504 7 1 420

PSWV2 17 1 999 10 1 624 9 1 513

MPSO1 49 1 2961 30 1 1789 21 1 1271

MPSO2 85 1 5080 53 1 3145 36 1 2180

CPSO1 118 1 7083 77 1 4623 60 1 3603

CPSO2 157 1 9423 102 1 6138 69 1 4152

PSO1 252 1 15,120 337 1 20,220 122 0.95 7705

PSO2 314 1 18,840 611 1 36,660 166 1 9960
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the above mentioned test conditions and the two parameter
sets.

In the first set of experiments, the maximum iteration num-

ber was fixed to 2000. Each optimization experiment was run
20 times with random initial values of x and in the range
[xmin,xmax] indicated in Table 1. Population sizes of N = 15,

30 and 60 particles were tested. Average number, success rate
of required iterations, and expected number of function evalu-
ations, for each test function are calculated and presented in

Tables 3–7.
In the second set of experiments, each optimization experi-

ment was run 20 times for 1000 iterations with population sizes
of N = 30 particles. Averages of the best values in each itera-

tion were calculated and plotted in Figs. 2–6.

7. The experimental results

This section compares the various algorithms to determine
their relative rankings using both robustness and convergence

speed as criteria. A ‘‘robust’’ algorithm is one that manages to
reach the goal consistently (during all runs) in the performed
experiments [19]. Tables 3–7 present the following informa-

tion: Average number of iterations required to reach a func-
tion value below the goal, ‘‘success rate’’, and expected
number of function evaluations. The ‘‘success rate’’ column

lists the number of runs (out of 20) that managed to attain a
function value below the goal in less than 2000 iterations, while
the ‘‘Ex. # of Fn. Evaluation’’ column presents the expected
number of function evaluations needed on average to reach
the goal, calculated only for the succeeded runs using the fol-
lowing formula.

Ex: # of Fn: evaluation ¼ ðaverage number of iterationsÞ
� ðnumber of particles in the swarmÞ
=ðsuccess rateÞ

Tables 3 and 4 show that while SPOS1 algorithm with 15 par-

ticles failed to reach the goal during some runs for solving the
Sphere (F0) and Rosenbrock (F1) functions, the other algo-
rithms succeeded to reach the goal during all runs. This means

the number of particles affects the convergence of the standard
PSO algorithm for such type of problems while such effect is
not with the PSWV algorithm. PSWV1 and PSWV1 algo-

rithms succeeded to reach the goal in a few numbers of itera-
tions than the remaining algorithms.

Also, as illustrated in Fig. 2, the two versions of PSWV
algorithm (PSWV1 and PSWV2) are the candidates to reach

the optimal solution in a few numbers of iterations than the
remaining algorithms. This means the convergence speed of
PSWV is faster than the other algorithms and it is more robust

than the others.
While all the algorithms have no difficulties in reaching the

goal of Rosenbrock function (F1), the PSO1 algorithm with 15

particles had difficulties for solving such function. Also, the ex-
pected number of function evaluation needed for the two ver-
sions of PSWV algorithm is less than the expected number of

function evaluation needed for the other algorithms. This
means the speed of PSWV algorithm is faster than the other



Table 3 Result of test functions F3 and F6.

No. of

Par. N

Algorithm

version

Griewank function F3 Schaffer’s function F6

Average number

of iterations

Success

rate (%)

Ex. No. of fn.

evaluation

Average number

of iterations

Success

rate (%)

Ex. No. of fn.

evaluation

15 PSWV1 13 1 194 487 0.95 7696

PSWV2 19 1 278 583 0.85 10,285

MPSO1 53 1 790 148 1 2216

MPSO2 89 1 1332 142 1 2132

CPSO1 132 1 1982 198 1 2971

CPSO2 215 1 3218 232 1 3476

PSO1 689 0.35 29,529 583 0.45 19,433

PSO2 755 0.60 18,875 1203 0.40 45,113

30 PSWV1 13 1 384 263 1 7877

PSWV2 19 1 582 400 0.95 12,620

MPSO1 47 1 1417 93 1 2791

MPSO2 83 1 2479 128 1 3826

CPSO1 131 1 3929 122 1 3668

CPSO2 168 1 5046 148 1 4434

PSO1 313 0.90 10,433 161 0.75 6440

PSO2 365 0.90 12,167 350 0.60 17,500

60 PSWV1 12 1 744 105 1 6291

PSWV2 17 1 1044 221 0.95 13,981

MPSO1 45 1 2700 60 1 3616

MPSO2 76 1 4554 83 1 4954

CPSO1 113 1 6780 93 1 5559

CPSO2 152 1 8392 112 1 6708

PSO1 226 0.95 14,274 169 0.90 11,267

PSO2 287 1 17,220 319 0.95 20,147

Table 4 The result of test function F1.

