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a b s t r a c t

A key challenge for the waste management sector is to maximise resource efficiency whilst simulta-
neously reducing its greenhouse gas (GHG) emissions. For stakeholders to better understand the GHG
impacts of their waste management activities and identify emissions reduction opportunities, they need
to be able to quantify the GHG impacts of material recycling. Whilst previous studies have been under-
taken to develop GHG emission factors (EF) for materials recycling, they are generally insufficient to
support decision-making due to a lack of transparency or comprehensiveness in the range of materials
considered. In this study, we present for the first time a comprehensive, scientifically robust, fully trans-
parent, and clearly documented series of GHG EFs for the recycling of a wide range of source-segregated
materials. EFs were derived from a series of partial life cycle assessments (LCA) performed as far as pos-
sible in accordance with the ISO 14040 standard. With the exceptions of soil, plasterboard, and paint, the
recycling of source-segregated materials resulted in net GHG savings. The majority of calculated GHG
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provided by Elsevier - Publish
ife cycle assessment EFs were within the range of data presented in the literature. The quality of secondary data used was
assessed, with the results highlighting the dearth of high quality life cycle inventory (LCI) data on mate-
rial reprocessing and primary production currently available. Overall, the results highlight the important
contribution that effective source-segregated materials recycling can have in reducing the GHG impacts
of waste management.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
. Introduction

Solid waste management contributes less than 5% to global
reenhouse gas (GHG) emissions (Bogner et al., 2007). In response
o growing concerns about the threat of climate change, interna-
ional action aimed at reducing greenhouse gas (GHG) emissions is
ccelerating and the solid waste management sector is expected to
ontribute. Previous laggards such as the United States of America
USA) have recently committed to a reduction of GHG emissions
f 26–28% below 2005 levels by 2025, whilst China aims to peak
arbon emissions by 2030 and obtain 20% of its energy from zero-
arbon sources (White House, 2014). The European Union (EU)
s committed to reducing its GHG emissions by at least 20% of
990 levels by 2020 (EC, 2009) and 40% by 2030 (EC, 2014). This

ommitment has translated into Member States developing their
wn ambitious GHG emissions reduction targets. For example,
he United Kingdom (UK) has committed to reducing their GHG

∗ Corresponding author: Tel.: +44 2380 595464.
E-mail address: d.a.turner@soton.ac.uk (D.A. Turner).

ttp://dx.doi.org/10.1016/j.resconrec.2015.10.026
921-3449/© 2015 The Authors. Published by Elsevier B.V. This is an open access article un
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

emissions by 80% of 1990 levels by 2050 (HMSO, 2008). A
key challenge for the waste management sector is to maximise
resource efficiency whilst simultaneously reducing its GHG emis-
sions (Turner et al., 2011). Numerous international studies have
shown that the recycling of waste materials can result in net sav-
ings of GHG emissions (Björklund and Finnveden, 2005; Franchetti
and Kilaru, 2012; Manfredi et al., 2011; WRAP, 2006, 2010a). This
is because recycling materials into new (“secondary”) products can
displace production of “primary” products that can require signifi-
cant inputs of energy and raw materials. In order for stakeholders
to better understand the GHG impacts of their waste management
activities and identify GHG emissions reduction opportunities to
help achieve national GHG emissions reduction targets, they need
to be able to quantify the GHG emissions from material recycling.

Typically, GHG emissions are estimated using emission factors
(EFs) that relate the quantity of a pollutant emitted to a unit of
activity (e.g., kg fossil CO2 per tonne of material reprocessed). EFs

for different GHGs are usually aggregated and expressed as CO2
equivalent (CO2e) per activity unit. In the case of waste mate-
rial recycling, EFs are often expressed per tonne of waste material
collected and sent for recycling (kg CO2e/t). GHG EFs for waste

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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aterial recycling are typically developed using life cycle assess-
ent (LCA), applied either partially (focusing solely on the climate

hange potential impact indicator) or fully. LCA is a well established
nd internationally standardised methodology (ISO, 2006a,b) for
uantifying emissions from specified products or systems over
heir entire life cycle. LCA accounts for both the environmental
urdens (e.g., GHG emissions from residual waste disposed of in

andfill) and benefits (e.g., the recovery of recycling of waste mate-
ials to produce secondary products that replace the production of
rimary products). However, choices regarding system boundaries
efinition, model parameterisation, and data selection can signifi-
antly affect the calculated results (Finnveden, 1999). Furthermore,
HG EFs are generally developed for specific geographical areas and

echnologies, and their appropriateness to other situations may be
uestionable. To ensure that appropriate and representative GHG
Fs are applied, a thorough examination of background informa-
ion relating to methodological choices taken and data sources
s essential (Brogaard et al., 2014). However, GHG EFs are rarely
ccompanied by such detailed documentation.

A number of studies have presented GHG emissions factors for
aterials recycling that may be used to support decision makers. A

arbon Metric has been developed by WRAP (Waste and Resources
ction Programme) for the purpose of assisting the Scottish gov-
rnment in evaluating the GHG impacts of its national solid waste
anagement system and to identify areas for improvement (Pratt,

014; Pratt et al., 2013). The Carbon Metric is used to measure
rogress towards national waste reduction targets and evaluate
he impacts of waste policies on Scotland’s GHG impacts. As part of
he ongoing study, WRAP have produced a series of GHG emission
actors for recycling, incineration, and landfilling of certain waste

aterials and waste streams based on secondary data from a range
f published and unpublished sources. Whilst details of the data
ources used are provided, specific documentation regarding the
odelling approach and assumptions made to produce the EFs is

bsent. Furthermore, comprehensive EFs for materials recycling are
acking.

An adaptation of the Carbon Metric was produced by WRAP
or England (WRAP, 2012). The GHG EFs produced in the study
ere developed to be used by local authorities in conjunction
ith data from WasteDataFlow1 to evaluate waste management
erformance. No accompanying documentation regarding the
evelopment of the EFs is provided. Furthermore, EFs for a number
f waste materials are not included due to lack of data.

