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SUMMARY

We have used a new approach to study the neural
decoding function that converts the population
response in extrastriate area MT into estimates of
target motion to drive smooth pursuit eyemovement.
Experiments reveal significant trial-by-trial correla-
tions between the responses of MT neurons and
the initiation of pursuit. The preponderance of signif-
icant correlations and the relatively low reduction in
noise betweenMT and the behavioral output support
the hypothesis of a sensory origin for at least some of
the trial-by-trial variation in pursuit initiation. The
finding of mainly positive MT-pursuit correlations,
whether the target speed is faster or slower than
the neuron’s preferred speed, places strong con-
straints on the neural decoding computation. We
propose that decoding is based on normalizing a
weighted population vector of opponent motion
responses; normalization comes from neurons un-
correlated with those used to compute the weighted
population vector.

INTRODUCTION

Sensory-motor behavior requires a transformation between two

very different representations of the desired movement. The

sensory cortex contains ‘‘topographic’’ organizations of stim-

ulus parameters such as the orientation of a visual stimulus

or the frequency of a sound. Thus, different stimuli cause

different groups of neurons to be highly active. For example,

smooth motion of a small object causes responses in a popu-

lation of neurons in extrastriate area MT; the largest responses

occur in neurons that have receptive fields in the stimulated

location and that prefer the speed and direction of the object’s

motion. Target motions at different speeds or directions cause

peak responses in different MT neurons. MT provides the sen-

sory drive for the system we study, smooth pursuit eye move-

ments (Newsome et al., 1985; Groh et al., 1997; Born et al.,

2000).
In the motor pathways for pursuit, the representation of the

desired eyemotion is quite different from that in MT. In cerebellar

neurons that are two synapses removed from the extraocular

motoneurons, eye direction is determined by the relative firing

of neurons that prefer horizontal versus vertical eye motion;

eye speed is determined by the absolute firing rate of all neurons

(Krauzlis and Lisberger, 1996). Thus, one of the major challenges

faced by the pursuit circuit, and all sensory-motor behaviors, is

to ‘‘read-out’’ or ‘‘decode’’ the sensory population response in

a way that transforms sensory representations into the coordi-

nate system of the muscles. The readout is continuous in the

sense that it attempts to match eye velocity to whatever target

velocity is present, rather than making a forced-choice decision

among a small number of speeds and/or directions (Lisberger

and Westbrook, 1985; Osborne et al., 2005).

The initiation of pursuit uses the population response in area

MT to estimate target velocity: T
.

= fðrMT Þ. The estimate of target

velocity then is converted to commands for pursuit, possibly with

some added noise: E
.

= T
.

+ x. Our previous work has led to the

hypothesis of a sensory origin for most of the variation in the initi-

ation of pursuit (Osborne et al., 2005, 2007; Medina and

Lisberger, 2007), with little or no noise,x, added after sensory

estimation. Sensory noise exists because correlations between

the responses of individual MT neurons limit noise reduction by

pooling across the population (Shadlen et al., 1996; Huang and

Lisberger, 2009).

One goal of the present paper was to provide a critical test of

the hypothesis of a sensory origin to motor noise. If the hypoth-

esis is true, then the trial-by-trial variation in responses of individ-

ual MT neurons should be correlated with the variation in the

initiation of pursuit: there should be strong ‘‘MT-pursuit’’ correla-

tions. The hypothesis also predicts that the trial-by-trial variance

of pursuit initiation should be only modestly smaller than the trial-

by-trial variance of the responses of MT neurons, because of the

limits on noise reduction. Our data satisfy both of these predic-

tions, providing strong, direct support for the hypothesis of a

sensory origin for at least some of the variation in pursuit initia-

tion. Our findings in pursuit initiation imply generality for the

suggestion that much of the variation in arm movements

(Churchland et al., 2006) or saccadic eyemovements (van Beers,

2007) arises in the brain, rather than in themotor effectors (Harris

and Wolpert, 1998).
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Figure 1. The Pursuit Task

The schematic on the left shows the three important intervals in stimulus presentation, described in the text. The traces on the right show simultaneous recordings

of smooth eye velocity and rasters indicating spikes in a single MT neuron, plotted as a function of time. Colors indicate the correspondence between spike trains

and eye movements.
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The other goal in the present paper was to constrain the func-

tion f that decodes the population response in MT to estimate

target velocity, T
.

= fðrMT Þ. Given that the responses of MT

neurons show trial-by-trial correlations with the initial eye veloc-

ity of pursuit, the details of the MT-pursuit correlations should

probe the exact mechanisms used by pursuit for population

decoding. We find positive MT-pursuit correlations in almost all

neurons with statistically significant correlations, without regard

for whether the target speed is faster or slower than the neuron’s

preferred speed. Computational analysis shows that this ‘‘struc-

ture’’ of MT-pursuit correlations would result from a specific

version of vector averaging decoding computations. Impor-

tantly, the data contradict the predictions of other popular

decoding computations, including traditional vector averaging

and maximum likelihood estimation.

RESULTS

We recorded responses of 104 neurons in visual area MT of two

monkeys (52 neurons each in monkeys Y and J). The same

population of neurons contributed to a prior paper (Hohl and

Lisberger, 2011) that analyzed the responses of MT neurons to

the small image motions present during the eye movements of

fixation. We now report on a conceptually different issue, namely

the trial-by-trial correlations between the responses of MT

neurons to imposed target motion and the subsequent initiation

of smooth pursuit eye movements.

We used a modified step-ramp pursuit task (Osborne et al.,

2007; Rashbass, 1961) with three distinct epochs of visual stim-

ulation (Figure 1). First, the dots appeared in the receptive field of

the neuron under study and remained stationary for a variable

amount of time (300–800 ms). The delay between dot appear-

ance and dot motion allowed us to isolate the response to target

motion by separating it in time from the transient caused in many

neurons by the onset of a visual stimulus; the variable duration
168 Neuron 79, 167–179, July 10, 2013 ª2013 Elsevier Inc.
prevented the monkey from anticipating the time of onset of

target motion. Next, the dots moved locally across the receptive

field within a stationary virtual aperture for 100 ms to cause the

monkey to initiate pursuit. This approach keeps themoving stim-

ulus positioned on the receptive field of the neuron under study

for the interval of stimulus presentation that drives the responses

we measure. Dot motion within a stationary virtual aperture

causes pursuit initiation that is indistinguishable from that

evoked by the en bloc motion of the dots and the aperture

(Osborne et al., 2007). Lastly, we moved the virtual aperture at

the same speed as the dots for 250 to 700 ms, to require the

monkey to use the pursuit he had initiated to track a moving

target as the basis for delivery of a fluid reward.

Even though our task provided the same compelling visual

motion on each trial and the monkeys performed the behavioral

task diligently, the eye velocity at the initiation of pursuit (see

traces in Figure 1) was somewhat variable from trial-to-trial

(Osborne et al., 2005). As expected, neural responses in area

MTalso varied considerably from trial-to-trial (rasters in Figure 1).

