On the additivity of tunnel number of knots

Kanji Morimoto

Department of Mathematics, Takushoku University, Tatemachi, Hachioji, Tokyo 193, Japan

Received 16 January 1992
Revised 8 June 1992, 26 August 1992 and 12 October 1992

Abstract

Let K_1 and K_2 be nontrivial knots in the 3-sphere S^3. In this paper, we show that if the tunnel number of $K_1 \# K_2$ is two, then either both tunnel numbers of K_1 and K_2 are one, or one of K_1 and K_2 is a 2-bridge knot and the other's tunnel number is at most two.

Keywords: Tunnel number; Knots; Connected sum; Additivity.

AMS (MOS) Subj. Class.: 57M25.

Introduction

Let K be a knot in the 3-sphere S^3, and $t(K)$ the tunnel number of K. Here, the tunnel number of K is the minimum number of mutually disjoint arcs properly embedded in the exterior of K whose complementary space is a handlebody. We call such arcs an unknotting tunnel system for K. In particular, we call it an unknotting tunnel for K if the family of the arcs consists of a single arc. Concerning the additivity of tunnel number of knots under connected sum, so far by several people [6, 7, 9, etc.], it has been proved only that tunnel number one knots are prime. In this paper we show:

Theorem. Let K_1 and K_2 be nontrivial knots in S^3, and suppose $t(K_1 \# K_2) = 2$. Then:

1. if neither K_1 nor K_2 are 2-bridge knots, then $t(K_1) = t(K_2) = 1$ and at least one of K_1 and K_2 admits a (1, 1)-decomposition, or

2. if one of K_1 and K_2, say K_1, is a 2-bridge knot, then $t(K_2)$ is at most two and K_2 is prime.

Correspondence to: Professor K. Morimoto, Department of Mathematics, Takushoku University, Tatemachi, Hachioji, Tokyo 193, Japan.

0166-8641/93/$06.00 \copyright$ 1993 - Elsevier Science Publishers B.V. All rights reserved
Here, we say that a knot K in S^3 admits a (g, b)-decomposition if there is a genus g Heegaard splitting (V_1, V_2) of S^3 such that $V_i \cap K$ is a b-string trivial arc system in V_i ($i = 1, 2$) (cf. [4, 6]).

Remark. After the author had done the work in this paper, he proved in [5] that there are infinitely many tunnel number two knots K such that the tunnel number of $K \# K'$ is equal to two again for any 2-bridge knot K'. This shows that the estimate of Theorem is the best possible.

Corollary 1. Every tunnel number two knot has at most two connected sum sum-mands.

Proof. Suppose $t(K_1 \# K_2 \# K_3) = 2$ for some nontrivial knots K_1, K_2 and K_3. Put $K_4 = K_2 \# K_3$. Then $t(K_1 \# K_4) = 2$. Then by Theorem, both K_1 and K_4 are prime because tunnel number one knots are prime. Since K_4 is not prime, we have a contradiction, and this completes the proof of the corollary. □

Corollary 2. Let K_1 and K_2 be tunnel number one knots. Then $K_1 \# K_2$ has tunnel number two if and only if at least one of K_1 and K_2 admits a $(1, 1)$-decomposition.

Proof. Suppose $K_1 \# K_2$ has tunnel number two. Then by Theorem and since 2-bridge knots admit $(1, 1)$-decompositions, at least one of K_1 and K_2 admits a $(1, 1)$-decomposition.

Conversely, suppose at least one of K_1 and K_2 admits a $(1, 1)$-decomposition. Then by tracing back the argument in the paragraphs previous to Lemma 2.1 of Section 2, we see that $K_1 \# K_2$ has tunnel number two. This completes the proof of the corollary. □

By the way, by a little observation, we have the following facts:

Fact 0.1. If $t(K) \leq t$ for a knot K, then $g(\Sigma_2(K)) \leq 2t + 1$, where $\Sigma_2(K)$ is the 2-fold branched covering space of S^3 along K and $g(\cdot)$ denotes the Heegaard genus.

Fact 0.2. $t(K_1 \# K_2) \leq t(K_1) + t(K_2) + 1$ for any two knots K_1 and K_2.

Fact 0.3. If a knot K admits a (g, b)-decomposition, then $t(K) \leq g + b - 1$.

The author does not know if there is a knot which realizes the upper equality in Fact 0.1, etc. But he expects that the following conjectures are true.

Conjecture 1. There is a tunnel number one knot K_0 such that $g(\Sigma_2(K_0)) = 3$.
Conjecture 2. There are two tunnel number one knots K_1 and K_2 such that $t(K_1 \# K_2) = 3$.

Conjecture 3. There is a tunnel number one knot K_3 which admits no $(1, 1)$-decomposition.

Concerning the above conjectures, we have:

Proposition 0.4. (1) Conjecture 1 implies Conjecture 2. (2) Conjecture 2 implies Conjecture 3.

Proof. (1) Suppose $t(K_0 \# K_0) \leq 2$, then by Fact 0.1, $g(\Sigma_2(K_0 \# K_0)) \leq 2 \cdot 2 + 1 = 5$. On the other hand, since the Heegaard genus of closed 3-manifolds is additive under connected sum by [1], we have $g(\Sigma_2(K_0 \# K_0)) = g(\Sigma_1(K_0) \# \Sigma_1(K_0)) = g(\Sigma_2(K_0)) + g(\Sigma_2(K_0)) = 3 + 3 = 6$, a contradiction.

(2) Suppose both K_1 and K_2 admit $(1, 1)$-decompositions. Then by the definition of (g, b)-decomposition, we see that $K_1 \# K_2$ admits a $(2, 1)$-decomposition. Then by Fact 0.3, $t(K_1 \# K_2) \leq 2$, a contradiction. □

As a consequence of Theorem, in particular Corollary 2, we have:

Corollary 3. Conjecture 3 implies Conjecture 2.

Proof. Suppose $t(K_3 \# K_3) \leq 2$. Then since tunnel number one knots are prime, $t(K_3 \# K_3) = 2$. Hence by Corollary 2, K_3 admits a $(1, 1)$-decomposition, a contradiction. □

1. Preliminaries

We work in the piecewise linear category. Put $K = K_1 \# K_2$, and let $N(K)$ be a regular neighborhood of K in S^3 and $E(K) = \text{cl}(S^3 - N(K))$ an exterior of K. Let $\{\gamma_1, \gamma_2\}$ be an unknotting tunnel system for K properly embedded in $E(K)$ and $N(\gamma_1 \cup \gamma_2)$ a regular neighborhood of $\gamma_1 \cup \gamma_2$ in $E(K)$. Put $V_1 = N(K) \cup N(\gamma_1 \cup \gamma_2)$ and $V_2 = \text{cl}(S^3 - V_1)$. Then both V_1 and V_2 are genus three handlebodies. Since K is not prime, there is an 2-sphere S in S^3 which gives a nontrivial connected sum of K. We may assume that $S \cap V_1$ consists of disks. Since S intersects K in two points, we can put $S \cap V_1 = D_1^* \cup D_2^* \cup D_3 \cup D_4 \cup \cdots \cup D_l$, where D_i^* ($i = 1, 2$) is a nonseparating disk of V_1 intersecting K in a point and $D_j \cap K = \emptyset$ ($j = 1, 2, \ldots, l$). Suppose $\#(S \cap V_1)$ is minimum among all 2-spheres which give nontrivial connected sums of K and intersect V_1 in such disks, where $\#(\cdot)$ denotes the number of the components. Then, since K is a core of a handle
of V_i and D_i^* is a nonseparating disk of V_i ($i = 1, 2$), we have the following three cases:

Case I: $D_1^* \cup D_2^*$ splits V_1 into two solid tori (Fig. 1(I)).
Case II: $D_1^* \cup D_2^*$ does not separate V_1 (Fig. 1(II)) and
Case III: $D_1^* \cup D_2^*$ are mutually parallel (Fig. 1(III)).

Put $S_i = S \cap V_i$ ($i = 1, 2$). Then by the minimality of $\#(S_1)$, S_2 is incompressible in V_2. Let (E_1, E_2, E_3) be a complete meridian disk system of V_2, and put $E = E_1 \cup E_2 \cup E_3$. Then by the incompressibility of S_2, we may assume that each component of $E \cap S_2$ is an arc. Let α be an outermost arc component of $E \cap S_2$ in E. If α cuts off a disk in S_2, then by using the disk, we can exchange E for another complete meridian disk system E' so that $\#(E' \cap S_2) < \#(E \cap S_2)$. Hence we may assume that α is essential in S_2. Let Δ be the disk cut off by α in E such that $\Delta \cap S_2 = \alpha$. Then we can perform an isotopy through Δ which pushes a regular neighborhood of α in S_2 into V_1. According to Jaco [2, Ch. II], we call this an isotopy of type A at α through Δ. Then as in [2, Ch. II], by exchanging complete meridian disk systems at each stage if necessary, we have a sequence of isotopies of type A at α_i through Δ_i ($i = 1, 2, \ldots, n$) such that each α_i is an essential arc.
properly embedded in S_2^{i-1}, where $S_2^0 = S_2$, $S_2^i = \text{cl}(S_2^{i-1} - N(\alpha_i))$ and S_2^a consists of disks. Furthermore we may assume that each α_i is an essential arc properly embedded in S_2 and $\alpha_i \cap \alpha_j = \emptyset$ $(i \neq j)$. Put $\partial D_i^* - C_i^*$ $(i = 1, 2)$. Then each α_i is one of the following three types.

We say that α_i is of type I if α_i connects distinct components of ∂S_2, α_i is of type II if α_i meets a single component of ∂S_2 and does not separate C_i^* and C_2^*, and α_i is of type III if α_i meets a single component of $\partial S_2 - (C_i^* \cup C_2^*)$ and separates C_i^* and C_2^* (see Fig. 2). Moreover we say that α_i is a d-arc if α_i is of type I and there exists a component C of $\partial S_2 - (C_i^* \cup C_2^*)$ such that α_i meets C and α_j does not meet C for any $j < i$, and α_i is an e-arc if α_i connects C_i^* and C_2^*.

Put $S^{(0)} = S$, and let $S^{(i)}$ be the image of $S^{(i-1)}$ after the isotopy of type A at α_i $(i = 1, 2, \ldots, n)$. Put $\text{cl}(\partial D_i - \alpha_i) = \beta_i$. Then, at each stage, β_i is an arc in $\partial V_2 = \partial V_1$. By performing the isotopy of type A at α_i, a band in V_1 whose core is β_i is produced. We denote it by b_i.

Under the above terms and notations, in the following sections, we show that $l = 0$ or 1 by using isotopy of type A argument. In Section 2, we consider Case I and show that $l = 0$, then we see that the conclusion (1) of Theorem holds. In Sections 3 and 4, we consider Cases II and III and show that $l = 1$, then we see that the conclusion (2) of Theorem holds. Here we note that any isotopy has to be fixing the knot K setwise. Before going to the following sections, we prepare some facts.