GHG EFs have also been produced by Defra (Department for
nvironment, Food & Rural Affairs) in the UK for the purposes of
rganisational GHG emissions reporting (Defra et al., 2013). How-
ver, the EFs are only presented as gross results (i.e., only direct
HG impacts are counted) and ‘avoided impacts’ (i.e., emissions
avings through the substitution of primary energy or material pro-
uction due to the recovery and production of energy from waste or
econdary products) are not included (Hill et al., 2013). Two other
tudies prepared for Defra by Environmental Resources Manage-
ent (ERM) have reported GHG EFs for waste materials recycling in

he UK. Fisher et al. (2006) undertook a macro-level investigation of
he flows of carbon and energy to evaluate the GHG impacts associ-
ted with alternative management options for key waste materials
n the UK, whilst Fisher (2006) evaluated the GHG impacts of solid

aste management policies in the context of the UK waste manage-

ent system. Both studies provide sufficient documentation and

re fully transparent in describing their approach and modelling
ssumptions. However, both studies are limited in terms of the

1 WasteDataFlow is a publically available, web-based data repository system that
as established in 2004 to enable local authorities in the UK to report certain munic-

pal waste information to the national government.
and Recycling 105 (2015) 186–197 187

materials for which GHG EFs are presented, with only the common
recyclables covered in the assessments.

The United States Environmental Protection Agency (US EPA)
has developed a Waste Reduction Model (WARM) to assist solid
waste managers and organisations to measure and report their
GHG emissions from solid waste management (US EPA, 2015).
For ease of use, the model exists as both a web-based calculator
and as a Microsoft Excel spreadsheet. As part of the development
of the model, GHG EFs were developed for the recycling of 39
different dry materials. Each EF is well documented, with the mod-
elling approach and assumptions taken clearly reported. Despite
the broad range of materials considered, the EFs developed for the
US EPA’s WARM model do not cover the full range of waste mate-
rials reported on in WasteDataFlow. Furthermore, the EFs were
developed based on the situation in the USA and lack relevance
to European systems and technologies.

Finally, a series of conceptual review papers were published in
a special edition of Waste Management & Research that provide
a transparent assessment of the GHG impacts associated with the
recycling of key materials, including paper (Merrild et al., 2009),
metals (Damgaard et al., 2009), plastics (Astrup et al., 2009), glass
(Larsen et al., 2009), and wood (Merrild and Christensen, 2009).
Each paper provides a description of the relevant material repro-
cessing technologies involved and an overview of the range of
GHG contributions associated with each technology. The GHG con-
tributions were quantified in the geographic context of Northern
Europe. Whilst the GHG impacts of materials recycling are trans-
parently documented, the papers are limited in scope to covering
only the key recyclable materials.

Although a number of studies have been undertaken to produce
GHG EFs for materials recycling (source-segregated or commin-
gled), they are generally insufficient to support national policy
makers and local decision makers due to a lack of transparency
and clarity in documentation or comprehensiveness in terms of
the range of waste materials considered. In this paper, we present
for the first time a comprehensive series of GHG EFs for the
recycling of a wide range of source-segregated materials based
on the results of individual material-specific partial LCA stud-
ies. We have focused on source-segregated (aka source-separated)
materials as they comprise a large proportion of collected dry recy-
clables from the municipal solid waste stream in the UK (WYG,
2013) and have been found to produce a higher quality recyclate
with lower contamination rates compared to commingled mate-
rials collection systems (WRAP, 2008). The purpose of developing
the GHG EFs is to assist UK and international decision makers at
multiple scales (national/regional governments, local authorities,
organisations, and entrepreneurs) in measuring environmental
performance and identifying optimal solid waste management
solutions with regards to GHG emissions.

2. Methodology

In this study, GHG EFs for recycling of source-segregated mate-
rials were derived from a series of partial LCAs undertaken for
each recyclable material investigated. The focus of the LCA was
on the potential climate change impacts of materials recycling.
The LCAs were performed as far as possible in accordance with
the ISO 14040 standard (ISO, 2006a,b) and following the techni-
cal guidance of the International Reference Life Cycle Data System
(ILCD) (EC, 2010, 2011). The LCAs were carried out using EASETECH,
a LCA model for the assessment of environmental technologies
developed at the Technical University of Denmark (Clavreul et al.,

2014). EASETECH was selected as the LCA model as it allows for
detailed modelling of heterogonous material flows through com-
plex systems and includes specialised functionality for solid waste
management system LCA modelling.



1 vation and Recycling 105 (2015) 186–197

2

e
a
a
m
a
t
s
m
w

a
t
f
s
b
p
p
s
e

a
f
d
a
w
e
t
t
e

t
c
t
t
l
o
d

m
p
r
i
(
a
t
b
u
i
t
r
t
d
t
u
e
r
n
o

2

c

Table 1
Waste material types included in this study.

Material
group

Material type Material
group

Material type

Glass Green glass WEEE LCAs
Brown glass SDAs
Clear glass CRTs
Mixed glass Fluorescent tubes & other

light bulbs
Paper &
card

Paper Fridges & freezers

Card Batteries Automotive batteries
Books Post-consumer,

non-automotive batteries
Mixed paper & card Tyres Car tyres
Yellow pages Van tyres

Metal Steel cans Large vehicle tyres
Aluminium cans Mixed tyres
Mixed cans Furniture Furniture
Other scrap metal Rubble Rubble
Aluminium foil Soil Soil
Aerosols Plasterboard Plasterboard
Fire extinguishers Oil Vegetable oil
Gas bottles Mineral oil
Bicycles Composite Composite food & beverage

cartons
Plastic Mixed plastics Mattresses

Mixed plastic
bottles

Paint Paint

PET Textiles Textiles & footwear
HDPE Textiles only
PVC Footwear only
LDPE Carpets
PP Other AHPs

Wood Wood
Chipboard & MDF
Composite wood
materials

PET, polyethylene terephthalate; HDPE, high-density polyethylene; PVC, polyvinyl
88 D.A. Turner et al. / Resources, Conser

.1. Goal definition

The goal of this study was to quantitatively evaluate the GHG
missions from recycling of source-segregated waste materials. The
ssessment was intended to provide a comprehensive, transparent,
nd scientifically robust catalogue of GHG EFs to support waste
anagers involved with decision-making at a local authority level,

s well as national policy-makers and organisations seeking to bet-
er understand the GHG impacts of their recycling activities. The
econdary purpose was to provide a foundation for the develop-
ent of holistic material recycling LCA studies and to identify areas
here high quality data are presently lacking.