Our analysis leverages the naturally-occurring variation in both

neural and behavioral responses.

MT-Pursuit Correlations
We observed clear trial-by-trial correlations between the firing

rates in MT neurons and eye speed in the initiation of pursuit.

The images in Figure 2 show the averageMT-pursuit correlations

separately for the two populations of neurons recorded in the

two monkeys. Each pixel shows the MT-pursuit correlation

across many trials for the pair of times indicated on the x and y

axes; the full image shows MT-pursuit correlations for all combi-

nations of times in the eye speed and firing rate. Zero on each

axis indicates the time of onset of the motion of the dots within

the stationary aperture.

To obtain MT-pursuit correlations that were uncontaminated

by small eye drifts during fixation (Hohl and Lisberger, 2011),
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Figure 2. MT-Pursuit Correlations

Each pixel shows the trial-by-trial correlation betweenMT firing rate at the time

on the y axis and eye speed at the time on the x axis. Data are averaged across

data for all neurons and all target motions in directions that were within 90

degrees of preferred direction. The dashed and continuous diagonal lines

indicate pixels for firing rates that precede eye velocity by 60 or 0 ms.

(A and C) Correlations calculated on original data.

(B and D) Correlations calculated after removal of temporal autocorrelation

from the initiation of pursuit.
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we used the filtering procedure outlined in the Experimental

Procedures to remove autocorrelations in eye speed that

could contaminate MT-pursuit correlations. In both monkeys,

there was a strong patch of positive correlations both before

(Figures 2A and 2B) and after (Figures 2C and 2D) filtering of

eye velocity. Filtering attenuated the MT-pursuit correlations

somewhat but did not change their pattern. The filtered MT-pur-

suit correlations were similar in monkey J (Figure 2C) and

monkey Y (Figure 2D) and were large and positive for the

correlation of MT responses from 20 to 60 ms after the onset

of target motion with pursuit from 80 to 120 ms after the onset

of target motion. Because the positive MT-pursuit correlations

appeared for times when neural responses precede the eye

movement by 60 ms (oblique dashed line), they are consistent

with a causal influence of MT firing on eye speed. The remainder

of the paper shows MT-pursuit correlations only after removal of

temporal autocorrelations in eye velocity.

We have analyzed MT-pursuit correlations in three 40 ms

intervals using firing rate from 20–140 ms, and the eye velocity

from 80–200ms, after the onset of target motion. These intervals

represent the time when image motion precedes eye motion and

when pursuit is driven in an open-loop manner by the visual

motion present before pursuit begins. In this interval, the image

motion is the same on every trial; MT-pursuit correlations seem

to arise because the fluctuations in MT responses are driving

the fluctuations in eye velocity. Outside of the analysis interval,

we found negative MT-pursuit correlations for time intervals
when the neural response lagged the eye movements (Figure 2,

blue pixels). The timing of the negative correlations is not consis-

tent with a causal effect of firing rate on eye velocity. It suggests,

instead, an effect of eye velocity on MT firing rate. Because

image motion is equal to target motion minus eye motion, trial-

by-trial differences in eye velocity during the initiation of pursuit

will cause differences in image motion across the retina, leading

to a correlated effect on the firing of MT neurons 60 ms later. The

negative MT-pursuit correlations also could arise from temporal

autocorrelation in eye velocity after the initiation of pursuit eye

movements, possibly due to oscillations that can follow the initial

rising phase of eye velocity (Goldreich et al., 1992).

Structure of MT-Pursuit Correlations
We address next the relationship among the stimulus speed and

direction, the tuning parameters of an MT neuron, and the sign

and magnitude of its MT-pursuit correlation. We show in a later

section that this relationship sheds light on the nature of the

decoding computation used to estimate target speed from the

responses of the population of MT neurons.

We computed MT-pursuit correlations for stimulus speeds

and directions at different places on the tuning curves of the

neuron under study, always correlating MT firing with eye

velocity 60 ms later. For each individual neuron, we were able

to study only a few combinations of direction and speed, so

we assembled a full picture of the ‘‘structure’’ of MT-pursuit cor-

relations by combining the results across the full population of

neurons. Overall, we obtained 540 estimates of MT-pursuit

correlations for 104MT neurons, with individual neurons contrib-

uting between 2 and 12 stimulus conditions. In Figure 3, each

symbol shows the results for one stimulus speed and direction

in one neuron.

MT-pursuit correlations were largest and most likely to be

statistically significant (open symbols) when we correlated MT

firing in the interval from 20 to 60 ms after the onset of target

motion with the eye velocity in the interval from 80 to 120ms after

the onset of target motion (Figures 3B and 3F). Significant posi-

tive or negative correlations appeared in 42.44% or 16.79% of

the stimulus conditions. MT-pursuit correlations were more pos-

itive for target directions near the preferred direction of the

neuron under study, and more negative for target directions

nearly opposite to the preferred direction of the neuron under

study (Figure 3B). In contrast to the findings for direction, the

sign of MT-pursuit correlations depended little on the speed of

the stimulus relative to the preferred speed of neurons

(Figure 3F). Most of the statistically significant MT-pursuit corre-

lations were positive; most of the negative MT-pursuit correla-

tions represent data for stimulus motion near the nonpreferred

direction. The magnitude of the significant correlations in

Figure 3F tended to get larger as stimulus speeds increased

up to the preferred speed of the neuron under study.

We found fewer examples of significant MT-pursuit

correlations for eye velocity in the intervals from 120 to 160 ms

(Figures 3C and 3G) or from 160 ms to 200 ms (Figures 3D and

3H) after the onset of stimulus motion, even though we retained

the 60 ms time difference between firing rate and eye velocity.

Fewer than 10% of MT neurons showed significant MT-pursuit

correlations for the interval that preceded the initiation of pursuit,
Neuron 79, 167–179, July 10, 2013 ª2013 Elsevier Inc. 169
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Figure 3. MT-Pursuit Correlations as a Function of the Tuning Properties of MT Neurons

Each symbol shows results for one target motion in one neuron. Open and filled symbols indicate significant or nonsignificant correlations.

(A–D) Correlation coefficients betweenMT firing rates and eye speed plotted as a function of the difference between target direction and preferred direction of the

neuron under study.

(E–H) Correlation coefficients betweenMT firing rates and eye speed plotted as a function of target speed as a percentage of preferred speed of the neuron under

study. The four columns of graphs show correlations for different intervals of eye velocity, where the lag between firing rate and eye speed was held constant at

60 ms. The 0–40 ms interval occurs before any effect of visual motion; the other intervals represent the first 120 ms of pursuit.
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incorporating eye velocity from 0–40 ms after the onset of stim-

ulus motion (Figures 3A and 3E). In some experiments we used a

different random seed and a different random dot pattern for

each trial, and in others we used the same seed and the same

dot pattern for all trials. We found significant MT-pursuit correla-

tions under both conditions, with a surprising tendency toward

larger correlations when we used the same dot pattern

repeatedly.