Fact 1.1. If $l > 0$, then no α_i is a d-arc.

Proof. If there is a d-arc, then by the inverse operation of isotopy of type A introduced in [8], we can reduce the number $\#(S_1)$, a contradiction. \square
Fact 1.2. If $l > 0$, then no α_i is of type II.

Proof. If there is an arc α_i of type II, then we can find a d-arc in the planar surface in S_2 cut off by α_i, a contradiction. □

Fact 1.3. If $l > 0$, then no α_i is an e-arc.

Proof. If there is an e-arc, then any arc is of type I or of type II. Then by Fact 1.2, α_1 is of type I. Then it is a d-arc, a contradiction. □.

Fact 1.4. If $l > 0$, then α_1 is of type III.

Proof. By Fact 1.2, α_1 is of type I or of type III. If α_1 is of type I, then it is a d-arc. Hence α_1 is of type III. □

Throughout this paper, for an m-manifold M ($m = 2$ or 3 respectively) and an n-manifold N ($n = 1$ or 2 respectively) properly embedded in M, a component of $M - N$ means the closure of a component of $M - N$.

2. Case I

Suppose Case I occurs.

Suppose $l = 0$. Then $S_1 = D_1^\ast \cup D_2^\ast$ and S_2 is an essential (i.e., incompressible and not ∂-parallel) annulus in V_2. Since $\partial S_1(= \partial S_2)$ splits $\partial V_1(= \partial V_2)$ into two tori with two holes, S_2 is a separating annulus in V_2. Hence by the same argument as that of [4, Lemma 3.2], we can regard S_2 as a union of an essential separating disk, say D, and a band, say b. Since D splits V_2 into a solid torus and a genus two handlebody, b is contained in one of them. If b is contained in the solid torus, then ∂S_2 splits ∂V_2 into an annulus and a genus two surface with two holes, a contradiction. Hence b is contained in the genus two handlebody as illustrated in Fig. 3.
Fig. 3. Let X_1 and X_2 be the two components of $V_1 - S_1$, and Y_1 and Y_2 the two components of $V_2 - S_2$ indicated in Fig. 3.

We may assume that $Y_i \cap \partial V_i$ is identified with $X_i \cap \partial V_i$ ($i = 1, 2$). Put $B_i = X_1 \cup Y_i$ and $B_2 = X_2 \cup Y_2$. Then, since R_1 and R_2 are the two components of $S^3 - S_i$, B_i is a 3-ball ($i = 1, 2$). Put $\delta_i = B_i \cap K (= X_i \cap K)$.

Claim. For $i = 1, 2$, δ_i is a trivial arc in X_i.

Proof. Since K is a core of a handle of V_1, there is an annulus A in V_1 such that a component of ∂A is K and the other component of ∂A is in ∂V_1. Since K intersects D_i^+ ($i = 1, 2$) in a point, by the standard innermost argument and the cut and paste argument, we can choose A so that $A \cap D_i^+$ ($i = 1, 2$) consists of an arc which is essential in A. Put $A \cap X_i = R_i$ ($i = 1, 2$). Then R_i is a disk in X_i such that $\partial R_i = \delta_i \cup (\text{an arc in } \partial X_i)$. This shows that δ_i is a trivial arc in X_i and completes the proof of the claim. \Box

Let B_i' be a 3-ball and δ_i' a trivial arc properly embedded in B_i' ($i = 1, 2$). Put $S^3_i = B_i \cup B_i'$ and $K_i = \delta_i \cup \delta_i'$ ($i = 1, 2$). Then K_i is a knot in the 3-sphere S^3_i. In the following, we show that K_1 admits a $(1, 1)$-decomposition and that K_2 has tunnel number one.

We denote the images of D_1^*, D_2^* and S_2 in ∂X_1 and ∂Y_1 by the same notations. Regard B_1' as $D_1^* \times [0, 1]$ and δ_1' as $\{x_1\} \times [0, 1]$, where D_1^* is a 2-disk, $I = [0, 1]$ and x_1 is a point in $\text{int}(D_1^*)$. Choose the gluing map f of $\partial B_1'$ to ∂D_1^* so that $f(D_1^* \times \{0\}) = \partial B_1'$, $f(D_1^* \times \{1\}) = D_2^*$ and $f(\partial D_1^* \times I) = S_2$. Put $W_1 = X_1$ and $W_2 = Y_1 \cup \partial D_1^* \times I$. Then W_1 is a solid torus. And since there is a nonseparating disk, say Δ_i, in Y_i such that $\Delta_i \cap S_2$ is an arc (see Fig. 3), W_2 is also a solid torus because $D_2^* \times I$ is a cancelling 2-handle for Y_i. Hence (W_1, W_2) is a genus one Heegaard splitting of the 3-sphere $S^3_i (= B_i \cup B_i')$. Since δ_i is a trivial arc in $W_i = X_i$ by Claim and δ_i is a trivial arc in W_2 by the definition, $K_i (= \delta_i \cup \delta_i')$ admits a $(1, 1)$-decomposition.

Next we denote the images of D_1^*, D_2^* and S_2 in ∂X_2 and ∂Y_2 by the same notations. Regard B_2' as $D_2^* \times [0, 1]$ and δ_2' as $\{x_2\} \times [0, 1]$, where D_2^* is a 2-disk and x_2 is a point in $\text{int}(D_2^*)$. Choose the gluing map f of $\partial B_2'$ to ∂D_2^* so that $f(D_2^* \times \{0\}) = D_1^*$, $f(D_2^* \times \{1\}) = D_2^*$ and $f(\partial D_2^* \times I) = S_2$. Put $W_1 = X_2 \cup_{f(D_2^* \times \{0\}) \cup (D_2^* \times \{1\})} (D_2^* \times I)$ and $W_2 = Y_2$. Then W_2 is a genus two handlebody. And since $D_2^* \times I$ is a 1-handle for X_2, W_1 is also a genus two handlebody. Hence (W_1, W_2) is a genus two Heegaard splitting of the 3-sphere $S^3_i (= B_2 \cup B_2')$. Since δ_2 is a trivial arc in X_2 by Claim and δ_2' is a trivial arc in $D_2^* \times I$ by the definition, $K_2 (= \delta_2 \cup \delta_2')$ is a core of a handle of W_1. Thus K_2 has tunnel number one.

In the rest of this section, we show $l = 0$. Then by the uniqueness of prime decomposition of knots [10], and since tunnel number one knots are prime, we have the conclusion (1) of Theorem. The next lemma is trivial but important.
Lemma 2.1. Let U be a solid torus in S^3 and c an essential loop in ∂U. If c bounds a disk in $\partial (S^3 - U)$, then U is an unknotted solid torus and c is isotopic in U to a core of U.

By Fact 1.4, by performing the isotopy of type A at α_1, we have an annulus in V_1, say A_1.

Lemma 2.2. If $l > 0$, then no core of A_1 bounds a disk in $S^3 - K$.

Proof. Suppose a core of A_1, say c, bounds a disk, say D, in $S^3 - K$. Let A be an annulus in $S^{(1)}$ such that $\partial A = C_1^* \cup c$. Then $A \cap K = \emptyset$ because α_1 is of type III by Fact 1.4. Then by using the annulus A and the disk D, we see that C_1^* is contractible in $S^3 - K$ to a point. This is a contradiction because C_1^* is a meridian of $N(K)$. □

Lemma 2.3. If $l > 0$, then b_1 is not contained in any 3-ball component of $V_1 - S_1$.

Proof. Suppose b_1 is contained in a 3-ball component of $V_1 - S_1$, say B. Then we can consider that A_1 is an annulus in ∂B. If $B \cap K = \emptyset$, then a core of A_1 bounds a disk in $B(\subset S^3 - K)$. This contradicts Lemma 2.2. Hence $B \cap K \neq \emptyset$. Since K is decomposed by the 2-sphere S into two components, the two components cannot be contained in the same component of $V_1 - S_1$. Hence $B \cap K$ is a single arc. Moreover, by Lemma 2.2, we can find a disk, say D, in B such that $D \cap K$ is a point and $D \cap A_1 = \partial D$ is a core of $A_1(\subset S^{(1)})$. Let P_1 and P_2 be the two components of $S^{(1)} - \partial D$ containing D_1^* and D_2^* respectively. Put $Q_i = P_i \cup D$ $(i = 1, 2)$. Since $S^{(1)}$ gives a nontrivial connected sum of K, we may assume that Q_1 gives a nontrivial connected sum of K. Then, since D_i^* is contained in Q_2, $Q_1 \cap V_1$ consists of at most $l + 1$ disks. This contradicts the minimality of $\#(S_1)$. □

We note that the above three lemmas remain valid in Cases II and III too.
Lemma 2.4. \(l = 0 \).

Proof. Suppose \(l > 0 \) and \(b_1 \) is attached to \(D_1 \). If \(D_1 \) is a nonseparating disk in \(V_1 \), then \(b_1 \) is contained in the 3-ball in \(V_1 \) cut off by \(D_1^* \cup D_2^* \cup D_1 \). This contradicts Lemma 2.3. Hence \(D_1 \) is a separating disk and \(b_1 \) is contained in the solid torus in \(V_1 \) cut off by \(D_1 \). Note here that \(D_1 \cap K = \emptyset \). Let \(U \) be the solid torus in \(V_1 \) cut off by \(A_1 \) indicated in Fig. 4.

Let \(c \) be a core of \(A_1 \), then by Lemma 2.2, \(c \) is an essential loop in \(\partial U \). Since \(c \) is a loop in \(S^{(1)} \), \(c \) splits \(S^{(1)} \) into two disks. Then by using one of the two disks and the fact that \(S^{(1)} \cap U = A_1 \subset \partial U \), we see that \(c \) bounds a disk in \(\text{cl}(S^3 - U) \). Hence by Lemma 2.1, \(c \) is isotopic in \(U \) to a core of \(U \). This shows that \(b_1 \) wraps a handle of \(V_1 \) exactly once. Hence \(A_1 \) is isotopic rel. \(\partial A_1 \) to the annulus \(\text{cl}(\partial U - A_1) \). Thus we can reduce the number \(\#(S_1) \) by pushing back \(A_1 \) into \(V_2 \). This contradiction completes the proof of the lemma and the proof of Case I. \(\square \)

3. Case II

Suppose Case II occurs.

If \(l = 0 \), then we can find a loop in \(V_1 \) which intersects \(D_1^* \cup D_2^* \) in a single point. This shows that \(S \) is a nonseparating 2-sphere in \(S^3 \). Hence \(l > 0 \).