No. of Par. N Algorithm

version

Average number

of iterations

Success

rate

Ex. No. of Fn.

evaluation

15 PSWV1 9 1 132

PSWV2 11 1 164

MPSO1 34 1 517

MPSO2 59 1 888

CPSO1 88 1 1318

CPSO2 112 1 1673

PSO1 531 0.50 15,930

PSO2 1430 1 21,450

30 PSWV1 9 1 266

PSWV2 11 1 321

MPSO1 32 1 953

MPSO2 55 1 1645

CPSO1 84 1 2520

CPSO2 105 1 3149

PSO1 614 1 18,420

PSO2 900 1 27,000

6 PSWV1 8 1 504

PSWV2 10 1 624

MPSO1 30 1 1789

MPSO2 53 1 3145

CPSO1 77 1 4623

CPSO2 102 1 6138

PSO1 337 1 20,220

PSO2 611 1 36,660

Table 5 The result of test function F2.

No. of Par. N Algorithm

version

Average number

of iterations

Success

rate

Ex. No. of

Fn. evaluation

15 PSWV1 8 1 113

PSWV2 9 1 137

MPSO1 23 1 344

MPSO2 38 1 576

CPSO1 57 1 857

CPSO2 81 1 1217

PSO1 172 0.35 7371

PSO2 299 0.80 5606

30 PSWV1 7 1 203

PSWV2 9 1 260

MPSO1 22 1 667

MPSO2 37 1 1111

CPSO1 48 1 1451

CPSO2 68 1 2054

PSO1 140 0.90 4667

PSO2 182 0.95 5747

60 PSWV1 7 1 420

PSWV2 9 1 513

MPSO1 21 1 1271

MPSO2 36 1 2180

CPSO1 60 1 3603

CPSO2 69 1 4152

PSO1 122 0.95 7705

PSO2 166 1 9960

Particle swarm inspired optimization algorithm without velocity equation 5



Table 6 The result of test function F3.

# of Par. N Algorithm

version

Average number

of iterations

Success

rate

Ex. # of

Fn. evaluation

15 PSWV1 13 1 194

PSWV2 19 1 278

MPSO1 53 1 790

MPSO2 89 1 1332

CPSO1 132 1 1982

CPSO2 215 1 3218

PSO1 689 0.35 29,529

PSO2 755 0.60 18,875

30 PSWV1 13 1 384

PSWV2 19 1 582

MPSO1 47 1 1417

MPSO2 83 1 2479

CPSO1 131 1 3929

CPSO2 168 1 5046

PSO1 313 0.90 10,433

PSO2 365 0.90 12,167

60 PSWV1 12 1 744

PSWV2 17 1 1044

MPSO1 45 1 2700

MPSO2 76 1 4554

CPSO1 113 1 6780

CPSO2 152 1 8392

PSO1 226 0.95 14,274

PSO2 287 1 17,220

Table 7 The result of test function F6.

# of Par. N Algorithm

version

Average number

of iterations

Success

rate

Ex. # of

Fn. evaluation

15 PSWV1 487 0.95 7696

PSWV2 583 0.85 10,285

MPSO1 148 1 2216

MPSO2 142 1 2132

CPSO1 198 1 2971

CPSO2 232 1 3476

PSO1 583 0.45 19,433

PSO2 1203 0.40 45,113

30 PSWV1 263 1 7877

PSWV2 400 0.95 12,620

MPSO1 93 1 2791

MPSO2 128 1 3826

CPSO1 122 1 3668

CPSO2 148 1 4434

PSO1 161 0.75 6440

PSO2 350 0.60 17,500

60 PSWV1 105 1 6291

PSWV2 221 0.95 13,981

MPSO1 60 1 3616

MPSO2 83 1 4954

CPSO1 93 1 5559

CPSO2 112 1 6708

PSO1 169 0.90 11,267

PSO2 319 0.95 20,147
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Figure 4 Average best fitness curves of functions F0, F1, and F2.
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algorithms tested in this paper in searching for the solution of
such kind of problems (see Table 4).

Also, Fig. 3 illustrates that the PSWV1, PSWV2 reached
values below the function goal in different numbers of itera-
tions and below that value reached by the remaining algo-
rithms. This means that solution quality of PSWV algorithm

is better than that of other algorithms for such kind of
problems.

Table 5 shows that the two versions of PSWV algorithm

perform admirably on the Rastrigin function (F2), while the
two versions of SPO algorithm are less robust on the same
function for such type of problems where they had some diffi-
culties in reaching the goal in some runs.
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Table 5 and Fig. 4 illustrate that the PSWV1 and PSWV1

algorithms are doing very well on such problem type, deliver-
ing the best overall performance for the Rastrigin function
(F2), where they reached the goal in approximately less than
10 iterations and they are candidates to reach the optimal solu-

tion in approximately less than 100 iterations. While all ver-
sions of CPSO and MPSO algorithms are candidates to
reach it in approximately less than 200, 400 iterations PSO1

and PSO2 are stacked at a solution value far from the optimal
solution by 10e + 02. This means that the PSWV algorithm is
superior to all algorithms as shown in Fig. 4.