Analysis of the distributions of MT-pursuit correlations

revealed statistically significant positive or negative shifts in

Figure 3B, depending on whether the direction of target motion

was within 90 degrees of the preferred versus the nonpreferred

direction of the neuron under study. The mean correlations

were 0.1 and �0.03, respectively. The mean values of MT-pur-

suit correlation were so close to zero in Figures 3A, 3C, and 3D

that statistical evaluation seemed meaningless. The prevalence

of statistically significant trial-by-trial MT-pursuit correlations

during the initiation of pursuit supports the hypothesis of a sen-

sory origin of the variation in the initiation of pursuit more strongly

than did prior data, which were strictly inferential (Osborne et al.,

2005).

To represent the structure of MT-pursuit correlations in a

way that would be easy to compare with the results of

computational analysis, we averaged the MT-pursuit correla-

tions in bins according to the neuron’s preferred speed and

direction, relative to target speed and direction. The red and

yellow pixels on the left side of Figure 4A indicate positive
170 Neuron 79, 167–179, July 10, 2013 ª2013 Elsevier Inc.
MT-pursuit correlations for neurons with preferred directions

within 90 degrees of target direction. As shown earlier (Fig-

ure 3F), the MT-pursuit correlation did not vary strongly along

the y axis, as a function of preferred speed. The blue and

green pixels on the right side of Figure 4A indicate zero or

small negative MT-pursuit correlations for neurons with

preferred directions within 90 degrees of opposite to the di-

rection of target motion. White pixels indicate bins without

data and provide a mask that also was used to present the

MT-pursuit correlations for simulated population decoding in

the other panels of Figure 4.

Computational Analysis of MT-Pursuit Correlations
We used equations given in the Experimental Procedures to

create populations of model MT neurons that had mean tuning

curves, response variance, and noise correlations like those

found in our recordings from area MT (Huang and Lisberger,

2009). Each unit’s response on each trial was a single number

that was intended to represent the spike count within a 40 ms

analysis interval. The model MT population consisted of 3,600

units, with 60 preferred directions at a 6 degree spacing and

60 preferred speeds spaced uniformly in log2(speed) between

0.5 and 512 deg/s We created 1,000 simulated population re-

sponses (or trials) for target motion at 16 deg/s in one direction

and applied several decoding computations to estimate the

target direction and speed from the population response in

each simulated trial. Finally, we computed each decoder’s
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predictions for MT-pursuit correlations with the same analysis

procedures we had applied to our recordings from area MT.

Most of the decoding computations we used are structured as

‘‘vector averaging,’’ a family of decoding computations that can

reproduce much of pursuit behavior, defined by S
!

in Equation 1.

Vector averaging computes the vector sum of MT responses (Ri)

weighted by their preferred speed (si) and a unit vector in their

preferred direction ( q
!

i) in the numerator; it divides by the sum

of MT responses for normalization:

S
!

=

P
i

Ri q
!

i siP
j

Rj

(Equation 1)

The equations for our decoders, by using the subscripts i

versus j in the numerator and denominator, include the possibility

of using different populations of model neurons for the numer-

ator and denominator. This feature allows implementation of

the principle that normalization might be based on an estimate

rather than a calculation of total population activity (Chaisan-

guanthum and Lisberger, 2011). It also allows us to explore the

new idea that there need not be neuron-neuron correlations

between the populations of model units that contribute to the

population vector sum and the normalization. In all models,

however, we created neuron-neuron correlations within the

numerator or denominator populations.
MT-Pursuit Correlations Predicted by Different
Population Decoders
There were two important ingredients of decoding models

that predicted our data successfully. One was an opponent
computation in the numerator, to create different signs of

MT-pursuit correlations for neurons with preferred directions

near versus opposite to the direction of target motion. The other

was the lack of correlation between the model neurons that

contribute to the weighted population vector in the numerator

versus the normalization in the denominator, to create mostly

positive MT-pursuit correlations for neurons with preferred

directions within 90 degrees of target direction.

Figure 4B provided a good qualitative match to the data in

Figure 4A, for a form of vector averaging that used opponent mo-

tion signals in the numerator and the sum of activity in a different

population of model neurons in the denominator (Churchland

and Lisberger, 2001; Huang and Lisberger, 2009; Yang and

Lisberger, 2009):

sh =

P
i

cosðqiÞRi log2ðsiÞ
k
P
j

Rj

(Equation 2)

sv =

P
i

sinðqiÞRi log2ðsiÞ
k
P
j

Rj

(Equation 3)

s= 2
ffiffiffiffiffiffiffiffiffiffi
s2
h
+ s2v

p
(Equation 4)

We created opponent motion signals by weighting responses

by the sine and cosine of preferred direction (Equations 2 and 3),

effectively computing: the response of a model unit with a given

preferred direction minus the response of a model unit with the

same preferred speed but the opposite preferred direction.

Horizontal and vertical eye speeds sh and sv were decoded
Neuron 79, 167–179, July 10, 2013 ª2013 Elsevier Inc. 171
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separately and combined to obtain the speed s (Equation 4).

We achieved independence of the model populations for the

numerator and denominator by creating two separate popula-

tions indexed by i and j, where the model units’ responses

were correlated within but not between populations. We

scaled the denominator by k to ensure that the estimate of

target speed has the correct amplitude, on average. Although

it provides the best fit to our data, even Figure 4B does not

mimic the data perfectly. It shows a tendency for smaller

MT-pursuit correlations for model neurons with lower

preferred speeds, a tendency that was weak but visible in

our data (Figures 3F and 4A).

We found somewhat worse agreement with the data when

we decoded with ‘‘numerator-opponent vector averaging’’

(Equations 2, 3, and 4) using the same correlated neurons in

the numerator and denominator (Churchland and Lisberger,

2001). In broad strokes, the predicted MT-pursuit correlations

(Figure 4C) were positive versus negative for model neurons

with preferred directions within 90 degrees of target direction

versus within 90 degrees of the opposite direction. However,

the model predicted small negative MT-pursuit correlations

that were not seen in our data for neurons with preferred direc-

tions from 22 to 90 degrees different from target direction and

preferred speeds below target speed. Numerator-opponent

vector averaging is more successful than some of our other

decoders, because the use of opponent motion signals only in

the numerator partially de-correlates the numerator and denom-

inator even though the same population of model MT neurons

contributes to both.