Suppose \(l = 1 \), and \(D_1 \) is a nonseparating disk in \(V_1 \) such that \(D_1^* \cup D_2^* \cup D_1 \) splits \(V_1 \) into a 3-ball and a solid torus. By Lemma 2.3, \(b_1 \) is contained in the solid torus component of \(V_1 - S_1 \) as illustrated in Fig. 5, and let \(A_1 \) be the annulus as a union of \(D_1 \) and \(b_1 \). Since \(V_2 \cap S^{(1)} \) consists of two annuli, we can put \(V_2 \cap S^{(1)} = F_1 \cup F_2 \). Moreover we can regard \(F_i \) as a union of an essential disk in \(V_2 \), say \(G_i \), and a band in \(V_2 \), say \(h_i \) \((i = 1, 2) \). In addition, suppose \(G_1 \) and \(G_2 \) are mutually parallel nonseparating disks and that \(h_1 \) and \(h_2 \) are not mutually parallel bands as illustrated in Fig. 6.

Let \(X_1 \) and \(X_2 \) be the two components of \(V_1 - (D_1^* \cup D_2^* \cup A_1) \) indicated in Fig. 5, and \(Y_1 \) and \(Y_2 \) the two components of \(V_2 - (F_1 \cup F_2) \) indicated in Fig. 6. If \(Y_1 \cap \partial V_2 \) is identified with \(X_2 \cap \partial V_1 \), then the band \(b_2 \), which is produced by the
isotopy of type A at α_2 through Δ (indicated in Fig. 6), does not run over b_1. Hence we can push back b_1 into V_2, leaving b_2 in V_1. Then since α_2 is of type I and is not an e-arc, b_2 connects D_1 and one of D_1^+ and D_2^+. Hence we can reduce the number $\#(S_i)$, a contradiction. Thus, for $i = 1, 2$, $Y_i \cap \partial V_2$ is identified with $X_i \cap \partial V_1$.

Put $B_1 = X_1 \cup Y_1$ and $B_2 = X_2 \cup Y_2$. Then, since B_1 and B_2 are the two components of $S^3 - S^{(1)}$, B_i is a 3-ball ($i = 1, 2$). Put $\delta_i = B_i \cap K = X_i \cap K$. Then by the argument in the proof of Claim in Section 2, we see that δ_i is a trivial arc in X_i ($i = 1, 2$). Let B_i' be a 3-ball and δ_i' a trivial arc properly embedded in B_i' ($i = 1, 2$). Put $S_i^3 = B_i \cup B_i'$ and $K_i = \delta_i \cup \delta_i'$ ($i = 1, 2$), then K_i is a knot in the 3-sphere S_i^3. In the following, we show that K_1 has a 2-bridge decomposition and that K_2 has tunnel number at most two.

We denote the images of D_i^+, D_i^-, A_i, F_1 and F_2 in ∂X_1 and ∂Y_1 by the same notations. Let D_2 be a 2-disk and a_1 and a_2 two points in $\text{int}(D_2)$, and let $N(a_i)$ be a regular neighborhood of a_i ($i = 1, 2$) in $\text{int}(D_2)$ with $N(a_1) \cap N(a_2) = \emptyset$. Put $D_i^+ = \text{cl}(D_2 - N(a_1))$ and $D_i^- = \text{cl}(D_2 - (N(a_1) \cup N(a_2)))$. Since there is a nonseparating disk in X_1, say δ_0, such that $\delta_0 \cap \delta_1 = \emptyset$ and $\delta_0 \cap \partial A$ is an arc and since there are two nonseparating disks in Y_1, say Δ_1 and Δ_2, such that $\Delta_i \cap \partial A$ is an arc ($i = 1, 2$), we see that (X_1, δ_1, A_1) is homeomorphic to $(D_2^+ \times I, (a_1) \times I, \partial N(a_2) \times I)$ and that (Y_1, F_1, F_2) is homeomorphic to $(D_2^- \times I, \partial N(a_1) \times I, \partial N(a_2) \times I)$, where $I = [0, 1]$ (see Fig. 7). Regard B_i' as $D_i^+ \times [0, 3]$ and δ_i' as $(x_1) \times [0, 3]$, where D_i^+ is a 2-disk and x_1 is a point in $\text{int}(D_i^+)$.

Choose the glueing map f of $\partial B_i'$ to ∂B_1 so that $f(D_i^+ \times (0)) = D_i^+$, $f(\partial D_i^+ \times [0, 1]) = F_1$, $f(\partial D_i^+ \times [1, 2]) = A_i$, $f(\partial D_i^+ \times [2, 3]) = F_2$ and $f(D_i^- \times [3]) = D_i^-$. Put $W_1 = X_1 \cup_{f_1(D_2^+ \times [1, 2])} (D_2^+ \times [1, 2])$ and $W_2 = Y_1 \cup_{f_2(D_2^- \times [1, 2])} (D_2^- \times [1, 2])$. Then (W_1, W_2) is a genus zero Heegaard splitting of the 3-sphere $S_i^3 = B_1 \cup B_1'$ which gives a 2-bridge decomposition of $K_i = \delta_i \cup \delta_i'$. Hence K_i has a 2-bridge decomposition. We note here that the above argument is due to Kobayashi [3] (cf. [3, Fig. 7, p. 18]).

Next we denote the images of D_i^+, D_i^-, A_i, F_1 and F_2 in ∂X_2 and ∂Y_2 by the same notations. Let e be a trivial arc properly embedded in X_2 which is obtained
by pushing an essential arc properly embedded in A_1 into X_2, and let $N(\varepsilon)$ be a regular neighborhood of ε in X_2. Then $\text{cl}(X_2 - N(\varepsilon))$ is a genus two handlebody and $Y_2 \cup N(\varepsilon)$ is a genus three handlebody. By the definition of ε, there is a nonseparating disk, say D, properly embedded in $\text{cl}(X_2 - N(\varepsilon))$ such that $D \cap A_1 = \partial D \cap A_1$ is an essential arc properly embedded in A_1. Since δ_2 is a trivial arc in X_2 and $\delta_2 \cap D = \emptyset$, there is a disk R in $\text{cl}(X_2 - N(\varepsilon))$ such that $\partial R = \delta_2$ and $\partial R = \delta_2 \cup (\text{an arc in } \partial \text{cl}(X_2 - N(\varepsilon)))$.

Claim. We can choose R so that $R \cap A_1 = \emptyset$.

Proof. Suppose $R \cap A_1(= \partial R \cap A_1) \neq \emptyset$. Then we may assume that $R \cap A_1$ consists of essential arcs in A_1. Put $D \cap A_1 = e_0$ and $R \cap A_1 = e_1 \cup e_2 \cup \cdots \cup e_k$, and suppose that these arcs lie in A_1 in this order. Then $e_0 \cup e_1$ cuts off a disk in A_1, say G_1, such that $G_1 \cap \{e_0 \cup e_1\} = e_0 \cup e_1$. Then since $R \cup G_1 \cup D$ is a disk, by pushing it off slightly, we get a new disk R_1 in $\text{cl}(X_2 - N(\varepsilon))$ such that $R_1 \cap D = \emptyset$, $\partial R_1 = \delta_2 \cup (\text{an arc in } \partial \text{cl}(X_2 - N(\varepsilon)))$ and $R_1 \cap A_1 = e_2 \cup e_3 \cup \cdots \cup e_k$. Hence by repeating these operations, we get a disk R_k in $\text{cl}(X_2 - N(\varepsilon))$ such that $R_k \cap D = \emptyset$, $\partial R_k = \delta_2 \cup (\text{and arc in } \partial \text{cl}(X_2 - N(\varepsilon)))$ and $R_k \cap A_1 = \emptyset$. This completes the proof of the claim. □

By Claim, and since the regular neighborhood of $A_1 \cup D$ in $\text{cl}(X_2 - N(\varepsilon))$ is a solid torus, we can consider that $\text{cl}(X_2 - N(\varepsilon))$ is a disk sum of two solid tori such
that one of them contains δ_2 as a trivial arc and the other contains A_1 in the boundary as a core of it (see Fig. 8).

Regard B_2 as $D_2 \times [0, 3]$ and δ_2 as $\{x_2\} \times [0, 3]$, where D_2 is a 2-disk and x_2 is a point in int(D_2^2). Choose the glueing map f of ∂B_2 to ∂B_1 so that $f(D_2^2 \times \{0\}) = D_1^*$, $f(\partial D_2^2 \times [0, 1]) = F_1$, $f(\partial D_2^2 \times [1, 2]) = A_1$, $f(\partial D_2^2 \times [2, 3]) = F_2$ and $f(D_2^2 \times \{3\}) = D_2^*$. Put $W_1 = \text{cl}((X_2 - N(e)) \cup \eta(D_2^2 \times \{0\}) \cup \eta(D_2^2 \times [1, 2]) \cup \eta(D_2^2 \times \{3\})) \cup (D_2^2 \times \{0, 3\})$ and $W_2 = Y_2 \cup N(e)$. Then (W_1, W_2) is a genus three Heegaard splitting of the 3-sphere $S^3(= B_2 \cup B_1)$. Moreover by Claim and Fig. 8, $K_2(= \delta_2 \cup \delta_2')$ is a core of a handle of W_1. Hence K_2 has tunnel number at most two.

In the rest of this section, we show that $I = 1$, that D_1 and $V_2 \cap S^{(1)}$ satisfy the above conditions and that the knot K_2 is prime. Then by the uniqueness of prime decomposition of knots, we have the conclusion (2) of Theorem. In the following proof, put $\mathcal{D}^* = D_1^* \cup D_2^*$ and $\mathcal{D} = \{D_i\}_{i=1}^l$.

Lemma 3.1. There is no separating disk in \mathcal{D}.

Proof. Suppose there is a separating disk in \mathcal{D}, say D_1. Then D_1 splits V_1 into a solid torus and a genus two handlebody containing \mathcal{D}^*. If the solid torus contains a nonseparating disk in \mathcal{D}, then each component of $V_1 - S_1$ is a 3-ball. This contradicts Lemma 2.3. Hence we may assume that the solid torus intersects S_1 in only D_1 and that b_1 is contained in the solid torus. Then by the argument in the proof of Lemma 2.4 (cf. Fig. 4), we have a contradiction. □

Lemma 3.2. There is no disk D_i in \mathcal{D}, such that $\{D_1^*, D_2^*, D_i\}$ is a complete meridian disk system of V_i.

Proof. If there is such a disk in \mathcal{D}, then each component of $V_1 - S_1$ is a 3-ball. This contradicts Lemma 2.3. □

Lemma 3.3. We may assume that \mathcal{D} consists of one parallel class.

Proof. Suppose \mathcal{D} has more than one parallel classes. Then by Lemmas 3.1 and 3.2, it has exactly two parallel classes as illustrated in Fig. 9.
Tunnel number of knots

Put $\mathscr{D}_1 = \{D_i\}_{i=1}^{r+1}$ and $\mathscr{D}_2 = \{D_i\}_{i=r+1}^{r+1}$ as in Fig. 9. Then we may assume that b_1 is attached to D_1 and is contained in the solid torus (not containing K) in V_1 cut off by $D_1 \cup D_{r+1}$. Let U be the solid torus in V_1 cut off by $A_1 \cup D_{r+1}$. Then by Lemma 2.1, there is a meridian disk of U, say D, intersecting A_1 in an arc.