The quantitative evaluation followed an “attributional
pproach”, with average data used and allocation issues resolved
hrough system expansion (EC, 2010). To account for multi-
unctional processes that produce secondary materials and energy,
ystem expansion was performed. This approach incorporates
oth the direct environmental impacts from waste management
rocesses and the indirect “avoided” impacts associated with the
roduction of secondary products and energy from waste that
ubstitute for primary material and energy production (Giugliano
t al., 2011).

Each recycled waste material type was evaluated individu-
lly. Each waste material recycling system comprised both (1) a
oreground system, which includes waste management processes
irectly engaged in the management of waste materials, and (2)
background system, which comprises processes that interact
ith the foreground system, typically by supplying or receiving

nergy or material, including avoided primary materials produc-
ion (through recycling) and avoided energy generation (through
he generation and provision of energy derived from waste) (Clift
t al., 2000).

Background data were taken from a range of sources, including
he ecoinvent v2.2 and the European Life Cycle Database (ELCD) life
ycle inventory (LCI) databases (Frischknecht et al., 2005; EC, 2008),
he UK GHG conversion factor repository (Defra et al., 2013), and
he literature. Foreground system data were taken from a range of
iterature sources and are described in detail in Appendix A. Details
f background system data (excluding avoided primary production
ata—see Section 2.3.1) used are outlined in Appendix B.

It was assumed that secondary products produced from waste
aterials would replace the production of primary products (i.e.,

roducts produced from virgin resources). For each recycled mate-
ial product, an appropriate substituted primary product was
dentified and production process data sourced. A substitution ratio
i.e., the amount of primary material production that is avoided
s a result of the recycling of an amount of waste material) was
hen calculated as the product of three parameters: (1) recycla-
ility, which refers to the amount of a waste material that ends
p as a recycled product and accounts for all material losses dur-

ng the recycling process; (2) material quality loss, which relates
o changes in the inherent technical properties of a waste mate-
ial (e.g., the shortening of fibres during paper recycling); and (3)
he market substitution ratio, which reflects market elasticity and
efines the actual amount of a primary product that is substituted at
he market as a consequence of the production of a secondary prod-
ct. Based on a common approach in the literature (e.g., Briffaerts
t al., 2009; Merrild et al., 2012; Rigamonti et al., 2009a), the use of
ecycled materials in the production of new products was assumed
ot to affect the market situation. Hence, market substation ratios
f 1:1 were set by default for all recycling systems evaluated.
.2. Scope definition

The function of the systems under investigation is to recycle
ollected source-segregated waste materials. Hence, the functional
chloride; LDPE, low-density polyethylene; PP, polypropylene; MDF, medium-
density fibreboard; LDA, large domestic appliance; SDA, small domestic appliance;
CRT, cathode-ray tube; AHP, absorbent hygiene product.

unit used in this study was the recycling of 1 t (wet weight) of
source-segregated waste material collected and sent for recycling.
This study evaluated the life cycle GHG emissions from recycling
of waste materials listed in the WasteDataFlow (WasteDataFlow,
2014). In total, 66 material types, categorised into 20 material
groups are listed in WasteDataFlow. Of those material types, 52
were included in the evaluation (see Table 1), whilst 14 were omit-
ted. An overview of material types omitted from the investigation
is presented in Table 2 along with a justification for their omission.

2.3. System boundaries

The environmental burdens associated with the upstream life
cycle stages prior to the arrival of waste materials at the pri-
mary treatment facility were not included within the life cycle
system, nor were those associated with capital goods. This assump-
tion, known as the “zero burden approach”, is considered standard
practice in solid waste management LCAs (Ekvall et al., 2007). The
systems boundaries vary between the waste material recycling
systems investigated and are defined for each waste material indi-
vidually (see Appendix A). Generally, system boundaries include
the sorting, disassembly/dismantlement, treatment, and reproce-
ssing of waste materials and the disposal of rejects.
2.4. Impact coverage

The focus of this study was on potential climate change impact.
Hence, climate impact was the only potential impact category
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Table 2
Waste material types omitted from this study.

Material group Material type Justification

Organic Green garden waste only Not collected for dry recycling
Waste food only Not collected for dry recycling
Mixed garden & food waste Not collected for dry recycling
Other compostable waste Not collected for dry recycling

Wood Wood for composting Not collected for dry recycling
Commingled Commingled materials Considered beyond the scope of this study, which focused on

source-segregated materials
IBA IBA In the context of this study, IBA was considered as residual waste and not

dry recyclate. However, given that IBA is commonly recycled into
secondary aggregate for use in road construction and maintenance, the
GHG EF presented here for rubble (or an adaptation thereof) could be
considered an appropriate proxy

Metal Metals from IBA Metal types recovered are highly dependent on incinerated material
composition (i.e., Al, Cu, and Fe content), hence the use of a generic GHG EF
for IBA metals was considered inappropriate for users

Plastic PS Lack of available data
Other plastics Not commonly recycled; lack of available data

Composite Ink & toner cartridges Lack of specific data or appropriate proxy material
Video tapes, DVDs, & CDs Lack of specific data or appropriate proxy material

Other Other materials Ambiguity of material type
Lack of specific data or appropriate proxy material
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Table 3
Inventory data for disposal of 1 t of wet waste in a non-hazardous landfill.

Inputs Unit Quantity Reference

Diesel kg 1.8 Hall et al. (2005)
Electricity kWh 8 Manfredi et al. (2009)
Water kg 0.00038 Hall et al. (2005)
HDPE (liner) kg 1 Hall et al. (2005)
Gravel kg 100 Manfredi et al. (2009)
Steel kg 0.12 Hall et al. (2005)
Synthetic rubber kg 0.0011 Hall et al. (2005)
Bric-a-brac

BA, incinerator bottom ash; GHG, greenhouse gas; EF, emission factor; PS, polystyr

ncluded in this study. Emissions of four GHGs, fossil CO2, biogenic
O2, CH4, and N2O, were included; combined, emissions of these
hree gases represent more than 90% of GHG emissions from solid
aste management (Bogner et al., 2007).