The three decoding computations used in Figures 4D–4F failed

qualitatively to predict the MT-pursuit correlations in our data. In

each case, the predicted MT-pursuit correlations depended

strongly on the difference between target speed and preferred

speed when target direction was within 90 degrees of the

preferred direction. Each graph has positive MT-pursuit

correlations in the upper-left quadrant and negative MT-pursuit

correlations in the lower-left quadrant. In our data,MT-pursuit cor-

relations were positive in both of these quadrants. The decoding

computation used in Figure 4D was standard vector averaging

(Groh, 2001; Groh et al., 1997; Lisberger and Ferrera, 1997; Priebe

and Lisberger, 2004; Salinas and Abbott, 1994):

bs =
P
i

Ri log2ðsiÞP
i

Ri

; s= 2bs (Equation 5)

where s is the estimate of speed, and Ri the response of the ith

neuron. Standard vector averaging estimates only target speed,

and not target direction. The decoding computation used in

Figure 4E was fully opponent vector averaging using the same

model populations in the numerator and denominator:

sh =

P
i

cosðqiÞRi log2ðsiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

h +R2
v

p (Equation 6)

sv =

P
i

sinðqiÞRi log2ðsiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

h +R2
v

p (Equation 7)
172 Neuron 79, 167–179, July 10, 2013 ª2013 Elsevier Inc.
s= 2
ffiffiffiffiffiffiffiffiffiffi
s2
h
+ s2v

p
(Equation 8)
where Rh =
P

icosðqiÞRi and Rv =
P

isinðqiÞRi. The decoding

computation used in Figure 4F was the maximum likelihood

computation of Deneve et al. (1999) under the assumption of a

uniform prior:

LHðs; qÞf
exp

h
� 1

2
ða� Rmeanðs; qÞÞT � C�1 � ða� Rmeanðs; qÞÞ

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞNdetC

q
(Equation 9)

Here, a is the vector of neural responses on a given trial,

Rmeanðs; qÞ is a vector describing the mean response of the

model population, and C is a matrix that describes the structure

of the covariance among neurons in the model MT population.

The neurally plausible maximum likelihood decoder of Jazayeri

and Movshon (2006) failed in the same ways shown in Figure 4F.

Because the maximum likelihood decoder in Equation 9 was

designed to work with Gaussian noise in the model neurons,

we verified that we obtained the same results with either

Gaussian or Poisson noise. Also, we verified that MT-pursuit

correlations from the maximum-likelihood decoder we used

were smaller than those resulting from a maximum-likelihood

decoder that ignores neuron-neuron correlations (data not

shown). We think the maximum-likelihood decoding model fails

to compensate fully for the correlated responses because it

knows only the structure of the correlations but cannot fully

anticipate the exact correlations in any given run of the model.

The properties of the decoder are the main determinant of the

structure of the MT-pursuit correlations; decorrelation of the

neural populations that contribute to the numerator and denom-

inator is the key factor for reproducing our data qualitatively. The

properties of the MT population affect the magnitude but not the

structure of themodel’s MT-pursuit correlations for all decoders.

The magnitude increased with (1) increases in the magnitude of

neuron-neuron correlations in MT, (2) increases in the breadth of

neuron-neuron correlations as a function of differences in

preferred speed or direction of a pair of neurons, and (3) in-

creases in the amplitude of the population response. MT-pursuit

correlations effectively vanish for model MT populations with

uniform, rather than structured, neuron-neuron correlations, or

model MT populations without neuron-neuron correlations. We

subtracted these residual correlations caused by the finite size

of the model MT population from each bin in Figures 4B–4F.

Predictions of Linear Decoders
At the suggestion of an anonymous reviewer, we also demon-

strate that the structure of MT-pursuit correlations in our data

was reproduced by an optimal linear decoder that computes

the weighted sum of the responses of a population of model

MT neurons. For the same MT population responses used to

create Figure 4, we computed the weight matrixW that provided

the best prediction of target velocity (S’) through linear decoding:

S0 =W3R (Equation 10)

where R is a matrix of model neurons with different preferred

speeds and directions. We then computed MT-pursuit
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Figure 5. Effect of Removing Temporal Autocorrelations in Eye Velocity

(A and B) Averages showing eye velocity projected onto the preferred direction of each neuron as a function of time before (A) and after (B) filtering to remove

autocorrelations. Different colored traces show averages across trials in 13 bins according to the value of eye velocity at the time of target motion onset. The

traces after the break are plotted at higher amplitudes to show the presence and absence of the autocorrelation more clearly.

(C) Graph of the residual eye velocity 100 ms after the onset of stimulus motion, during pursuit initiation, as a function of that during fixation, at the time of target

motion onset. Open and filled symbols show data after versus before removal of the temporal autocorrelations in eye velocity.
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correlations exactly as we did for our data, leading to the image

in Figure 4G. The optimal linear decoder reproduces the pattern

of MT-pursuit correlations in our data, with large positive corre-

lations for neurons with preferred directions within 90 degrees

of target direction, small negative correlations for neurons

with preferred directions more than 90 degrees different from

target direction and very little modulation of MT-pursuit correla-

tion as a function of the preferred speed of the model neuron.

We note that the optimal linear decoder is a generalization of

vector summation, which would decode target velocity effec-

tively for a sufficiently regular population response and also

would yield a structure of MT-pursuit correlations like that in

our data.

Even though optimal linear decoders reproduce the structure

of the MT-pursuit correlations in our data, other publications

present pursuit data that can be accounted for only by a

nonlinear decoder that employs divisive normalization. Because

linear decoders lack normalization, we do not think that they can

work for pursuit, and we favor the class of nonlinear decoders

that also reproduce the structure of the MT-pursuit correlations

in the data. We will treat this issue in greater detail in the

Discussion.

Removal of Eye Velocity Temporal Correlations
Weshowed in a prior paper that there are small oscillations in eye

velocity during fixation before the onset of pursuit and that these

can drive changes in firing in some MT neurons (Hohl and

Lisberger, 2011). If our filtering procedure failed to remove those

oscillations completely, then we might have recorded artifactual

MT-pursuit correlations. Therefore, we performed an essential

control to test whether the variation in the filtered eye velocity
at pursuit initiation was correlated with variation in eye velocity

during fixation.

We illustrate the temporal autocorrelations in the unfiltered

data (Figure 5A) to show the nature of the problem. We

computed the residual eye velocity for each trial, defined as

the actual eye velocity minus the mean for its particular stimulus.

Next, we binned all individual trials from all MT neurons in

13 groups according to the eye velocity at the time the visual

stimulus started to move. Then, we averaged time course of

the residual eye velocity projected along the preferred direction

of the neuron under study in each of the 13 bins. In the unfiltered

data (Figure 5A), the presence of temporal correlations in eye

velocity cause the ordering of eye velocity in the interval from

80 to 120 ms after the onset of stimulus motion to be almost

exactly opposite to the order of the same eye velocity

traces at the time the stimulus started to move (�50 to 50 ms).

A strong inverse relationship appears in a graph of the average,

unfiltered, eye velocity residual 100 ms after the onset of target

motion as a function of that at target motion onset (Figure 5C,

filled symbols).