Continue isotopies of type A at α_i ($i = 1, 2, \ldots$). Suppose α_k is of type I and α_j is of type III for all $j \leq k$, and let A_j be the annulus in V_1 produced by the isotopy of type A at α_j ($1 \leq j \leq k$). Since α_k is not a d-arc, b_{k+1} connects two annuli or a disk in \mathscr{D}^* and an annulus. If b_{k+1} connects two annuli, say A_s and A_t ($s < t$), then b_{k+1} is contained in the region between A_s and A_t. Then since b_{k+1} does not run over b_i ($i \leq k$), by pushing back the bands $\{b_i\}_{i=1}^{k}$ into V_2 leaving D_{k+1} in V_1, we can change the order of $\{\alpha_i\}_{i=1}^{r}$ so that $\alpha_i (= \alpha_{k+1}$ in the old order) is a d-arc. Then by Fact 1.1, we can reduce the number $\#(S_1)$, a contradiction. Thus b_{k+1} connects a disk in \mathscr{D}^* and an annulus. This shows that, at the stage that the isotopy of type A at α_k has just performed, every disk in one of \mathscr{D}_1 and \mathscr{D}_2, say \mathscr{D}_1, has been attached to a band (see Fig. 10).

By pushing back the bands being attached to the disks in \mathscr{D}_1 into V_2 leaving the other bands in V_1, we can put $V_1 \cap S = \mathscr{D}^* \cup \{A_i\}_{i=1}^{r} \cup \mathscr{D}_2$. Since A_i intersects D in a single arc and A_1, A_2, \ldots, A_r are all mutually parallel, $\{A_i\}_{i=1}^{r} \cap D$ consists of mutually parallel r-arcs each of which cuts off a disk Q_i such that $Q_1 \subset Q_2 \subset \cdots \subset Q_r$ (see Fig. 11).

Perform the isotopies of type A from V_1 to V_2 through the disks $\{Q_i\}_{i=1}^{r}$. Then, since in Fig. 12 the disk D_0 is parallel to the disk D_0', we see that S is isotopic to a 2-sphere which intersects V_1 in $\mathscr{D}^* \cup \{l$ parallel disks$\}$. This completes the proof of the lemma. \Box

Fig. 9.

Fig. 10.
Lemma 3.4. \(l = 1 \), \(S_1 = D_1^* \cup D_2^* \cup D_1 \) and \(V_2 \cap S^{(1)} = F_1 \cup F_2 \), where \(D_1 \) is a nonseparating disk in \(V_1 \), and \(F_1 \) and \(F_2 \) are nonseparating annuli in \(V_2 \) such that \(F_i \) is a union of a nonseparating disk \(G_i \) and a band \(h_i \) \((i = 1, 2)\), \(G_1 \) and \(G_2 \) are mutually parallel and \(h_1 \) and \(h_2 \) are not mutually parallel as illustrated in Fig. 6.

Proof. By Lemma 3.3 and its proof, we can put \(V_1 \cap S^{(1)} = \varnothing \cup \{ A_i \}_{i=1}^{l} \), where \(A_1, A_2, \ldots, A_l \) are all mutually parallel nonseparating annuli as illustrated in Fig. 13.
Since $V_2 \cap S^{(l)}$ consists of $l + 1$ annuli, we can put $V_2 \cap S^{(l)} = \{F_i\}_{i=1}^{l+1}$. Then we can regard F_i as a union of an essential disk in V_2, say G_i, and a band in V_2, say h_i $(i = 1, 2, \ldots, l + 1)$. For $i = 1, 2$, we may assume that $C_i^* = \partial F_i$. Since, for $i = 1, 2$, ∂F_i is identified with $C_i^* \cup (a$ component of $\partial A_i)_{1-l_1}$ and there is a loop in ∂V_1 which intersects C_i^* in a point and intersects no component of $\partial A_i_{1-l_1}$. F_i is a nonseparating annulus in V_2. Hence G_i is a nonseparating disk in V_2 $(i = 1, 2)$. Moreover we may assume that h_2 does not run over h_1. If another band runs over h_1, then we can perform an isotopy of type A from V_2 to V_1 which produces a band in V_1 connecting two annuli in $\{A_i\}_{i=1}^{l+1}$. Then by the argument in the proof of Lemma 3.3, we have a d-arc and can reduce the number $\#(S_1)$, a contradiction. Hence we see that no band runs over h_1. For G_1 and G_2, we have the following three cases.

Case A: G_1 and G_2 are mutually parallel (cf. Fig. 1(III)).

Since C_i^* is not parallel to any loop in $C_i^* \cup \{\partial A_i\}_{1-l_1}$, F_1 and F_2 are not mutually parallel. Hence F_1 and F_2 are in the position illustrated in Fig. 6. If Y_i (indicated in Fig. 6) contains another annulus, then since the annulus is parallel to F_1 or F_2, C_i^* $(i = 1 \text{ or } 2)$ is parallel to a loop in $\partial A_i_{1-l_1}$, a contradiction. Hence $Y_i \cap S^{(l)} = F_1 \cup F_2$. By the way, there are exactly two 2-spheres with four holes in the components of $\partial V_1 - \partial (V_1 \cap S^{(l)})$, one of which is bounded by $\partial (D_i^* \cup D_{i+1}^* \cup A_i)$ and the other is bounded by $\partial (D_i^* \cup D_{i+1}^* \cup A_i)$. Thus $Y_i \cap \partial V_1$ (= a 2-sphere with four holes) is identified with one of them, and in both cases we have $l = 1$ because $D_i^* \cup D_{i+1}^* \cup F_1 \cup F_2 \cup A_i$ $(i = 1 \text{ or } l)$ is a 2-sphere. Hence in Case A, we have the required conclusion.

Case B: $G_1 \cup G_2$ splits V_2 into two solid tori (cf. Fig. 1(I)).

Let X_1 and X_2 be the two components of $V_2 - (G_1 \cup G_2)$, and we may assume that h_2 is in X_2. Suppose h_1 is in X_2 too. If the genus three handlebody in V_2 cut off by $F_1 \cup F_2$ contains no component of $\{F_i\}_{i=1}^{l+1}$, then $\partial V_2 - \partial (V_1 \cap S^{(l)})$ has a component which is a torus with four holes. This is a contradiction because each component of $\partial V_1 - \partial (V_1 \cap S^{(l)})$ is a planar surface. Hence the genus three handlebody contains a component of $\{F_i\}_{i=1}^{l+1}$. Then by performing an isotopy of type A
from V_2 to V_1 leaving h_1 and h_2 in V_2, we have a band in V_1 connecting two annuli in $\{A_i\}_{i=1}^l$. Then by the argument in the proof of Lemma 3.3, we have a d-arc and can reduce the number $#(S_i)$, a contradiction. Hence h_1 is not in X_2 and meets G_1 in X_1 as illustrated in Fig. 14. Note that in general h_1 runs over h_2.

By noting that no band runs over h_1 and by the argument in the proof of Lemma 2.4, we see that X_2 contains no separating annuli in $\{Z\}$. Then by applying Lemma 2.1, we see that there is a nonseparating disk of I' in X_2 which intersects any annulus in X_2 in an arc (cf. Fig. 10). Then, since in Fig. 15 the annulus F_2 is isotopic to the annulus F_2', we can regard F_2 as a union of a nonseparating disk G_2 and a band such that G_2 is parallel to G_1. Hence this case is reduced to Case A.

Case C: $G_1 \cup G_2$ does not separate V_2 (cf. Fig. 1(II)).

Claim 1. There is no separating disk in $\{G_i\}_{i=1}^{l+1}$.

This is proved similarly to Lemma 3.1.

Claim 2. There is no disk G_i in $\{G_i\}_{i=3}^{l+1}$ such that (G_1, G_2, G_i) is a complete meridian disk system of V_2.

This is proved similarly to Lemma 3.2.

Claim 3. There is no disk G_i in $\{G_i\}_{i=3}^{l+1}$ such that G_i is parallel to G_1 or G_2.

Proof. Suppose there is such a disk, say G_k. If h_1 or h_2 runs over h_k, then, since G_k is parallel to G_1 or G_2, F_k is parallel to F_1 or F_2. This contradicts that $C_i^*(i = 1, 2)$ is not parallel to any component of ∂A_i. Hence neither h_1 nor h_2 runs over h_k. Then we can push h_k into V_1 leaving h_1 and h_2 in V_2. Thus by the argument in the proof of Lemma 3.3, we have a d-arc and can reduce the number $#(S_i)$. This contradiction completes the proof of the claim.

By Claims 1, 2 and 3, $\{G_i\}_{i=3}^{l+1}$ has at most two parallel classes like \mathcal{D} illustrated in Fig. 9. Then there is a loop in V_2 intersecting $V_2 \cap \partial S^{(l)}$ in l points. On the other hand, there is a loop in V_1 intersecting $V_1 \cap S^{(l)}$ in $l + 1$ points. Hence we have a
Finally to complete the proof of Case II, we have to show that \(K_2 \) is prime.

Let \(S' \) be a 2-sphere which gives a nontrivial connected sum of \(K \) and is disjoint from \(S \). Put \(V_1 - S_1 = X_1 \cup X_2 \), where \(X_1 \) is a 3-ball and \(X_2 \) is a solid torus. Since 2-bridge knots are prime, we may assume that \(S' \cap X_1 = \emptyset \). Then we can put \(S' \cap X_2 = P_1^* \cup P_2^* \cup P_1 \cup \cdots \cup P_m \), where \(P_1^*, P_2^*, P_1, \ldots, P_m \) are disks such that \(P_i^* \) intersects \(K \) in a point \((i = 1, 2) \) and \(P_j \cap K = \emptyset \) \((j = 1, 2, \ldots, m)\). In addition, we assume that \(\#(V_1 \cap S') \) has been minimized in its isotopy class rel. \(K \) among all 2-spheres which are disjoint from \(S \) and intersect \(V_1 \) in such disks.

If \(P_1^* \cup P_2^* \) splits \(V_1 \) into two solid tori, then by the argument in Section 2, we have the conclusion (1) of Theorem. If \(P_1^* \) and \(P_2^* \) are mutually parallel, then by exchanging \(S \) for \(S' \), this case is reduced to Case III. Hence we consider here only the case when \(P_1^* \cup P_2^* \) does not separate \(V_1 \). Put \(\mathcal{P}^* = P_1^* \cup P_2^* \) and \(\mathcal{S} = \{ P_i \}_{i=1}^m \).

Suppose \(m = 0 \). Then by the argument in the case of \(l = 0 \) in Case II, we have a contradiction. Hence \(m > 0 \).