.5. Life cycle inventory

.5.1. Recycling
Due to the large number of waste material recycling systems

nd processes under investigation and space limitations, detailed
nformation about the data used and assumptions made to model
he treatment and reprocessing (including system expansion and

arket substitution) of each waste material investigated are not
resented here, but are presented in detail in Appendix A.

The quality of foreground system process data and avoided pri-
ary production data used in this study were qualitatively assessed

n conjunction with a pedigree matrix. Data were assessed on a
ve point scale (1, best quality; 5, worst quality) against five data
uality indicators (reliability, completeness, temporal correlation,
eographical correlation, and further technological correlation)
see Weidema, 1998; Weidema and Wesnæs, 1996). An overall data
uality rating (DQR) for each data set was then calculated based on
he ICLD data quality assessment methodology (EC, 2010), as:

QR = R + Co + TeC + GC + FTC + Wi · 4
i + 4

(1)

here, R, Co, TeC, GC, and FTC are the data set data quality indi-
ator scores for reliability, completeness, geographical correlation,
emporal correlation, and further technological correlation, respec-
ively, Wi is the weakest data quality indicator score obtained
mong i number of data quality indicators. Qualitative descrip-
ions of overall data set quality were then outlined according to
he calculated DQR (DQR ≤ 1.6, “high quality”; DQR > 1.6 to ≤3, “fair
uality”; and DQR > 3, “poor quality”). A comprehensive overview of
ll data sources used to model the foreground system processes and
voided primary production processes and their calculated data
uality ratings is presented in Appendix C.

.5.2. Transport

The transport of waste materials from the primary recycling

acility to secondary recycling facilities was included in this study.
istances of 250 km for inter-facility transport of waste materi-
ls for recycling and 25 km for the transport of process rejects to
Lubricant kg 0.0089 Hall et al. (2005)

HDPE, high-density polyethylene.

a landfill site were assumed and were applied consistently. These
distances represent the distance between the start location (pri-
mary facility) and the end location (receiving/secondary facility).
All transport was assumed to be completed by freight lorry. A lorry
diesel consumption of 0.21 kg per vehicle km (Spielmann et al.,
2007) and a vehicle payload of 17.6 t (EA, 2010) was assumed, with
the EF for diesel fuel consumption taken from Defra, Ricardo-AEA
(2013). Fuel consumption from vehicle travel post-unloading was
not included.

2.5.3. Disposal of rejects
Waste material rejected from unit processes was assumed to

be disposed of in a landfill site. The process for disposal of rejects
to landfill was modelled based on an average UK medium sized
(20 m depth; 25 ha area) conventional non-hazardous landfill with
landfill gas (LFG) utilisation. Emissions were modelled for a 100
year time horizon. Decay rates for waste material fractions were
taken from IPCC (2006). Ancillary material and energy inputs are
detailed in Table 3, whilst technical measures of the modelled LFG
management system and its performance over time are detailed
in Table 4. LFG recovery efficiencies reported in Table 4 were tem-
porally averaged to reflect an average tonne of waste deposited,
rather than the first mass of waste deposited (See Table 5). Elec-
tricity produced through the utilisation of recovered landfill gas in
an internal combustion engine (ICE) was assumed to be exported
to the National Grid. The ICE electricity generation efficiency was

set to 32% (Patterson et al., 2011), with a Grid transmission effi-
ciency of 98% assumed (National Grid, 2008). Fugitive emissions of
methane during ICE and enclosed flaring operations were set to 1%
(US EPA, 2011). Due to the high degree of uncertainty, biogenic
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Table 4
Technical measures and performance associated with landfill gas recovery, utilisa-
tion, and oxidation of the modelled non-hazardous landfill process.

Period 1 Period 2 Period 3 Period 4 Period 5

Duration
(years)

1 4 15 30 50

Methane
oxidation (%)

10a 10a 20a 36b 36b

Gas collected
(% generated)

0a 50a 75a 85a 0c

Gas
management

None Flare ICE ICE None

ICE, internal combustion engine.
a Source: US EPA (2011).
b Source: Chanton et al. (2009).
c Source: Spokas et al. (2006).

Table 5
Temporally averaged collection efficiencies for landfill gas produced from an average
tonne of landfilled waste.

Time period duration
(years)

Percentage landfill
gas collected

Percentage landfill
gas not collected

1 0 100
1 35 65
1 50 50
1 65 35
1 70 30
11 75 25
1 77 23
1 79 21
1 81 19
1 83 17
30 85 15
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ource: adapted from US EPA (2011).

arbon storage (i.e., non-degraded biogenic carbon remaining
ithin the landfill after the 100 year time horizon) was not included

n the evaluation. This assumption was included as part of a sensi-
ivity analysis.

.5.4. Life cycle impact assessment
Results were characterised according to their global warming

otential (GWP) using a 100 year time horizon (GWP100; expressed
s kg CO2-equivalents per functional unit). The GWP characterisa-
ion factors published by the Intergovernmental Panel on Climate
hange (IPCC) in its Fourth Assessment Report were used (Forster
t al., 2007). Whist emissions of biogenic CO2 were included in the
tudy (GWP100 = 0), the emissions “savings” resulting from the per-
anent storage of biogenic carbon in landfills or soils (i.e., the mass

f non-degraded biogenic carbon after the 100 year timeframe con-
idered) were excluded from the study but were quantified and
ompared with the results as part of the sensitivity analysis (see
ection 3.3.2).