Griewank’s function (F3) proves to be hard to solve with
the two versions of PSO [19] algorithm where it had some dif-
ficulties in reaching its goal. While PSO had some difficulties in

reaching its goal the other algorithms consistently reached the
goal in all runs as can be seen in Table 6.

Fig. 5 illustrates that the versions of PSWV, MPSO, and
CPSO algorithms are candidates to reach the optimal solution

of Griewank function (F3) while both versions of PSO did not
reach the goal during some runs.

Concerning the Schaffer’s function (F6), Table 6 illustrates

that while the two versions of PSWV, MPSO, and CPSO algo-
rithms reached the goal in all runs, the two versions of stan-
dard PSO algorithm have some difficulties in reaching the goal.

Fig. 6 illustrates that: using the average of 30 runs for 1000
iterations of each algorithm, the versions of PSWV algorithm
reached a solution value (10�3) below the goal in different
number of iterations and be candidates to reach the goal while
 F3
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Figure 5 Average best fitness curves of functions F3 and F6.

 F6

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 100 200 300 400 500 600 700 800 900 1000
Number of Iterations 

F
it

ne
ss

PSWV1 PSWV2

MPSO1 MPSO1

CPSO2 CPSO1

PSO1 PSO2

Figure 6 Average best fitness curves for Schaffer’s function F6.
the two versions of SPO algorithm are stacked at value 10�2

greater than the goal. PSWV1 reached a value below the goal
in 13 iterations on average while the two versions of PSO
needed more than 200 iterations and the four versions of
MPSO and CPSO algorithms come in between them.
8. Discussion

Overall, as far as robustness is concerned, the PSWV algorithm
appears to be the winner, since its two versions (PSWV1 and
PSWV2) achieved perfect scores in most test cases as repre-

sented in boldface (see Tables 3–7). As a result, the PSO [19]
must be executed several times to ensure good results, whereas
one run of PSWV and MPSO [13] are usually sufficient.

Note that, there is a little difference between the perfor-
mance of the algorithms with parameter set1 and with param-
eter set 2 where all the algorithms’ convergence under study

with parameter set1 are faster than algorithms’ conversance
with parameter set 2 (see Tables 3–7). Regarding convergence
speed, PSWV1 is always the fastest followed by PSWV2,
whereas the PSO1 and PSO2 are always the slowest. Especially

on the all functions, PSWV1 has a very fast convergence (2–5
times faster than PSO). This may be of practical relevance for
some real-world problems where the evaluation is computa-

tionally expensive and the search space is relatively simple
and of low dimensionality. Overall, PSWV is clearly the best
performing algorithms under study. It finds the lowest fitness

value for most of the problems, see Figs. 2–6.
Looking at the number of function evaluations, the PSWV

was in the lead, followed by the MPSO [13] algorithm and PSO
[19] algorithm comes in the last as shown in Tables 3–7.

Considering the above mentioned point that the two ver-
sions of PSWV have no difficulty in reaching the goal and
all its solutions are below their corresponding goals more than

other algorithms under study can conclude that PSWV is more
superior and robust. So, we can consider it as the best alterna-
tive algorithm for solving optimization problems.
9. Conclusion

This paper has proposed a new particle swarm- inspired opti-
mization algorithm (PSWV). In this algorithm the new posi-
tion of each particle is calculating directly from the

combination of its own best position and the global best posi-
tion. The implementation of this idea is simple, based on stor-
ing the previous positions. The PSWV algorithm outperforms
all the algorithms under study on many benchmark functions,

being less susceptible to premature convergence, and less likely
to be stuck in local optima.

In this study, the PSWV has shown its worth on tested

problems, and it outperformed MPSO [13], CPSO [14], and
PSO [19] algorithms on all the numerical benchmark problems
as well. Among the tested algorithms, the PSWV can rightfully

be regarded as an excellent first choice, when faced with a new
optimization problem to solve.

To conclude, the performance of PSWV is outstanding in

comparison to MPSO [13], CPSO [14], and PSO [19] algo-
rithms. It is simple, robust, converges fast, and finds the opti-
mum in almost every run. In addition, it has few parameters to
set, and the same settings can be used for many different

problems.



8 M.M. El-Sherbiny
Future work includes further experimentation with param-

eters of PSWV, testing the new algorithm on other benchmark
problems, and evaluating its performance relative to evolution-
ary algorithms.
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