By the argument in the proof of Lemma 3.1, we see that \(\mathcal{S} \) has no separating disk in \(V_1 \). By Lemma 2.3, no disk in \(\mathcal{P}^* \cup \mathcal{S} \) is a meridian disk of \(X_2 \). Hence by the argument in the proof of Lemma 3.3, we may assume that \(\mathcal{S} \) consists of exactly one parallel class which is parallel to \(D_1 \). Then by the argument in the proof of Lemma 3.4, we have \(m = 1 \).

Suppose one of \(P_1^* \) and \(P_2^* \), say \(P_1^* \), is not parallel to \(D_1^* \) or \(D_2^* \). Since \(P_1^* \) is not a meridian disk of \(X_2 \), \(\partial P_1^* \) bounds a disk in \(\partial X_2 \) containing the image of exactly one of \(D_1^* \) and \(D_2^* \) and the image of \(D_1 \). Let \(X_3 \) be the 3-ball in \(X_2 \) cut off by \(P_1^* \). Then since \(P_1^* \) is contained in \(X_3 \), by Lemma 2.3 we have a contradiction. Thus \(\mathcal{P}^* \) is parallel to \(\mathcal{S} \). Hence \(P_1^* \cup P_2^* \cup P_1 \) is parallel to \(D_1^* \cup D_2^* \cup D_1 \).

By performing an isotopy of type A from \(V_2 \) to \(V_1 \), we see that \(S \) and \(S' \) are isotopic rel. \(K \) to \(S^{(1)} \) and \(S'' \) respectively such that \(S^{(1)} \cap V_1 = D_1^* \cup D_2^* \cup A_1 \) and \(S'' \cap V_1 = P_1^* \cup P_2^* \cup B_1 \), where \(A_1 \) and \(B_1 \) are mutually parallel annuli in \(V_1 \) as illustrated in Fig. 5. Then by Lemma 3.4, we can put \(S^{(1)} \cap V_2 = F_1 \cup F_2 \) and \(S'' \cap V_2 = Q_1 \cup Q_2 \), where \(F_i \) and \(Q_i \) are nonseparating annuli in \(V_2 \) \((i = 1, 2)\). Put \(F_i = G_i \cup h_i \) and \(Q_i = R_i \cup t_i \) \((i = 1, 2)\), where \(G_i \) and \(R_i \) are nonseparating disks in \(V_2 \) and \(h_i \) and \(t_i \) are bands in \(V_2 \). Moreover by Lemma 3.4, \(G_1 \) and \(G_2 \) \((R_1 \) and \(R_2 \) respectively) are mutually parallel and \(h_1 \) and \(h_2 \) \((t_1 \) and \(t_2 \) respectively) are not mutually parallel.

Suppose \(G_1 \) and \(R_1 \) are not mutually parallel. Then, since \(t_1 \) and \(t_2 \) do not run over each other, neither \(h_1 \) nor \(h_2 \) run over \(t_1 \) or \(t_2 \). Hence by pushing \(t_1 \) into \(V_1 \) leaving the other bands in \(V_2 \), we have a band, say \(t \), in \(V_1 \) connecting \(B_1 \) and one of \(P_1^* \) and \(P_2^* \). Then by performing an isotopy of type A from \(V_1 \) to \(V_2 \), leaving \(t \) in \(V_1 \), we see that \(S'' \) is isotopic rel. \(K \) to \(S'' \) such that \(S'' \cap V_1 \) consists of two nonseparating disks each of which intersects \(K \) in a point. This contradicts the
minimality of \(#(V_1 \cap S')\). Hence \(G_1\) and \(R_1\) are mutually parallel. Then \(F_1 \cup F_2\) and \(Q_1 \cup Q_2\) are mutually parallel. This shows that \(S'\) is isotopic rel. \(K\) to \(S\), and completes the proof of Case II.

4. Case III

Suppose Case III occurs.

If \(l = 0\), then \(S_2\) is an annulus. Since \(\partial S_1\) splits \(\partial V_1\) into an annulus, say \(A\), and the other, \(S_2\) is a separating annulus in \(V_2\). Then \(S_2\) is a union of a separating disk and a band in \(V_2\). Since the disk splits \(V_2\) into a solid torus and a genus two handlebody, the band is contained in one of them. If the band is contained in the genus two handlebody, then \(\partial S_2\) splits \(\partial V_2\) into two tori with two holes, a contradiction. Hence the band is contained in the solid torus. Then by the argument in the proof of Lemma 2.4, \(S_2\) is parallel rel. \(\partial S_2\) to the annulus \(A\) in \(\partial V_2\). This shows that \(S\) gives a trivial connected sum of \(K\), a contradiction. Hence \(l > 0\).

Suppose \(l = 1\), and \(D_1\) is a separating disk in \(V_1\) which splits \(V_1\) into a solid torus containing \(K\) and a genus two handlebody. Since \(b_1\) is not contained in a 3-ball component of \(V_1 - S_1\), \(b_1\) is contained in the genus two handlebody as in Fig. 16, and let \(A_1\) be the annulus as a union of \(D_1\) and \(b_1\).

Since \(V_2 \cap S^{(1)}\) consists of two annuli, we can put \(V_2 \cap S^{(1)} = F_1 \cup F_2\). In addition, suppose \(F_1\) and \(F_2\) are mutually nonparallel nonseparating annuli as illustrated in Fig. 6. Note that in this case a component of \(\partial F_1\) is parallel in \(\partial V_2\) to a component of \(\partial F_2\).

Let \(X_1\), \(X_2\), and \(X_3\) be the three components of \(V_1 - (D_1^* \cup D_2^* \cup A_1)\) indicated in Fig. 16 and \(Y_1\) and \(Y_2\) the two components of \(V_2 - (F_1 \cup F_2)\) indicated in Fig. 6. Then \(Y_1 \cap \partial V_2\) is identified with \(X_1 \cap \partial V_1\) and \(Y_2 \cap \partial V_2\) is identified with \((X_2 \cup X_3) \cap \partial V_1\).

Put \(B_1 = X_1 \cup Y_1\) and \(B_2 = (X_2 \cup X_3) \cup Y_2\). Then, since \(B_1\) and \(B_2\) are the two components of \(S^3 - S^{(1)}\), \(B_i\) is a 3-ball (\(i = 1, 2\)). Put \(\delta_i = B_i \cap K(= X_i \cap K)\). Then by the argument in the proof of Claim in Section 2, we see that \(\delta_i\) is a trivial arc in

Fig. 16.
Tunnel number of knots

55

X, (i = 1, 2). Let B' be a 3-ball and δ' be a trivial arc properly embedded in B' (i = 1, 2). Put S^3_i = B_i ∪ B'_i and K_i = δ_i ∪ δ'_i (i = 1, 2), then K_i is a knot in the 3-sphere S^3_i (i = 1, 2). In the following, we show that K_i has a 2-bridge decomposition and K_j has tunnel number at most two.

Since there is a nonseparating disk, say A, in X, such that A ∩ A is an arc and there are two nonseparating disks, say A_i and A_2, in Y such that A ∩ F is an arc (i = 1, 2) (cf. Fig. 7), by the same argument as that in Case II, we see that K_i (= δ_i ∪ δ'_i) has a 2-bridge decomposition.

Next we denote the images of D^*_i, D^*_2, A_1, F_1 and F_2 in ∂X_1, ∂X_2 and ∂Y_1 by the same notations. Let F_3 be the annulus in ∂Y_2 bounded by a component of ∂F_1 and a component of ∂F_2. Put F = F_1 ∪ F_3 ∪ F_2, then F is an annulus in ∂Y_2. Let ε be a trivial arc properly embedded in Y_2 which is obtained by pushing an essential arc properly embedded in F into Y_2, and let N(ε) be a regular neighbourhood of ε in Y_2. Then cl(Y_2 - N(ε)) is a genus three handlebody. By the definition of ε, there is a nonseparating disk, say D, properly embedded in cl(Y_2 - N(ε)) such that D ∩ F = ∂D ∩ F is an essential arc properly embedded in F. Then since X_2 ∩ V has a 2-handle for cl(Y_2 - N(ε)). Hence X_2 ∩ cl(Y_2 - N(ε)) is a genus two handlebody, δ_2 is contained in X_2 ∩ cl(Y_2 - N(ε)) as a trivial arc and D^*_2 ∪ F_2 is a disk in X_2 ∩ cl(Y_2 - N(ε)) (i = 1, 2).

Regard B'_i as D^2 × I and δ'_i as {x_2} × I, where D^2 is a 2-disk, x_2 is a point in int(D^2) and I = [0, 1]. Choose the glueing map f of ∂B'_1 to ∂B_2 so that f(0 × I) = D^*_1 ∪ F_1, f(0 × I) = A_1 and f(1 × I) = D^*_2 ∪ F_2. Put W_1 = (X_2 ∩ cl(Y_2 - N(ε))) ∪ f(D^2 × {0}) ∪ (D^2 × {1}) and W_2 = X_3 ∩ N(ε). Then (W_1, W_2) is a genus three Heegaard splitting of the 3-sphere S^3_1 (= B_2 ∪ B'_1). Moreover by the above construction, K_2 (= δ_2 ∪ δ'_2) is a core of a handle of W_1. Hence K_2 has tunnel number at most two.

In the rest of this section, we show that l = 1, that D_1 and V_2 ∩ S^{(1)} satisfy the above conditions and that the knot K_2 is prime. Then by the uniqueness of prime decomposition of knots, we have the conclusion (2) of Theorem. In the following proof, put D^* = D^*_1 ∪ D^*_2 and D = {D_i}_{l=1}.

Lemma 4.1. We may assume that if D has separating disks, then those all are mutually parallel.

Proof. Suppose D has more than one parallel classes consisting of separating disks. Then, since V_1 is a genus three handlebody, D has exactly two such parallel classes, say D_1 and D_2. Let D_i be a disk in D (i = 1, 2). We may assume that D_1 cuts off a solid torus not containing K, say X_1. Let X_2 be the solid torus bounded by D_1 and D_2. If D has a nonseparating disk in X_2, then by Lemma 2.3, b_1 is contained in X_1. Then by the argument in the proof of Lemma 2.4, we have a contradiction. Thus D has no nonseparating disk in X_2, and we can put D = D_1 ∪ D_2 ∪ D_3, where D_3 is an empty set or consists of nonseparating disks in X_1. Thus by the argument in the proof of Lemma 3.3, we can put V_1 ∩ S^{(1)} = D^* ∪ {A_i}_{l=1} ∪
Fig. 17.

\[\mathcal{D}_j \cup \mathcal{D}_3 \ (j = 1 \text{ or } 2) \] for some \(r \). By Lemma 2.1, we see that there is a nonseparating disk of \(V_1 \) in \(X_2 \) which intersects \(A_i \) (\(1 \leq i \leq r \)) in a single arc. Then, by the argument in the proof of Lemma 3.3, and since in Fig. 17(1) and (2) the disk \(D_0 \) is isotopic to \(D_0' \), we have the conclusion of the lemma. \(\square \)

Lemma 4.2. If \(\mathcal{D} \) has a separating disk, then it cuts off a solid torus containing \(K \).