. Results and discussion

.1. GHG emission factors for recycling

The GHG EFs for source-segregated materials recycling devel-
ped in this study are presented in Table 6. The results are broken
own into a gross and a net value, where the gross value is the total
HG emissions before accounting for avoided primary material
r energy production and the net value is the total GHG emis-

ions including avoided primary production. Note that a negative
alue represents a GHG emissions saving. Of the recycled mate-
ials investigated, 50 were found to result in net GHG savings.
he extent of these savings varied considerably between different
and Recycling 105 (2015) 186–197

materials, with the highest savings found for recycling of alu-
minium and aluminium foil (both −8143 kg CO2e/t), mixed cans,
other scrap metal, aerosols, and bicycles (all −3577 kg CO2e/t),
and textile materials (all −3376 kg CO2e/t). The lowest GHG emis-
sion savings were found for recycling of rubble (−2 kg CO2e/t) and
carpets (−9 kg CO2e/t). Recycling of three materials, plasterboard
(3.6 kg CO2e/t), soil (27 kg CO2e/t), and paint (86 kg CO2e/t), was
found to result in net GHG emissions. In the case of plasterboard
and paint, this is likely the result of the large amount of residual
waste produced during processing and subsequently disposed of
to landfill (plasterboard) or treated by energy-intensive processes
(paint), which produce negative GHG impacts. The positive result
found for soil recycling was likely due to the low nutrient qual-
ity of the waste material, which would limit its mineral fertiliser
substitution potential when applied to agricultural land, and the
exclusion of carbon sequestration/binding from the calculations; a
decision considered as part of the sensitivity analysis (see Section
3.3.2).

The lowest gross GHG emissions were associated with
recycling of rubble (16 kg CO2e/t), low density polyethylene (LDPE)
(29 kg CO2e/t), and soil (41 kg CO2e/t). The results for rubble and
soil reflect the low energy and material input requirements for sec-
ondary aggregate production (Huang, 2007) and agricultural land
spreading (Boldrin et al., 2009). Recycling of paper (1576 kg CO2e/t),
post-consumer, non-automotive batteries (1129 kg CO2e/t), and
aluminium cans and foil (1113 kg CO2e/t) were found to result in
the highest gross GHG emissions. Despite the high gross GHG emis-
sions for recycling of these materials, their recycling was found
to result in considerable net GHG savings, particularly in the case
of aluminium cans and foil where the significant advantage of
recycling over primary production is highlighted.

3.2. Contribution analysis

The contributions of different processing stages to the total net
GHG EFs developed for the recycled materials evaluated are pre-
sented in Fig. 1. GHG emissions from avoided primary production
were found to be the major contributor for the majority of recycled
material, accounting for between 25% and 97% (average = 70%) of
net GHG emissions from material recycling. This highlights the
importance of appropriate avoided primary production data selec-
tion in LCA studies of materials recycling (see e.g., Brogaard et al.,
2014; EC, 2011; Merrild et al., 2008; Söderman, 2003). The contrib-
utions to total net GHG emissions from avoided primary production
relative to reprocessing were found to be particularly important in
recycling of LDPE, PET, textiles, and aluminium cans and foil, where
significant differences between gross and net GHG emissions were
identified (see Table 6).

Emissions from transport were found to be of limited signifi-
cance to the calculated net GHG EFs, contributing, on average, just
1% of net emissions. This correlates with the findings of Merrild
et al. (2012) and Salhofer et al. (2007). Similarly, disposal of process
rejects was found to contribute, on average, just 2% to total net GHG
emissions. Its contribution was, however, significant for recycling
of many composite materials, including carpets (28%), AHPs (23%),
and plasterboard (23%). This is likely a result of the high biodegrad-
able contents of these materials and the high material loss rates
associated with composite material component separation (Ward,
2004; WRAP, n.d.-a,b).

3.3. Comparison with literature GHG EFs for recycling
Also presented in Table 6 is an overview of relevant material
recycling GHG EFs from the literature, including the calculated
range, average, and standard deviation of values. Note that liter-
ature data included in the overview are from studies reporting
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Table 6
Comparison of calculated emission factors (gross and net) with emission factors (net) reported in the literature. For literature data, average and standard deviation (st. dev.)
is provided where more than two reference studies were identified. Note that whilst only a summary of literature data is presented here, detailed emission factor data for
each waste material type by literature source are presented in Appendix D..

Waste material type Calculated emission factor Literature emission factors

Gross Net No. of reference studies Range Average ± st. dev.
kg CO2e/t kg CO2e/t kg CO2e/t kg CO2e/t

Green glass 395 −314 6 −762 to −201 −417 ± 176
Brown glass 395 −314 6 −762 to −201 −417 ± 176
Clear glass 395 −314 6 −762 to −201 −417 ± 176
Mixed glass 395 −314 6 −762 to −201 −417 ± 176
Paper 1576 −459 7 −3891 to 390 −1195 ± 1303
Card 559 −120 5 −3439 to −280 −1010 ± 1095
Books 562 −117 3 −3428 to −811 −1709 ± 1489
Mixed paper & card 559 −120 4 −888 to −280 −601 ± 242
Yellow pages 562 −117 2 −2910 to −888 −1899 ± 1430
Steel cans 529 −862 7 −2360 to −496 −1337 ± 674
Aluminium cans 1113 −8143 7 −19340 to −5040 −11334 ± 3512
Mixed cans 883 −3577 3 −4828 to−2573 −3789 ± 1138
Other scrap metal 883 −3577 3 −4828 to −2573 −3789 ± 1138
Aluminium foil 1113 −8143 1 – −9267
Aerosols 883 −3577 – – –
Fire extinguishers 651 −673 – – –
Gas bottles 651 −673 – – –
Bicycles 883 −3577 – – –
Mixed plastics 339 −1024 6 −2324 to 1470 −788 ± 1007
Mixed plastic bottles 336 −1084 5 −2324 to 1470 −922 ± 1321
PET 155 −2192 6 −2324 to −566 −1570 ± 600
HDPE 379 −1149 5 −2324 to −253 −1055 ± 792
PVC 379 −1549 3 −2324 to −566 −1259 ± 936
LDPE 29 −972 4 −1586 to −850 −744 ± 981
PP 379 −1184 3 −2324 to −566 −1279 ± 925
Wood 502 −444 5 −2712 to 1 −619 ± 882
Chipboard & MDF 502 −444 5 −2723 to 1 −620 ± 886
Composite wood materials 502 −444 3 −1266 to 1 −357 ± 431
LDAs 428 −866 2 −1266 to −181 −626 ± 431
SDAs 463 −1349 1 – −1482
CRTs 272 −228 1 – −2767
Fluorescent tubes & other light bulbs 518 −779 – – –
Fridges & freezers 469 −853 3 −1042 to −181 −626 ± 431
Automotive batteries 938 −435 2 −563 to −487 −525 ± 54
Post-consumer, non-automotive batteries 1129 −205 2 −563 to −487 −525 ± 54
Car tyres 206 −636 2 -1910 to -430 −1170 ± 1047
Van tyres 197 −671 2 −1910 to −430 −1170 ± 1047
Large vehicle tyres 197 −671 2 −1910 to −430 −1170 ± 1047
Mixed tyres 206 −636 2 −1910 to −430 −1170 ± 1047
Furniture 502 −444 1 – −921
Rubble 16 −2 4 −9 to 2 −2 ± 5
Soil 41 27 2 −2 to 2 0 ± 2
Plasterboard 59 4 2 −139 to 33 −53 ± 122
Vegetable oil 647 −2759 1 – −725
Mineral oil 647 −2759 2 −725 to −725 −725 ± 0
Composite food & beverage cartons 629 −452 1 – −1730
Mattresses 478 −1241 – – –
Paint 364 86 1 – −2840
Textiles & footwear 401 −3376 5 −7869 to−930 −3606 ± 2709
Textiles only 401 −3376 5 −7869 to −930 −3606 ± 2709
Footwear only 401 −3376 2 −5891 to−4385 −5138 ± 1065
Carpets 181 −10 1 – −2601
AHPs 53 0 – – –
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ET, polyethylene terephthalate; HDPE, high-density polyethylene; PVC, polyviny
breboard; LDA, large domestic appliance; SDA, small domestic appliance; CRT, cat