The systematic temporal correlation in eye velocity was

removed by the filtering procedure. In Figure 5B, the ordering

persists during fixation because we derived the filters during

fixation but applied them only during the initiation of pursuit.

However, the filtered eye velocities in the interval from 80 to

120 ms after the onset of target motion have lost the systematic

ordering seen before filtering. The weaker ‘‘U’’-shaped relation-

ship that appears instead in Figure 5C (open symbols) would not

promote spurious MT-pursuit correlations. Therefore, the small

eye movements of fixation do not cause the MT-pursuit correla-

tions in our data.
Neuron 79, 167–179, July 10, 2013 ª2013 Elsevier Inc. 173
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Figure 6. Noise Reduction between the Firing of Single Neurons in

MT and Pursuit Eye Speed

(A) Schematic showing how the speed tuning curve of an MT neuron is used to

convert eye speed 200 ms after the onset of target motion into units of spikes/

s. The speed-tuning curve was based on firing rates 25–140 ms after motion

onset.

(B) Noise reduction is plotted as a function of the preferred speed of the real or

model neuron, shown as a percentage of target speed. Open symbols show

data for different MT neurons when the difference between preferred and

target direction was less than 90 degrees. The red and blue curves show the

range of predictions from the numerator-opponent vector-averaging model

with different, uncorrelated populations used in the numerator and denomi-

nator versus themaximum likelihood computation of Deneve et al. (1999). Note

that each decoding model produced a range of values of noise reduction at

each value of preferred speed, because of the different response amplitudes

and variances of neurons with different preferred directions.
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Noise Reduction
The eye speed at the initiation of pursuit shows ‘‘endpoint’’ vari-

ance of about 15% of the mean speed (Osborne et al., 2005).

From the perspective of sensory processing, the endpoint vari-

ance could arise from correlated noise in the responses of MT

neurons (Huang and Lisberger, 2009), or from downstream

sources including noise added by the population decoders

(e.g., Shadlen et al., 1996). These two potential sources trade

off in a potentially informative way. Larger, structured neuron-

neuron correlations in MT cause larger MT-pursuit correlations

(Schoppik et al., 2008) and larger endpoint variance (Huang

and Lisberger, 2009). Larger downstream noise causes smaller

MT-pursuit correlations and larger endpoint variance (Medina

and Lisberger, 2007). Thus, we might further our understanding

of the source(s) of endpoint variation in pursuit initiation if we

could quantify the amount of noise reduction between the

responses of MT neurons and the motor output.

Given the large number of MT neurons that probably

contribute to pursuit, one might expect noise reduction to be

excellent. However, either sensory noise or downstream noise

would limit noise reduction. To compare neural to behavioral

noise, we transformed eye speed in each behavioral trial into

the same units as the firing rate of the MT neuron recorded at

the same time. First, we converted eye speed 100 ms after the

onset of pursuit ( _Eið100Þ) to an estimate of target speed ( _Ti) as:

_Ti =
_Eið100ÞD
_Eið100Þ

E _T (Equation 11)

Equation 11 normalizes the eye velocity from each trial so that

the mean normalized eye velocity was equal to the actual target

velocity. The dots over the symbols indicate speed, _T and _E refer

to the target and the eye, i indexes the trials, and the denomina-

tor is the mean across all trials. We performed the analysis for

eye velocity at t = 100 ms because this time marks the end of

the open-loop period when pursuit is driven purely by the target

motion present before the onset of pursuit. Second, we con-

verted the estimate of target speed for each trial to the units of

spikes/s by projecting through the mean speed tuning curve

for the neuron under study, as illustrated in Figure 6A. Finally,

we characterized noise reduction by expressing the variance of

eye velocity in units of spikes/s as a percentage of the variance

of actual firing rate and plotted the result as a function of

preferred speed normalized to target speed (Figure 6B).

The shape of the mean tuning curves leads to the ‘‘M’’ shaped

functions in Figure 6B, for both the data (symbols) and the model

MT neurons (red and blue traces). A given variance in degrees/s

converts to different variances in spikes/s depending on the

location of target velocity relative to the peak of the neuron’s

tuning curve. Near the preferred speed of a neuron, variation in

estimates of target velocity converts into small values of variance

in spikes/s. On the flanks of the tuning curve, the same variation

in eye velocity converts into a large variance in spikes/s. The

M-shaped function for the data in Figure 6B (open symbols) clus-

tered around an eye velocity variance that was 6.6% of firing rate

variance, or a 15-fold variance reduction. The combination of low

noise reduction and significant MT-pursuit correlations supports
174 Neuron 79, 167–179, July 10, 2013 ª2013 Elsevier Inc.
a sensory source for much of the variation in the initiation of

pursuit.

Analysis of the predictions of the decoding models for vari-

ance reduction reveals that endpoint noise does not depend

on the details of vector averaging or on whether the neurons

contributing to the numerator and denominator are correlated.

We use the red curves in Figure 6B to show the range of predic-

tions for the vector averaging decoder with uncorrelated numer-

ator and denominator that provided MT-pursuit correlations

closest to the data (Figure 4B). The maximum likelihood decoder

of Jazayeri and Movshon (2006) predicts noise reduction in line

with the vector averaging decoders. The maximum likelihood

decoder of Deneve et al. (1999) predicts somewhat more noise

reduction than does vector averaging (Figure 6B, blue curves

versus red curves), as might be expected given that this decoder

knows the structure of the neuron-neuron correlations. The

curves for the maximum likelihood decoder (blue) bracket the
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bottom half of the data, but the data are quite variable from

neuron-to-neuron and do not discriminate strongly among the

different decoder models.

DISCUSSION

We found reliable correlations between the trial-by-trial fluctua-

tions in the activity of single neurons in visual area MT and the

variation in eye speed in the visually guided initiation of pursuit

eye movements. These correlations allow two independent

conclusions. First, the existence of MT-pursuit correlations im-

plies that the correlated variation in MT responses provides a

sensory source for motor variation (Osborne et al., 2005). Sec-

ond, the nature of the decoding computation is constrained by

the relationship between the sign of MT-pursuit correlations

and the preferred speed and direction of the neuron under study.

Implications of MT-Pursuit Correlations for the Origin of
‘‘Motor’’ Noise
MT-pursuit correlations probably arise from propagation of the

correlated neural variation in MT to the motor output (Bair

et al., 2001; Huang and Lisberger, 2009). Correlations do not

prove causation, but we also know that the initiation of smooth

pursuit eye movements relies on signals from MT (Newsome

et al., 1985) and that microstimulation in MT can affect smooth

eye velocity (Groh et al., 1997; Born et al., 2000) and drive

learning in pursuit (Carey et al., 2005). MT-pursuit correlations

are largest between the first 40 ms of MT firing rate and eye ve-

locity, so that firing rate precedes eye velocity by �60 ms. The

MT-pursuit correlations probably cannot be attributed to parallel

fluctuations in MT firing and pursuit strength driven by the atten-

tional state of themonkey, because attentional effects emerge in

MT only after the first 100 ms of the neural response (Treue and

Maunsell, 1996; Cook and Maunsell, 2004).