Proof. Suppose \(\mathcal{D} \) has a separating disk, say \(D_1 \), which cuts off a solid torus not containing \(K \). Let \(X_1, X_2 \) and \(X_3 \) be the three components of \(V_1 - (D_1^* \cup D_2^* \cup D_i) \), where \(X_1 \) is a 3-ball, \(X_2 \) is the solid torus bounded by \(D_1^* \cup D_2^* \cup D_i \) and \(X_3 \) is the solid torus cut off by \(D_1 \). If \(\mathcal{D} \) has a nonseparating disk in \(X_2 \), then by Lemma 2.3, \(b_1 \) is contained in \(X_3 \). Then by the argument in the proof of Lemma 2.4 we have a contradiction. Hence by Lemma 4.1 we can put \(\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \), where \(\mathcal{D}_1 \) consists of separating disks parallel to \(D_1 \) and \(\mathcal{D}_2 \) is an empty set or consists of nonseparating disks in \(X_3 \). Then we can put \(V_1 \cap S^{(r)} = \mathcal{D}^* \cup \{ A_i \}_{i=1}^r \cup \mathcal{D}_2 \) for some \(r \), where \(A_1, A_2, \ldots, A_r \) are all mutually parallel separating annuli. If \(\mathcal{D}_2 \) is an empty set, then since \(\alpha_{r+1} \) is of type 1, \(b_{r+1} \) connects two annuli or an annulus and one of \(D_1^* \) and \(D_2^* \). We note here that \(b_{r+1} \) does not meet a single annulus. If the former occurs, then we can change the order of \(\{ \alpha_i \}_{i=1}^r \) so that \(\alpha_{r+1} \) is a \(d \)-arc as in the proof of Lemma 3.3. This contradicts Fact 1.1. If the latter occurs, then since \(b_{r+1} \) does not run over the bands \(b_1, \ldots, b_r \), we can push back \(b_1, \ldots, b_r \) into \(V_2 \) leaving \(b_{r+1} \) in \(V_1 \). Then since \(b_{r+1} \) connects two disks of \(S_1 \), the number \(\#(S_1) \) is reduced, a contradiction. Hence \(\mathcal{D}_2 \) is not an empty set, and we can put
\[V_1 \cap S^{(t)} = \emptyset \cup \{ A_i \}_{i=1}^{r} \cup \{ A_i \}_{i=r+1}, \text{ where } \{ A_i \}_{i=r+1} \text{ consists of nonseparating annuli and has at most two parallel classes.} \]

Suppose \(\{ A_i \}_{i=r} \text{ consists of two parallel classes as illustrated in Fig. } 18. \)

Let \(A_s \) and \(A_t \) be the two nonseparating annuli such that \(\partial (A_s \cup A_t) \) bounds a 2-sphere with four holes in \(\partial V_1 \) disjoint from \(\partial ((V_1 \cap S^{(t)}) - (A_s \cup A_t)) \). Since \(\alpha_{t+1} \text{ is of type } 1 \), and by the same argument as the above, \(b_{i+1} \) connects \(A_s \) and \(A_t \) and runs over the bands \(b_s \) and \(b_t \). Since \(V_2 \cap S^{(t)} \) consists of \(l+1 \) annuli, \(V_2 \cap S^{(t+1)} \) consists of \(l+1 \) annuli and a disk, say \(G \). Then \(\partial G \) is identified with the loop produced by a fusion of two components of \(\partial (A_s \cup A_t) \) via \(b_{i+1} \).

Suppose \(G \) is a nonseparating disk of \(V_2 \). Let \(M_i \) be a nonseparating disk of \(V_1 \) which is contained in \(X_i \) (\(i = 1, 2, 3 \)). Then \(\{ M_1, M_2, M_3 \} \) is a complete meridian disk system of \(V_1 \). Clearly \(\partial G \) does not intersect \(M_i \). And by Fig. 19, \(b_{i+1} \) does not contribute to calculation of the algebraic intersection number of \(\partial G \) and \(\{ M_1, M_2, M_3 \} \). Hence the algebraic intersection number of \(\partial G \) and \(\{ M_1, M_2, M_3 \} \) is equal to that of \(a_s \cup a_t \) (or \(a_s \cup (-a_t) \)) and \(M_2 \), where \(a_s \) and \(a_t \) are cores of \(A_s \) and \(A_t \) respectively. Moreover it is equal to 0 or 2 (the algebraic intersection number of \(a_s \) and \(M_2 \)) because the algebraic intersection number of \(a_s \) and \(M_2 \) (\(a_t \) and \(M_2 \)) is equal to that of \(\pm a_t \) and \(M_2 \), where \(a_t \) is a core of \(A_t \). Then, since \(\partial G \) is a loop of a Heegaard diagram of \((V_1, V_2) \), we have the following presentation of \(H_i(V_1 \cup V_2; Z) \):

\[
H_i(V_1 \cup V_2; Z) = \begin{pmatrix} x, y, z \end{pmatrix} \begin{pmatrix} 0 & 2n & 0 \\ * & * & * \\ * & * & * \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\]

for some integer \(n \).

Thus \(H_i(S^3; Z) \neq 0 \), a contradiction.

Next suppose \(G \) is a separating disk of \(V_2 \).

Let \(U \) be the solid torus in \(V_2 \) cut off by \(G \). If \(U \) contains a component of \((V_2 \cup S^{(t+1)}) - G \), then the component is a separating annulus which cuts off a solid torus in \(V_2 \) (cf. Fig. 4). Then by the argument in the proof of Lemma 2.4, we can reduce the number \#(S_i), a contradiction. Hence \(U \cap ((V_2 \cap S^{(t+1)}) - G) = \emptyset \).
Perform an isotopy of type A from V_i to V_2 to push back b_{l+1} into V_2. If b_{l+1} is pushed back into U, then we can reduce the number $\#(S_1)$ by the same argument as the above. If b_{l+1} is pushed back into $V_2 - U$, then the annulus $(G \cup b_{l+1})$ splits V_2 into two genus two handlebodies, say W_1 and W_2, where $U \subset W_1$. Let R be the component of $V_1 - (A_i \cup A_r)$ indicated in Fig. 18. Then $\partial V_2 \cap W_1$ is identified with $\partial V_1 \cap R$. This is a contradiction because $\partial V_2 \cap W_1$ is a torus with two holes and $\partial V_1 \cap R$ is a 2-sphere with four holes. This contradiction shows that $\{A_{l+r+1}\}$ has exactly one parallel class.

Suppose $A_{r+1}, A_{r+2}, \ldots, A_l$ are all mutually parallel. Since $S^{(l)}$ is a separating 2-sphere in S^3, $l > r + 1$. Then A_r, A_{r+1} and A_l are in the position as illustrated in Fig. 20.

By the minimality of $\#(S_1)$, b_{l+1} connects two components of A_r, A_{r+1} and A_l. Then by the same argument as that in the case when $\{A_{l+r+1}\}$ has two parallel classes, we see that $\#(S_1)$ is reduced or $H_f(S^3; Z) = 0$, a contradiction. This completes the proof of the lemma. \(\square\)

Lemma 4.3. We may assume that \mathcal{D} consists of at most two parallel classes, one of which consists of separating disks and the other consists of nonseparating disks.

Proof. Suppose \mathcal{D} has more than two parallel classes. If those all are nonseparating disks, then each component of $V_1 - S_1$ is a 3-ball, a contradiction. Hence by
Lemmas 4.1 and 4.2, \(\mathcal{D} \) has exactly three parallel classes as illustrated in Fig. 21. Then by the argument in the proof of Lemma 3.3 (cf. Fig. 10), we have the conclusion of the lemma.

Suppose \(\mathcal{D} \) consists of two parallel classes. If one of them consists of separating disks and the other consists of nonseparating disks, then we have the conclusion of the lemma. If \(\mathcal{D} \) consists of separating disks, then by Lemma 4.1 we have the conclusion of the lemma. If \(\mathcal{D} \) consists of nonseparating disks, then those are the two parallel classes in the three parallel classes illustrated in Fig. 21. Then by the argument in the proof of Lemma 3.3, \(S \) is isotopic rel. \(K \) to a 2-sphere \(S' \) such that \(S' \cap V_1 = D^*_1 \cup D^*_2 \cup \mathcal{D}' \), where \(\mathcal{D}' \) consists of one parallel class. This completes the proof of the lemma. \(\square \)

Lemma 4.4. \(\mathcal{D} \) consists of one parallel class.

Proof. Suppose \(\mathcal{D} \) has more than one parallel classes. Then by Lemmas 4.2 and 4.3, we can put \(\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \), where \(\mathcal{D}_1 = (D_j)_{j=1}^r \) consists of nonseparating disks and \(\mathcal{D}_2 = (D_j)_{j=r+1}^l \) consists of separating disks each of which cuts off a solid torus containing \(K \). We may assume that \(D_1, D_2, \ldots, D_l \) are ordered as illustrated in Fig. 22. Note that if we remove one parallel class consisting of nonseparating disks from Fig. 21, then the resulting figure is homeomorphic to Fig. 22. And note that \(r > 1 \) because \(S \) is a separating 2-sphere in \(S^3 \).

![Fig. 21.](image-url)
By changing the letters of D_1, D_2, \ldots, D_r if necessary, we may assume that b_1 meets D_1 or D_{r+1}.

Claim. We may assume that b_1 meets D_1.

Proof. Suppose b_1 meets D_{r+1}. Let U be the solid torus in V_1 bounded by $D_1 \cup D_r \cup A_1$. Then by Lemma 2.1, there is a nonseparating disk of V_1 in U, say D, which intersects A_1 in a single arc. If b_2 is attached to a disk in D, then we can push back b_1 into V_2 leaving b_2 in V_1, and we can regard this situation as that b_1 meets D_1. By this observation we can put $V_1 \cap S^{(r)} = \partial^* \cup A_1 \cup \{A_i\}_{i=r+1}^{+1}$, where A_i is a separating annulus produced by the isotopy of type A at α_i $(1 \leq i \leq l - r)$. Since A_i intersects D in an arc, by the deformation as demonstrated in Fig. 17(1), we see that S is isotopic to S' such that $V_1 \cap S' = \partial^* \cup A_1 \cup \{D_i\}_{i=r+1}^{+1}$, where D_i is a separating disk in V_1 which cuts off a solid torus containing ∂^*. Then by the argument in the proof of Lemma 4.2, we have a contradiction. This completes the proof of the claim.