HG EFs—see Appendix D for further details. Data from LCA stud-
es and LCI databases were not included (see Brogaard et al., 2014
or a review of these data sets). GHG EFs were identified from
he literature for 46 of the 53 recycled materials investigated. Of
hose, a sufficient number of studies (≥2 per recycled material)
ere available to form EF ranges for 39 materials. The majority

f calculated material recycling GHG EFs fell within the range of

iterature values, whilst the calculated factor for automotive bat-
eries was marginally higher than the maximum literature value.
he calculated EFs for card, books, mixed paper & card, and yel-
ow pages (−120, −117, −120, and −117 kg CO2e/t, respectively)
ride; LDPE, low-density polyethylene; PP, polypropylene; MDF, medium-density
ray tube; AHP, absorbent hygiene product.

were notably higher (i.e., lower net GHG savings) than the max-
imum literature values (−280, −811, −280, and −888 kg CO2e/t,
respectively). Factors for these materials were calculated using the
same recycling system, which was based on secondary corrugated
board base paper production and substitution of primary corru-
gated board base papers (Hischier, 2007). Based on a review of
LCI data sets, Brogaard et al. (2014) shows that GHG emissions

from primary corrugated cardboard production are, on average,
notably lower than those for primary non-corrugated cardboard
production. Hence, our assumption that only corrugated cardboard
base papers would be substituted rather than non-corrugated may
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Fig. 1. Contribution analysis of the net greenhouse gas (GHG) emissions from recycling of source-segregated materials. PET, polyethylene terephthalate; HDPE, high-density
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olyethylene; PVC, polyvinyl chloride; LDPE, low-density polyethylene; PP, polyp
omestic appliance; CRT, cathode-ray tube; AHP, absorbent hygiene product.

xplain the higher calculated net GHG EFs compared to literature
alues.

In general, the material recycling GHG EFs calculated in this
tudy were lower (i.e., they produced lower net GHG savings) than
he average literature values. A notable exception concerns the
Fs for plastics recycling, where the calculated factors for seven
f the eight plastic types investigated were markedly higher than
he average of the literature data. This may be a consequence
f the default 1:1 market substation ratio applied in this study,
hich does not consider material-specific market situations. In

he case of plastics, there are generally a number of differences
etween the primary and secondary polymers in terms of their
arket value, mechanical properties, colour, and other side char-
cteristics, such as smell. To reflect these differences, Rigamonti
t al. (2009b) recommends that a market substitution ratio of
:0.81 be applied in the case of plastics recycling. The influ-
nce of the market substitution ratio parameter on the calculated
ne; MDF, medium-density fibreboard; LDA, large domestic appliance; SDA, small

EFs was further considered as part of a sensitivity analysis (see
Section 3.3.2).

3.4. Sensitivity analysis

3.4.1. Perturbation analysis
We applied a market substitution ratio of 1:1 in all pri-

mary material production substitution calculations, based on the
assumption that the market situation would be unaffected by the
supply of secondary products. To test the sensitivity of the results to
this assumption, market substitution ratio parameter values were
varied by −10% and sensitivity ratios (SR) were calculated for each
material recycling system. A SR is the ratio between the percentage

change in the model result and the percentage change in the param-
eter value (Clavreul et al., 2012). Where more than two primary
products are substituted in a material recycling system, market
substitution rate SRs were calculated for each market substitution
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ig. 2. Market substitution ratio parameter sensitivity ratios (SR) of each source seg
aterial type in more detail in Appendix E. AHP, absorbent hygiene product; WEEE,

breboard; PP, polypropylene; LDPE, low-density polyethylene; PVC, polyvinyl chlo

ndividually and then summed to produce an overall market sub-
titution ratio SR for that material recycling system. Fig. 2 presents
he SR results (as absolute value) for the material recycling systems
valuated (SR results are presented in greater detail in Appendix E).
his analysis highlights the large influence of the market substitu-
ion ratio parameter value on material recycling net GHG emissions.

arket substitution ratio SR values greater than 1 were calculated
or all but one of the material recycling systems investigated, mean-
ng that a variation in parameter value causes a larger relative
ariation in the result (Clavreul et al., 2012). Soil was the only mate-
ial found to have a market substitution ratio parameter SR value
ess than 1 (SR = 0.5). This is likely due to the low contribution of
voided primary production to total net GHG emissions (25%) in

he soil recycling system (see Fig. 1). Recycled material systems
hat showed particular sensitivity to the market substitution ratio
arameter include carpets (SR = 17.2), plasterboard (SR = 14.2), and
ubble (SR = 10.5).
d waste material type recycling system. Note that SRs are presented for each waste
electrical and electronic equipment; CRT, cathode-ray tube; MDF, medium-density
HDPE, high-density polyethylene; PET, polyethylene terephthalate.