The existence of MT-pursuit correlations provides direct

evidence in support of prior suggestions of a sensory origin for

at least some of the variation in the initiation of pursuit. The prior

suggestions were based on three observations. (1) More than

90% of the variation of pursuit can be accounted for by errors

in estimating the sensory parameters of target speed, target

direction, and the time of target motion onset (Osborne et al.,

2005). (2) Pursuit and perception show similar amounts of

variation, suggesting a common source of noise in the sensory

representation (Osborne et al., 2005). (3) The magnitude of the

neuron-pursuit correlations in both the floccular complex of the

cerebellum and the smooth eye movement region of the frontal

eye fields imply that all the variation in the visual guidance of

pursuit arises upstream from those structures (Medina and

Lisberger, 2007; Schoppik et al., 2008). Studies of saccadic

eye movements agree that much of motor variation may origi-

nate in sensory processing (van Beers, 2007; Hu et al., 2007).

Given that signals must propagate across multiple synapses

from MT to reach the motor neurons, we find it remarkable that

fluctuations in the responses of many individual sensory neurons

covary with the motor behavior. We take refuge in the observa-

tion of Schoppik et al. (2008) that two conditions must be

satisfied for trial-by-trial correlations to emerge between neural

responses and pursuit eye velocity. There must be relatively little
noise added downstream and the causal neural population must

be either very small or correlated sufficiently to behave as if it

contains a small number of neurons (Bair et al., 2001; Shadlen

et al., 1996; Huang and Lisberger, 2009). One interpretation of

the 15-fold reduction in variance between the discharge of single

MT neurons and pursuit eye velocity is that the neuron-neuron

correlations in MT make the population behave as if it has only

15 neurons. An alternate interpretation is that the neuron-neuron

correlationsmake the population behave as if it has 100 neurons,

as concluded by Shadlen et al. (1996), and modest noise is

added to the estimates of target velocity downstream from MT.

However, the presence of MT-pursuit correlations makes it likely

that at least some of the variation in pursuit arises from corre-

lated noise in MT.

We think that only modest noise can be added downstream

from MT. If a large amount of noise were added downstream

from MT, then we would not expect to see MT-pursuit correla-

tions at all without positing neuron-neuron correlations much

larger than reported by Huang and Lisberger (2009). If noise is

added downstream from MT, it must be added between MT

and the Purkinje cells of the floccular complex, as no additional

noise seems to be added downstream from the Purkinje cells

(Medina and Lisberger, 2007).

Linear versus Nonlinear Population Decoders
Prior research focused our attention on non-linear rather than

linear decoders to convert the population response in MT into

estimates of the speed and direction of target motion. Our

reasoning is that estimates of the parameters of sensory events

should be reasonably resilient against large changes in the

magnitude of neural responses. Decoders should estimate the

preferred stimuli of the most active neurons, in this instance

the speed and direction of the most active neurons in the MT

population. Vector averaging is one example of a decoder that

finds the peak of the population response independent of the

overall magnitude of neural responses. Vector averaging is

nonlinear in the sense that it relies on divisive normalization by

the total amplitude of the population response. Divisive normal-

ization has been a major feature of the conversation about

cortical processing and population decoding since the earliest

papers on the topics (Heeger, 1993; Groh, 2001).

Considerable prior research suggests that pursuit relies on

divisive normalization to estimate the speed and direction of

target motion. Lisberger and Ferrera (1997) showed that the pur-

suit evoked by two targets is very close to the vector average of

the pursuit evoked by each target singly. Both Niu and Lisberger

(2011) and Fallah and Reynolds (2012) used stimuli comprised of

multiple moving targets to provide additional evidence that

divisive normalization is a fundamental component of the decod-

ing computation. Churchland and Lisberger (2001) found that

apparent motion increases the estimate of target speed by pur-

suit and perception at the same time as the magnitude of the MT

population response decreases. Only a specific form of vector

averaging, requiring normalization, could account for their

data. Finally, in saccadic eye movements, Lee et al. (1988)

used reversible inactivation of the superior colliculus to provide

strong evidence in favor of a nonlinear vector averaging decoder

for programming saccadic eye movements and equally strong
Neuron 79, 167–179, July 10, 2013 ª2013 Elsevier Inc. 175
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evidence against the linear, vector summation decoder. Thus,

much of what we know supports a need for divisive normalization

in a nonlinear decoder for converting sensory population re-

sponses into commands for eye movement.

Even though a linear decoder predicts the structure of the

MT-pursuit correlations in our data, we favor the nonlinear de-

coders that also reproduce the literature outlined above. That

said, full disclosure dictates a comment on the fact that

reduction of the contrast of pursuit targets moves the peak

of the MT population response toward neurons with higher

preferred speeds while reducing the eye speed in pursuit initi-

ation (Krekelberg et al., 2006, Yang et al., 2012). Taken at

face value, the effect of stimulus contrast appears to be

more consistent with linear decoders that estimate the magni-

tude of the population response versus nonlinear decoders

that find the peak of the population response. However, we

can use the Bayesian framework pioneered for speed percep-

tion (Weiss et al., 2002) to account for the effects of stimulus

contrast within the context of nonlinear, vector averaging de-

coders (Yang et al., 2012). The effect of contrast on pursuit

initiation emerges from a prior for low target speeds that dom-

inates when the sensory evidence is weak because of low

contrast.

Constraints on Population Decoding for Pursuit
Vector averaging defines a family of decoding computations

based on a ratio: the numerator of the ratio computes the vector

sum of MT responses weighted by their preferred speed and a

unit vector in their preferred direction; the denominator provides

normalization based on the magnitude of the sum of MT re-

sponses (Equation 1). In the present paper, our computational

analysis showed that the observed sign of MT-pursuit correla-

tions emerged when we used forms of vector averaging in which

two separate populations of model MT neurons contribute to the

numerator and denominator: each population had neuron-

neuron correlations internally, but neurons were uncorrelated

across the two populations. In contrast, other forms of vector

averaging predicted patterns of MT-pursuit correlations that

were inconsistent with our data, as did the maximum likelihood

estimators developed by Deneve et al. (1999) and Jazayeri and

Movshon (2006). Importantly, the structure of MT-pursuit corre-

lations depended on the properties of the decoder while the

magnitude of the correlations depended on the properties of

the model MT population response.

We understand that vector averaging is ametaphor for the bio-

logical mechanisms of population decoding and that the neural

decoding circuit will not look like the equations we have used.