By Claim, we can put $V_1 \cap S^{(r)} = \partial^* \cup \{A_i\}_{i=r+1}^{+1} \cup \{A_j\}_{j=r+1}^{+1}$ as in the proof of Lemma 3.3, where A_i is a nonseparating annulus. Suppose $\{A_i\}_{i=r+1}^{+1}$ consists of two parallel classes (cf. Fig. 18). Perform isotopies of type A at α_i $(i = r+1, r+2, \ldots)$. Let b_k be the band which meets $\{A_i\}_{i=r+1}^{+1}$ such that $k = r+1$ or $k > r+1$ and b_j does not meet $\{A_i\}_{i=r+1}^{+1}$ for $r+1 \leq j \leq k-1$. If b_k runs over a band b_j for some $j \leq r$, then b_k connects two annuli in $\{A_i\}_{i=r+1}^{+1}$. Then by the argument in the proof of Lemma 4.2, we have a contradiction. If b_k does not run over any band b_j for $1 \leq j \leq r$, then we can push back b_j $(1 \leq j \leq r)$ into V_2 leaving b_k in V_1. Then α_k is a d-arc as in the proof of Lemma 3.3, and we have a contradiction. Hence $\{A_i\}_{i=r+1}^{+1}$ consists of one parallel class.

If α_{r+1} is of type I, then since α_{r+1} is not a d-arc, b_{r+1} connects two annuli in $\{A_i\}_{i=r+1}^{+1}$. Then by the argument in the proof of Lemma 4.2, we have a contradiction. Thus α_{r+1} is of type III and b_{r+1} meets D_{r+1} as illustrated in Fig. 23. Hence by repeating these arguments, we can put $V_1 \cap S^{(r)} = \partial^* \cup \{A_i\}_{i=r+1}^{+1} \cup \{A_j\}_{j=r+1}^{+1}$. Moreover by Lemma 2.1, there is a nonseparating disk of V_1, say D, such that A_i
Fig. 23.

(1 \leq i \leq r) intersects \(D \) in a single arc (see Fig. 23). If \(b_j \ (r + 1 \leq j \leq l) \) does not run over \(b_r \), then we can push back \(b_j \ (1 \leq i \leq r) \) into \(V_2 \) leaving \(b_j \) in \(V_1 \). Then by Lemma 2.1 we may assume that \(b_j \ (r + 1 \leq j \leq l) \) intersects \(D \) in a single arc. Hence by the deformation illustrated in Fig. 17(1), we have the same situation as that in the proof of Lemma 4.2. Then by the argument in the proof of Lemma 4.2, we have a contradiction. Hence \(b_j \ (r + 1 \leq j \leq l) \) runs over \(b_r \) many times and intersects \(D \) many times.

Here, to complete the proof of Lemma 4.4, we prepare a technical lemma.

Lemma 4.5. Let \(V \) be a solid torus in \(S^3 \) and put \(E = \text{cl}(S^3 - V) \). Let \(C \) be an annulus in \(\partial V \) such that each component of \(\partial C \), say \(c_1 \) and \(c_2 \), is a meridian of \(V \). Put \(C' = \text{cl}(\partial V - C) \). Let \(G_1 \) and \(G_2 \) be mutually disjoint disks in \(\text{int}(C') \), and put \(P = \text{cl}(C' - (G_1 \cup G_2)) \) and \(g_i = \partial G_i \ (i = 1, 2) \). Let \(\gamma \) be an arc properly embedded in \(E \) connecting a point in \(\text{int}(G_i) \) and a point in \(\text{int}(G_2) \) (see Fig. 24).

Suppose \(A \) is an annulus properly embedded in \(E \) disjoint from \(\gamma \), and put \(\partial A = a_1 \cup a_2 \). Then if \(a_1 \) is a core of \(C \) and \(a_2 \) is in \(P \), then \(a_2 \) is parallel in \(P \) to \(c_1 \) or \(c_2 \), and if \(a_1 \) is in \(\text{int}(G_i) \) \((i = 1 \text{ or } 2)\) and bounds a disk containing \(\gamma \cap G_i \), and \(a_2 \) is in \(P \), then \(a_2 \) is parallel in \(P \) to \(g_1 \) or \(g_2 \).

Fig. 24.
Proof. If \(a_1 \) is a core of \(C \), then \(a_2 \) is also a meridian of \(V \). If \(a_2 \) separates \(g_1 \) and \(g_2 \) in \(P \), then \(A \) intersects \(\gamma \). Hence \(a_2 \) does not separate \(g_1 \) and \(g_2 \) and is parallel in \(P \) to \(c_1 \) or \(c_2 \).

Suppose \(a_1 \) is in \(\text{int}(G_i) \) \((i = 1 \text{ or } 2)\). Without loss of generality, we may assume that \(a_1 \) is in \(\text{int}(G_1) \). Let \(F_1 \) be a disk in \(G_1 \) bounded by \(a_1 \). Since \(a_1 \cap C = \emptyset \), \(a_2 \) is also an inessential loop in \(\partial V \) and bounds a disk in \(\partial V - C \), say \(F_2 \). Since \(a_2 \) is in \(P \) and \(\partial F_1 \cap \partial F_2 = \emptyset \), we have \(F_1 \cap F_2 = \emptyset \) or \(F_1 \subset \text{int}(F_2) \). If \(F_1 \cap F_2 = \emptyset \), then \(A \cup F_1 \cup F_2 \) bounds a 3-ball in \(E \) in which \(\gamma \) is properly embedded. Then \(G_2 \subset F_2 \) and \(a_2 \) is parallel in \(P \) to \(g_2 \). Suppose \(F_1 \subset \text{int}(F_2) \) and put \(A' = \text{cl}(F_2 - F_1) \). Then, since the torus \(A \cup A' \) bounds a 3-manifold in \(E \) and \(A \cap \gamma = \emptyset \), we see that \(F_2 \cap G_2 = \emptyset \) and \(a_2 \) is parallel in \(P \) to \(g_1 \). This completes the proof of the lemma.

Recall Fig. 23. Let \(U' \) be the genus two handlebody in \(V_1 \) bounded by \(A_1 \cup A_r \cup A_{r+1} \). We denote the images of \(A_1 \), \(A_r \) and \(A_{r+1} \) in \(\partial U' \) by the same notations. Let \(N(A_{r+1}) \) be a regular neighborhood of \(A_{r+1} \) in \(U' \), and put \(U = \text{cl}(U' - N(A_{r+1})) \) and \(\tilde{A}_{r+1} = \text{cl}(\partial N(A_{r+1}) - \partial U') \)(see Fig. 25). Let \(a_1 \) and \(a_2 \) be cores of \(A_{r+1} \) and \(\tilde{A}_{r+1} \) respectively, and \(A \) the annulus in \(N(A_{r+1}) \) bounded by \(a_1 \cup a_2 \).

Since \(a_1 \) \((i = 1, r)\) is of type III, there are a component of \(\partial A_1 \), say \(g_1 \), and a component of \(\partial A_r \), say \(g_2 \), such that \(g_i \) bounds a disk \(G_i \) \((i = 1, 2)\) in \(S^{r+1} \) disjoint from \(\text{int}(A_1 \cup A_r) \) and \(G_r \) intersects \(K \) in a point. Put \(c_1 = \partial A_1 - g_1 \) and \(c_2 = \partial A_r - g_2 \), and let \(C \) be the annulus in \(S^{r+1} \) bounded by \(c_1 \cup c_2 \). Let \(B \) be the 3-ball in \(S^3 \) bounded by \(S^{r+1} \) containing \(U \). Put \(V = \text{cl}(S^3 - B) \cup U \) and \(E = \text{cl}(S^3 - V) \) \((= \text{cl}(B - U)) \). Then \(V \) is a solid torus because \(U \) is a genus two handlebody containing \(A_1 \) and \(A_r \) in the boundary and there is a complete meridian disk system of \(U \), say \(\{M_i, M_r\} \), such that \(M_i \cap A_i \) is an essential arc properly embedded in \(A_i \) \((i = 1, r)\). Put \(\gamma = E \cap K \). Then, since \(U \cap K = \emptyset \), \(\gamma \) is an arc properly embedded in \(E \), and this situation is the same as that in Lemma 4.5 (see Figs. 24, 25 and 26).

Recall Fig. 23. Let \(U' \) be the genus two handlebody in \(V_1 \) bounded by \(A_1 \cup A_r \cup A_{r+1} \). We denote the images of \(A_1 \), \(A_r \) and \(A_{r+1} \) in \(\partial U' \) by the same notations. Let \(N(A_{r+1}) \) be a regular neighborhood of \(A_{r+1} \) in \(U' \), and put \(U = \text{cl}(U' - N(A_{r+1})) \) and \(\tilde{A}_{r+1} = \text{cl}(\partial N(A_{r+1}) - \partial U') \)(see Fig. 25). Let \(a_1 \) and \(a_2 \) be cores of \(A_{r+1} \) and \(\tilde{A}_{r+1} \) respectively, and \(A \) the annulus in \(N(A_{r+1}) \) bounded by \(a_1 \cup a_2 \).

Since \(a_1 \) \((i = 1, r)\) is of type III, there are a component of \(\partial A_1 \), say \(g_1 \), and a component of \(\partial A_r \), say \(g_2 \), such that \(g_i \) bounds a disk \(G_i \) \((i = 1, 2)\) in \(S^{r+1} \) disjoint from \(\text{int}(A_1 \cup A_r) \) and \(G_r \) intersects \(K \) in a point. Put \(c_1 = \partial A_1 - g_1 \) and \(c_2 = \partial A_r - g_2 \), and let \(C \) be the annulus in \(S^{r+1} \) bounded by \(c_1 \cup c_2 \). Let \(B \) be the 3-ball in \(S^3 \) bounded by \(S^{r+1} \) containing \(U \). Put \(V = \text{cl}(S^3 - B) \cup U \) and \(E = \text{cl}(S^3 - V) \) \((= \text{cl}(B - U)) \). Then \(V \) is a solid torus because \(U \) is a genus two handlebody containing \(A_1 \) and \(A_r \) in the boundary and there is a complete meridian disk system of \(U \), say \(\{M_i, M_r\} \), such that \(M_i \cap A_i \) is an essential arc properly embedded in \(A_i \) \((i = 1, r)\). Put \(\gamma = E \cap K \). Then, since \(U \cap K = \emptyset \), \(\gamma \) is an arc properly embedded in \(E \), and this situation is the same as that in Lemma 4.5 (see Figs. 24, 25 and 26).