3.4.2. Scenario analysis
The GHG emissions impact of excluding carbon sequestration

from the material recycling systems evaluated was investigated
through scenario analysis. Carbon contained in organic materials
that do not degrade during the 100 year time period considered is
assumed stored within the landfill indefinitely, effectively remov-
ing it from the global carbon cycle. As this process would not occur
naturally, landfills constitute as an anthropogenic carbon “sink”.
Based on a simple carbon mass balance model, Christensen et al.
(2009) asserts that where the IPCC GWP characterisation factors
are used, which count biogenic carbon emissions to air (as CO2) as
neutral, biogenic carbon sequestered in landfill should be ascribed
a GWP of −1. As GHG emissions from carbon sequestration were

not included in the calculated EFs for recycling, a scenario (S2) that
included carbon sequestration was modelled to test the sensitiv-
ity of baseline results (S1) to this choice. Results where variation
between S1 and S2 was greater than 1% are presented in Table 7.
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Table 7
Comparison of net greenhouse gas emission factors for selected recycled waste materials where carbon sequestration is excluded (S1) or included (S2). Variation is presented
in absolute terms. Only results where variation (%) is greater than 1% are presented.

Waste material type S1 S2 Variation

kg CO2e/t kg CO2e/t kg CO2e/t %

Paper −459 −491 32 7
Card −120 −128 8 6
Books; yellow pages −117 −124 7 6
Mixed paper & card −123 −132 9 7
Composite wood materials; furniture −177 −244 68 38
Car tyres −636 −760 124 19
Van tyres; large vehicle tyres −671 −904 232 35
Mixed tyres −640 −777 137 21
Rubble −2 −43 41 2595
Soil 27 −55 82 301
Plasterboard 4 −12 15 435
Composite food & beverage cartons −242 −260 18 8
Mattresses −1241 −1353 112 9
Carpets −9 −139 130 1469
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HP, absorbent hygiene product.

The choice of including carbon sequestration had little influence
n the calculated net GHG EFs for the majority of mate-
ials (36 of 53, variation < 1%). However, the choice had a
ignificant impact on the calculated EFs for a number of mate-
ials, particularly rubble (variation = 2595%, 41 kg CO2e/t), carpets
variation = 1469%, 130 kg CO2e/t), plasterboard (variation = 435%,
5 kg CO2e/t), soil (variation = 301%, 82 kg CO2e/t), and AHPs (vari-
tion = 300%, 41 kg CO2e/t). The benefits of including carbon
equestration were most significant for soil – where a portion of
iogenic carbon (here assumed to be 14% based on Bruun et al.,
006) remains bound to the in situ soil after the 100 year time period
Boldrin et al., 2009) – and for composite and aggregate materi-
ls that contain a high proportion of biodegradable material. As
oted previously, composite materials recycling systems are char-
cterised by high material losses and, consequently, a large amount
f this biodegradable material is landfilled. Of the composite mate-
ials identified above, most contain a high proportion of paper/fibre
r, in the case of carpets, natural textiles, which have high lignin
ontents and do not degrade readily in a landfill (Barlaz, 1998).
ence, their disposal in landfill results in net GHG savings when
arbon sequestration is included. Overall, the choice of including
arbon sequestration resulted in net GHG savings being calculated
or all recycled materials investigated.

.5. Limitations

The calculated EFs presented in this paper were based on numer-
us subjective modelling choices and methodological assumptions.
urthermore, this study was fundamentally limited by the availabil-
ty of data (predominantly from secondary sources) and the quality
f these data. These assumptions and limitations are each sources
f uncertainty and may have influenced the results (Cellura et al.,
011). In the following sections, the influence of key methodologi-
al aspects on the results of the study are identified and discussed.

A significant source of uncertainty in this study relates to the
vailability and use of secondary data, upon which the study was
ntirely reliant. A number of materials were not included in the
valuation due to a lack of specific data (e.g., “ink & toner cartridges”
nd “video tapes, DVDs, and CDs”), whist the EFs for a number of
aterials were estimated by using the modelled recycling systems

f related materials as proxies due to a lack of more specific data.

uch EFs should be treated with a high degree of uncertainty.

Where secondary data sources were identified, choices related
o secondary data selection were ultimately made subjectively. Fur-
hermore, the quality of selected secondary data may also affect
−27 41 300

the LCA results. Foreground system processes and avoided primary
production processes were assessed in relation to established data
quality requirements. None of the foreground system process data
sets used in this study were rated “high quality”, whilst the major-
ity (51%; 48 of 94) were rated “poor quality” (the remainder were
rated “fair quality”; 46 of 94). Similarly, only 7% (2 of 29) of included
avoided primary production process data sets were “high quality”,
59% (17 of 29) were “fair quality”, and the remainder were identi-
fied as “poor quality” (34%; 10 of 29). This highlights the dearth of
high quality LCI process data sets for materials recycling currently
available and represents a significant source of uncertainty.

For a number of the materials, the complex and varied recycling
routes encountered in the real world are not adequately reflected in
the calculated EFs. For example, glass was assumed to be recycled
in a 100% closed loop system where it is remelted and used in sec-
ondary container glass production. In reality, waste glass recycling
applications are multifarious and include (non-exclusively) the
production of secondary aggregates, bricks, insulation glass fibre,
and filtration media (see Enviros Consulting Ltd, 2003). Similarly,
waste paper was assumed to be used exclusively in the produc-
tion of secondary newsprint. Real-world utilisation pathways of
recovered paper are numerous and depend on the paper grade and
market situation (Frees et al., 2005, WRAP, 2010b). Large variations
in energy use and, consequently, life-cycle GHG emissions exist
between different paper grade production processes (Laurijssen
et al., 2010). Furthermore, Wang et al. (2012) showed that, in the
context of paper recycling, the choice of reprocessing technology
and substituted virgin production process significantly affect the
LCA results. Hence, the simplified recycling systems used in the cal-
culation of EFs may limit their representativeness of the real-world
situation.