Thus, our paper leads mainly to three principles that must be

contained in the biological decodingmechanism. First, decoding

must implement a normalized population vector summation, as

implied by vector averaging. Second, decoding should use

opponent motion signals to create the population vector sum,

so that neurons with preferred directions opposite to the direc-

tion of target motion show either zero or negative MT-pursuit

correlations. Third, either the neurons that contribute to normal-

ization have responses uncorrelated with neurons that

contribute to the population vector sum, or the normalization

mechanism itself must somehow erase those correlations.
176 Neuron 79, 167–179, July 10, 2013 ª2013 Elsevier Inc.
It would be possible to derive a useful normalization signal

even from neurons in the primary visual cortex that are not

direction selective, as long as they estimate the magnitude of

the population response in MT. As an alternative, Chaisanguan-

thum and Lisberger (2011) suggested that the normalization step

represented by the denominator of our equations could reside in

the cellular mechanisms of decoding neurons. They did not

consider the potential impact of neuron-neuron correlations,

but their formulation of the decoding implementation would

account for our data if the cellular mechanism of normalization

were immune to correlated sensory noise. If a neuron has a

preferred direction close to target direction, contributes only to

the numerator of a vector-averaging decoder, and lacks

neuron-neuron correlations with neurons that contribute to the

denominator, then it will contribute positively to the estimate of

eye velocity for pursuit and its MT-pursuit correlations should

be positive. This is the situation we created in the decoder that

does the best job of predicting the MT-pursuit correlations in

our data.

Visual Inputs for Perception versus Action
It is tempting to draw parallels between the initiation of pursuit

eye movements and motion perception. Their similar direction

and speed discrimination thresholds suggest that they share

the correlated noise source represented by the population

response in MT (Osborne et al., 2005). MT-pursuit correlations

are related to the finding that the activity of many individual MT

neurons is weakly predictive of the perceptual decision a

monkey will make (Britten et al., 1996) even when the stimulus

lacks correlated motion. The limited noise reduction between

MT neurons and pursuit eye movements may be related to

the similarity between neurometric thresholds of MT neurons

and psychometric thresholds of monkeys for direction discrim-

inations near threshold (Newsome et al., 1989) and to the

temporally causal correlation between MT firing and perceptual

decisions (Smith et al., 2011). Both pursuit and perception op-

erate as if only a handful of MT neurons are contributing sig-

nals for the behavior, even though it seems likely that tens of

thousands of correlated neurons are involved (Shadlen et al.,

1996).

At the same time, pursuit and perception behave differently in

a number of ways. Pursuit attempts to estimate target motion

and program a pursuit eye movement that matches any arbitrary

estimate of motion (Lisberger and Westbrook, 1985; Osborne

et al., 2005), while perception is normally trying to discriminate

among two or a few possibilities. Further, pursuit must estimate

target parameters quickly, on the basis of only a few spikes in

each MT neuron (Osborne et al., 2004). We think that pursuit’s

estimates of sensory parameters are the result of a machine-

like neural circuit that draws from all MT neurons. Perception

may be able to use optimal decoding schemes (Jazayeri and

Movshon, 2006) or take the time needed to select the neurons

that provide the most important signals. For example, the most

responsive neurons appear to contribute most strongly for

coarse discriminations, while fine discriminations seem to

depend on neurons that are stimulated on the flanks of their

tuning curves (Britten et al., 1996; Cohen and Newsome, 2009;

Jazayeri and Movshon, 2006; Purushothaman and Bradley,
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2005). These differences would not prevent pursuit and percep-

tion from having similar noise levels (Osborne et al., 2005).

Population decoding is themain conceptual operation that lies

between the sensory representation of visual motion and the

initiation of pursuit. The ease of quantifying pursuit and the

accessibility of the pursuit circuit offer a unique opportunity to

understand how sensory decoding is implemented in the brain.

We have shown here that MT-pursuit correlations are a powerful

probe for understanding the operation of the decoding circuits.

The existence and structure of MT-pursuit correlations establish

principles that guide our search for the brain’s implementations

of sensory population decoding.

EXPERIMENTAL PROCEDURES

Subjects

We obtained eye movement traces and neural recordings from two adult male

rhesusmonkeys (Macacamulatta, 7 and 13 kg). After behavioral training, mon-

keys were implanted with titanium head holders for head fixation and scleral

search coils for recording eye movements using methods that have been

described previously (Ramachandran and Lisberger, 2005). Titanium or cilux

recording chambers (Crist Instruments) were mounted over a 20 mm circular

opening in the skull to allow access to MT for neural recordings. For each

experimental session, monkeys sat in a primate chair and received fluid reward

for accurately fixating or tracking visual targets presented on a screen in front

of them. All experiments were conducted at UCSF. All surgical and experi-

mental procedures had been approved in advance by the Institutional Animal

Care and Use Committee of the University of California, San Francisco and

were in compliance with the NIH Guide for the Care and Use of Laboratory

Animals.

Visual Stimuli

All experiments were conducted in a nearly dark room. Visual stimuli were pre-

sented on an analog oscilloscope (Hewlett Packard 1304A) with a refresh rate

of 250 Hz. We drove the oscilloscope from 16-bit digital-to-analog converters

on a digital signal processing board in a PC. The screen was 20.5 cm from the

monkey and subtended visual angles of 67� horizontally and 54� vertically.
We began each recording by mapping the receptive field of the MT neuron

under study and assessing its speed and direction tuning. To study pursuit, we

required the monkey to track patches of 100% correlated random dots that

moved with carefully contrived speeds and directions. Each trial presented a

single pursuit stimulus. To initiate a trial, monkeys fixated a 0.3� square target

in the center of the screen for a randomized interval of 500 to 900 ms. Then, a

5� 3 5� or 8� x 8� patch of stationary random dots appeared in the receptive

field of the neuron for another randomized interval of 300 to 800 ms. Next,

the fixation point disappeared and the dots began to move behind the station-

ary, virtual aperture for 100 ms, creating motion without taking the stimulus off

the receptive field. Finally, the aperture began to move along with the dots for

250 to 700 ms depending on the speed of stimulus motion.

We adjusted the exact parameters of target motion to match the receptive

field location and direction and speed preferences of the neuron under study.

Different trials provided stimulus motion that corresponded to the peaks or the

flanks of the direction- and speed-tuning curves. One of our main goals was to

obtain saccade-free initiation of pursuit. Therefore, we aimed our electrodes at

the representation of the central visual field and recorded mainly from neurons

with receptive field centers within 5 degrees of the fovea. Because our data

analysis was limited to the first 200 ms after the onset of target motion, we

were not concerned about the exact position of the eye relative to the moving

patch of dots during steady-state pursuit.

In a typical experiment, trials that presented four to six different directions or

speeds of stimulus motion were interleaved randomly in a block of trials. To

prevent anticipatory pursuit responses, each stimulus motion was balanced

by a companion trial that delivered stimulus motion at the same speed in the

opposite direction. Monkeys received fluid reward for keeping their eyes within

3�–5� of target position throughout the pursuit portion of the trial. The exact
fixation requirement depended on the speed and the size of the pursuit target

as well as the starting location of the patch relative to the fixation target.