Fig. 25.
Since α_{r+1} is of type III and A_{r+1} is an annulus in ∂B, a_1 is a core of C or is in $\text{int}(G_i)$ ($i = 1$ or 2) and bounds a disk in G_i containing $\gamma \cap G_i$. Since A is an annulus properly embedded in E and a_2 is in $\text{cl}(\partial U - (A_1 \cup A_r)) = \text{cl}(\partial V - (C \cup G_1 \cup G_2))$ ($= P$ in Lemma 4.5), by Lemma 4.5, a_2 is parallel in $\text{cl}(\partial U - (A_1 \cup A_r))$ to one of c_1, c_2, g_1, and g_2. Moreover, since b_{r+1} runs over b_r, a_2 cannot be parallel to any component of $\partial A_1 = c_1 \cup g_1$. Hence a_2 is parallel to a component of $\partial A = c_2 \cup g_2$, and this means that b_{r+1} runs over b_r exactly once and intersects D in a single arc. Hence A_j ($r + 1 < j < l$) intersects D in a single arc.

Now α_{r+1} is of type I. If b_{r+1} connects two of the annuli A_1, A_2, ..., A_l, then by the argument in the proof of Lemma 4.2, we have a contradiction. Hence by Fact 1.3, b_{r+1} connects A_j and one of D_1^+ and D_2^+. Then by using the disk D, we can push back the bands $\{b_i\}_{i=1}^l$ into V_2, leaving b_{r+1} in V_1 (cf. Fig. 11). Then b_{r+1} is a band in V_1 connecting a disk and one of D_1^+ and D_2^+. Thus the number $\#(S_j)$ is reduced. This contradiction completes the proof of Lemma 4.4.

Lemma 4.6. \mathcal{D} consists of separating disks.

Proof. Suppose \mathcal{D} consists of nonseparating disks. Then by the argument in the proof of Lemma 3.3, we can put $V_1 \cap S^{(i)} = \mathcal{D}^* \cup \{A_i\}_{i=1}^l$. Then by the argument in the proof of Lemma 4.2, we see that the number $\#(S_1)$ is reduced or $H_i(S^3; \mathbb{Z}) \neq 0$. This contradiction completes the proof of the lemma.

Lemma 4.7. $l = 1$, $S_1 = D_1^+ \cup D_1^- \cup D_1^*$ and $V_2 \cap S^{(1)} = F_1 \cup F_2$, where D_1 is a separating disk which cuts off a solid torus in V_1 containing K, and F_1 and F_2 are nonseparating annuli in V_2 such that F_1 is a union of a nonseparating disk G_i and a band h_i ($i = 1$, 2, G_1 and G_2 are mutually parallel and h_1 and h_2 are not mutually parallel as illustrated in Fig. 6.

Proof. By Lemma 4.6, we can put $V_1 \cap S^{(i)} = \mathcal{D}^* \cup \{A_i\}_{i=1}^l$, where A_i ($1 < i < l$) is a separating annulus as illustrated in Fig. 16. Then we can put $V_2 \cap S^{(i)} = \{F_j\}_{j=1}^{l+1}$, where F_j is an annulus in V_2.
Claim. F_j is a nonseparating annulus for any $j \ (1 \leq j \leq l+1)$.

Proof. Suppose F_k is a separating annulus for some k. Put $F_k = G_k \cup h_k$, where G_k is a separating disk in V_2 and h_k is a band. Then G_k splits V_2 into a solid torus and a genus two handlebody. If the solid torus contains a component of $(F_j)_{j=1}^{l+1} - F_k$, then by the argument in the proof of Lemma 2.4, we have a contradiction. And by the same reason, we see that h_k is contained in the genus two handlebody. Hence F_k splits V_2 into two genus two handlebodies (cf. Fig. 3), say Y_1 and Y_2, where $Y_1 \cap ((F_j)_{j=1}^{l+1} - F_k) = \emptyset$. Then $\partial V_2 \cap Y_1$ is a torus with two holes. Since there is exactly one component of $\partial V_2 - S(t)$ which is a torus with two holes (that is the component cut off by ∂A_i), ∂F_k is identified with ∂A_i. Then $F_k \cup A_i$ is a torus. This contradiction completes the proof of the claim.

By Claim we can put $F_j = G_j \cup h_j \ (1 \leq j \leq l+1)$, where G_j is a nonseparating disk in V_2 and h_j is a band in V_2. Perform isotopies of type A at $\alpha_i \ (i \leq i \leq 2l+1)$. Then $\partial G_j \ (1 \leq j \leq l+1)$ is identified with a loop in ∂V_i produced by a fusion of two components of $\partial (V_1 \cap S(t))$ via the band b_{l+j}. Let M_1 be a nonseparating disk in V_i parallel to D_1^*, and M_2, M_3 two nonseparating disks in V_i such that $M_i \cap K = \emptyset \ (i = 1, 2)$ and $\{M_1, M_2, M_3\}$ is a complete meridian disk system of V_i. Then we see that b_{l+j} does not contribute to calculation of $H_i(V_1 \cup V_2; Z)$ (cf. Fig. 19). Let a be a core of A_i. Then $a \cap M_1 = \emptyset$. Let p be the algebraic intersection number of a and M_2, and q the algebraic intersection number of a and M_3. Then since $V_1 \cap S(t) = D_1^* \cup D_2^* \cup A_1 \cup \cdots \cup A_l$ (where A_1, A_2, \ldots, A_l are mutually parallel annuli), no band connects the two disks D_1^* and D_2^* (Fact 1.3) and since each band connects two of the $2l+2$ loops $\partial (D_1^* \cup D_2^* \cup A_1 \cup \cdots \cup A_l)$, the algebraic intersection number of ∂G_j and $\{M_1, M_2, M_3\}$ is one of the following (modulo sign): (1) $(0, p, q)$ if b_{l+j} connects a disk and an annulus or (2) $(0, 0, 0)$ or $(0, 2p, 2q)$ if b_{l+j} connects two annuli.

Suppose there are two disks G_s and G_t for some s and t such that $G_s \cup G_t$ does not separate V_2. Then ∂G_s and ∂G_t are two loops of a Heegaard diagram of (V_1, V_2). Hence we have one of the following presentations of $H_i(V_1 \cup V_2; Z)$:

$$H_i(V_1 \cup V_2; Z) = \left\{ \begin{array}{c}
\left\langle x, y, z \left| \begin{array}{ccc}
0 & 0 & 0 \\
* & * & * \\
* & * & *
\end{array} \right| \begin{array}{c}
x \\
y \\
z
\end{array} = \begin{array}{c}
0 \\
0 \\
0
\end{array} \right\rangle, \\
\left\langle x, y, z \left| \begin{array}{ccc}
0 & p & q \\
0 & p & q \\
* & * & *
\end{array} \right| \begin{array}{c}
x \\
y \\
z
\end{array} = \begin{array}{c}
0 \\
0 \\
0
\end{array} \right\rangle, \\
\left\langle x, y, z \left| \begin{array}{ccc}
0 & p & q \\
0 & 2p & 2q \\
* & * & *
\end{array} \right| \begin{array}{c}
x \\
y \\
z
\end{array} = \begin{array}{c}
0 \\
0 \\
0
\end{array} \right\rangle \text{ or} \\
\left\langle x, y, z \left| \begin{array}{ccc}
0 & 2p & 2q \\
0 & 2p & 2q \\
* & * & *
\end{array} \right| \begin{array}{c}
x \\
y \\
z
\end{array} = \begin{array}{c}
0 \\
0 \\
0
\end{array} \right\rangle. \end{array} \right\}$$
This shows that \(H_1(S^3; \mathbb{Z}) \neq 0 \), a contradiction. Hence \(G_1, G_2, \ldots, G_{l+1} \) are all mutually parallel or \((G_j)_{j+1} \) consists of two parallel classes such that the two disks which are not mutually parallel split \(V_2 \) into two solid tori.

Suppose \((G_j)_{j+1} \) consists of two parallel classes.

Claim. If \(G_s \) and \(G_t \) are mutually parallel for some \(s \) and \(t \), then \(F_s \) and \(F_t \) are mutually parallel.

Proof. We may assume that the annulus in \(\partial V_2 \) bounded by \(\partial (G_s \cup G_t) \) contains no other components of \(\partial (G_1 \cup G_2 \cup \cdots \cup G_{l+1}) - \partial (G_s \cup G_t) \). If \(F_s \) and \(F_t \) are not mutually parallel, then \(\partial (F_s \cup F_t) \) bounds a 2-sphere with four holes in \(\partial V_2 \). Since there is exactly one 2-sphere with four holes in the components of \(\partial V_1 - \partial (D_1^* \cup D_2^* \cup A_1 \cup \cdots \cup A_l) \), which is bounded by \(\partial (D_1^* \cup D_2^* \cup A_1) \), \(\partial (F_s \cup F_t) \) is identified with \(\partial (D_1^* \cup D_2^* \cup A_1) \). Then \(D_1^* \cup D_2^* \cup A_1 \cup F_s \cup F_t \) is a 2-sphere. Hence \((G_j)_{j+1} = \{G_s, G_t\} \) and this shows that \((G_j)_{j+1} \) consists of one parallel class. This is a contradiction and completes the proof of the claim.

By Claim, we see that \((F_j)_{j+1} \) consists of two parallel classes. Then by the argument in the proof of Case B of Lemma 3.4, we see that this case is reduced to the case when \(G_1, G_2, \ldots, G_{l+1} \) are all mutually parallel. Hence we may assume that \((G_j)_{j+1} \) consists of one parallel class.

If \(h_1, h_2, \ldots, h_{l+1} \) are all mutually parallel, then \(\partial (F_1 \cup F_2 \cup \cdots \cup F_{l+1}) \) consists of two parallel classes. This contradicts that \(\partial (D_1^* \cup D_2^* \cup A_1 \cup \cdots \cup A_l) \) consists of three parallel classes. Thus we can put \((F_j)_{j+1} = (F_j)_{k+1} \cup (F_j)_{j-k+1} \), where these are the two parallel classes. Then we may assume that \(\partial (F_k \cup F_{k+1}) \) bounds a 2-sphere with four holes in \(\partial V_2 \) which contains no other components of \(\partial (F_1 \cup F_2 \cup \cdots \cup F_{l+1}) - \partial (F_k \cup F_{k+1}) \). Since there is exactly one 2-sphere with four holes in the components of \(\partial V_1 - \partial (D_1^* \cup D_2^* \cup A_1 \cup \cdots \cup A_l) \), which is bounded by \(\partial (D_1^* \cup D_2^* \cup A_1) \), \(\partial (F_k \cup F_{k+1}) \) is identified with \(\partial (D_1^* \cup D_2^* \cup A_1) \). Then \(D_1^* \cup D_2^* \cup A_1 \cup F_k \cup F_{k+1} \) is a 2-sphere. This shows that \(l = 1 \) and \(k = 1 \). Then by the above argument, we see that \(F_1 \) and \(F_2 \) satisfy the required conditions. This completes the proof of the lemma. \(\square \)

Now we have to show that \(K_2 \) is prime. However, by noting the existence of the separating disk \(D_1 \), we see that it can be proved by the same argument as that in this section. This completes the proof of Case III and Theorem.

References

[5] K. Morimoto, There are knots whose tunnel numbers go down under connected sum, Preprint.