Monkeys usually completed 2,000–3,600 pursuit trials in each daily

experiment.
Data Acquisition

We used a Mini-Matrix 05 microdrive (Thomas Recording, Giessen, Germany)

to lower up to five quartz-shielded tungsten electrodes into the brain. Extras-

triate areaMTwas identified based on stereotaxic coordinates, directional and

speed response properties of neurons, receptive field sizes, retinotopic

organization, and surrounding cortical areas (Desimone and Ungerleider,

1986; Maunsell and Van Essen, 1983).

Neural signals were amplified and digitized for on-line spike sorting and

spikes were initially assigned to single neurons by a template-matching algo-

rithm (Plexon MAP, Plexon Inc.). After the experiment, we used a combination

of visual inspection of waveforms, projection onto principal components,

template-matching, and refractory period violations in Offline Sorter (Plexon

Inc.) to assign spikes to well-isolated single units. Waveforms were time-

stamped with 1 ms precision and firing rates were obtained by convolving

spike trains with a Gaussian window with a standard deviation of 10 ms. Eye

velocity signals were created with an analog differentiator circuit, and eye

position and velocity signals were sampled and stored at 1,000 Hz. Velocity

traces were smoothed with a zero-phase, 25 Hz, 2-pole digital Butterworth

filter.
Data Analysis

To allow study of the speed and direction tuning of each cell, the monkey

fixated a stationary spot and stimuli moved across the receptive field in

300 ms intervals. We averaged the firing rate across multiple presentations

of the samemotion, fitted the averages as functions of speed or direction using

the approach of Lisberger and Movshon (1999):
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Here, the parameters are: s, stimulus speed; q, stimulus direction; R0, base-

line firing rate; a, amplitude of the speed tuning curve; A, amplitude of the

direction tuning curve; ps, preferred speed; pq, preferred direction; ss, width

of the speed tuning curve; sq, width of the direction tuning curve; and d,

skew of the speed tuning curve. The angle q-pq was restricted to be within

[�180, 180] degrees.

To evaluate the trial-by-trial correlations between the firing of MT neurons

and the initiation of pursuit, we recorded data sets with at least 80 and typically

300 repetitions of each target motion. Experiments contained a small number

of interleaved target motions, and we computed the MT-pursuit correlations

for each target motion separately. We inspected the data for every pursuit trial

and rejected it for further analysis if a saccade occurredwithin the timewindow

chosen for analysis. We also rejected trials that contained saccades or

microsaccades during fixation.
Filters to Remove Temporal Autocorrelations in Eye Velocity

To prevent small fluctuations in eye velocity during fixation from contributing to

neuron-behavior correlations, we developed a filtering procedure to remove

temporal autocorrelations in eye speed. Our strategy was to create a linear

filter based on the eye speed during fixation, in the interval from 40 ms before

to 40 ms after the onset of stimulus motion. We then used the filter to predict

the contribution of eye speed during fixation to eye speed during the initial

pursuit response, in the interval from 80 to 120 ms after motion onset. We

subtracted the predictions based on the filter from the eye velocity during

the initiation of pursuit to obtain a ‘‘decorrelated’’ eye speed that was used

to calculate MT-pursuit correlations.
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The linear filter we constructed is the analytical solution to a multilinear

regression between fixation and eye speed and is optimal in the least squared

sense (Warland et al., 1997). One assumption of this method is that the inde-

pendent variables, in our case eye velocity at different times during fixation,

are uncorrelatedwith each other. Tominimize the correlation between sequen-

tial time points in eye velocity, we downsampled our data by calculating the

mean over 20 ms time bins. To confirm that this was sufficient, we calculated

filters based on ridge regression and the predictions were virtually identical.

We defined Vfix as the matrix describing residual eye velocity (actual eye

velocity for each trial minus the mean across all trials with the same target

motion) during fixation with trials in rows and time points in columns, and Vpurs

as a matrix describing residual eye velocity during the interval from 80 to

120 ms after stimulus motion onset. We then computed the filter f:

f= ðVT
fixVfixÞ�1$ðVT

fixVpursÞ (Equation 14)

We obtained the decorrelated eye velocity Vdecorr
purs by subtracting the

predicted eye velocity Vpred
purs from the raw eye velocity Vpurs:

Vpred
purs =Vfix$ f (Equation 15)

Vdecorr
purs =Vpurs � Vpred

purs (Equation 16)

Finally, to calculate MT-pursuit correlations, we converted the horizontal

and vertical components of Vdecorr
purs into decorrelated eye speed.

Simulations of MT Population Responses

We simulated a population of correlated, noisy MT neurons with 60 preferred

speeds that uniformly tiled the log space between 0.5 and 512 deg/s and 60

preferred directions evenly distributed between �180 and 180 degrees.

Each model unit took on a scalar mean response Rmean determined by the

sum of the baseline activity R0 and the product of the direction and speed tun-

ing curves:

Rmeanðq; sÞ=R0 +ge�0:5ðlogðs=psÞss Þ2e�0:5

�
q�pq
sq

�2

(Equation 17)

Here, s and q are stimulus speed and direction, and ps and pq are preferred

speed and direction. We set amplitude g = 4, R0 = 1, bandwidth of the speed

tuning ss = 1.5, and bandwidth of the direction tuning sq = 40. The angle q-pq

ranged from �180 to +180. The magnitude of the MT-pursuit correlations

depended strongly on the value of g, and we selected the value 4 to reflect

our expectation of a mean response of 4 spikes in the 40 ms intervals used

to analyze our data for MT neurons with preferred speed and direction near

the parameters of target motion.

We followed the methods of Shadlen et al. (1996) to add to each neuron’s

mean response correlated noise drawn from a normal distribution with the vari-

ance scaled to the mean response. The expected correlation structure rij
between neurons i and j was:

rij = rmaxe
�
	logðpsi =psjÞ

ts


2

e
�
�

pqi�pqj
tq

�2

(Equation 18)

We set the peak correlation rmax = 0.18, and the widths of the correlation

structure for speed and direction ts = 1.35 and tq = 45. These values are slightly

different from those suggested by our prior report of neuron-neuron correla-

tions in MT (Huang and Lisberger, 2009). The values were chosen so that

the amplitude of the best model’s MT-pursuit correlations matched those in

the data and the neuron-neuron correlations in the model MT populations pro-

vided good matches to the data from Huang and Lisberger (2009) for analysis

intervals of durations 150 and 300 ms. Given that noise correlations are similar

in those two windows, and MT responses are highly correlated across time

(Osborne et al., 2004), we see no reason to think that the noise correlations

would be very different in the analysis window of 40 ms used here. We also

do not think our conclusions are affected by our assumption that higher-order

correlations in the MT population are small and would play little role in the

structure of MT-pursuit correlations. We do realize that the exact parameter

values for the neuron-neuron correlations are underconstrained by available

data, and we take this uncertainty into account in interpreting our results.
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