A further limitation concerns the validity of results in the con-
text of the global, interconnected waste market. The quantity of
recyclate collected in the UK has increased markedly over the past
10 years and, whilst the domestic reprocessing sector continues
to expand, there is insufficient capacity to absorb these materials.
Furthermore, whilst domestic markets for a number of recyclable
materials remain under-developed, many recovered materials are
in high demand globally and represent valuable commodities when
traded on foreign markets (APSRG, 2013). Consequently, export
rates of recyclable materials have increased, with the UK cur-

rently exporting around 15 million tonnes of recyclate per year
(Defra, 2013). The relationship between globalisation and increased
complexity and geographical dispersal of secondary product manu-
facturing and application makes it difficult for the LCA practitioner
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o identify appropriate reprocessing and substituted production
ata sets and material recycling model parameter values – i.e.,
aterial loss, material quality loss, and market substitution ratio
without an intimate knowledge of recyclate export destinations

nd foreign waste markets. Due to the inherent complexity of
lobalised waste trade and a lack of knowledge about foreign repro-
essing and secondary product markets, the EFs calculated in this
tudy were based on the assumption that all waste materials and
omponents are reprocessed in the UK and secondary products
ubstitute for domestic primary production.

The choice to exclude exportation of recyclable materials from
he EF calculations may affect the results of the study as the
eographical situation in which materials are recycled can be an
mportant factor in LCA studies due largely to variations in regional
nergy mix. The energy used in secondary and, more importantly,
rimary materials production, particularly electricity, is commonly
key contributor to net GHG emissions from materials recycling

Brogaard et al., 2014; Friedrich and Trois, 2013). The GHG emis-
ions intensity of energy systems varies considerably between
ountries due to differences in grid energy source mixes. A sub-
tantial portion of recyclable materials recovered in the UK are
xported to destinations in Asia and Eastern Europe that are con-
ected to highly carbon intensive energy systems. Consequently,
he GHG savings due to the indirect effects of materials recycling
n avoided primary production may be higher where materials
re recycled in countries with GHG intensive energy dependen-
ies (Sevigné-Itoiz et al., 2014). For example, Friedrich and Trois
2013) found that recycling of glass, metals, plastics, and paper in
outh Africa resulted in much higher GHG savings when compared
o other countries due to the high GHG emissions intensity of the
outh African grid electricity system. McMillan and Keoleian (2009)
howed that GHG emissions from aluminium production were sig-
ificantly higher in Asian and Oceanian countries compared to
uropean countries.

In this section, we have described the major limitations that
ontribute towards uncertainty in the calculated results. Whilst the
umber of limitations identified are numerous, it should be noted
hat these limitations are not unique to this study, but are ubiq-
itous in solid waste management LCA studies involving material
ecycling systems (Lazarevic et al., 2010; Reap et al., 2008a,b). We
ave attempted to minimise, quantify, or explain these limitations
s far as possible. However, additional work is required to better
ddress these limitations and, thereby, enhance the robustness of
he derived GHG EFs and enable more informed and less uncertain
ecision-making.

. Conclusions

In this study, we performed a series of partial LCAs, follow-
ng an attributional approach, to quantitatively evaluate the GHG
missions from recycling of source-segregated waste materials.
he results of these assessments were used to derive the first
et of comprehensive GHG EFs that can be used to contextualise
he contribution of source-segregated recycling to carbon man-
gement at a national and/or local level. The results showed that,
ith the exceptions of soil, plasterboard, and paint, the recycling

f source-segregated waste materials resulted in net GHG emis-
ions savings. Calculated GHG EFs ranged from 86 kg CO2e (paint)
o −8143 kg CO2e (aluminium cans and aluminium foil) per tonne
f material collected for recycling. The avoided GHG emissions from
he recovery of high frequency materials such as LDPE, PET, textiles,

teel cans, and aluminium cans were found to be notable, highlight-
ng the importance of effective source-segregated recycling of key

aste materials in reducing the GHG impacts of waste manage-
ent.
and Recycling 105 (2015) 186–197 195

Where sufficient literature data were identified to enable com-
parison, it was found that the majority of the GHG EFs calculated in
this study are within the range of data presented in the literature.
Notable exceptions include card, books, mixed paper & card, and
yellow pages, for which calculated EFs were notably higher (i.e.,
lower net GHG savings) than the maximum values reported in the
literature. This was likely due to our conservative assumption that
primary corrugated cardboard base papers would be substituted
rather than non-corrugated cardboard base papers, the produc-
tion of which has been shown to generally result in lower GHG
emissions (Brogaard et al., 2014).

In general, GHG emissions contributions from transport and dis-
posal of rejects were found to be negligible, with the calculated
EFs dominated by negative (i.e., GHG burdens) and positive (i.e.,
GHG benefits) GHG contributions from material reprocessing and
avoided primary production, respectively. The results of the sen-
sitivity analysis showed that the calculated EFs were found to be
highly sensitive to the assumed market substitution ratio, with the
results for recycling of plasterboard, carpets, and rubble found to be
particularly sensitive to the parameter value. Given the dominance
in terms of GHG contribution of avoided primary production and
the high sensitivity of results to the market substitution ratio, it is
essential that practitioners undertaking LCA studies that include
materials recycling ensure that their models are parameterised
appropriately and representatively. The sensitivity analysis also
showed that the choice of including carbon sequestration in the
calculations was largely inconsequential.

All foreground system processes and avoided primary produc-
tion processes used were assessed in relation to their data quality.
Of the data sources used to model materials reprocessing, none
were assessed as being of high quality, whilst 51% were considered
poor quality. Generally, the quality of data used to model avoided
primary production was found to be marginally better, with 7%
of data sources assessed as being of high quality and 59% consid-
ered fair quality. Overall, these findings highlight the dearth of high
quality LCI data on materials reprocessing and primary production
available to LCA practitioners in the UK. To reduce uncertainty and
enable waste managers to make better informed, environmentally
sound decisions, there is an urgent need for more representative,
more appropriate, and higher quality LCI data related to materials
recycling.

The EFs presented in this paper were developed to support
decision makers at multiple scales (national/regional governments,
local authorities, companies, and entrepreneurs). These EFs are
intended to be used to enable the appraisal of environmental per-
formance with regards to GHG impacts, and to evaluate potential
waste policies and decisions in order to identify optimal solid waste
management solutions. The secondary purpose was to provide a
foundation for the development of material recycling EFs for dif-
ferent geographic areas and the undertaking of holistic LCA studies
incorporating solid waste materials recycling.

The focus of this paper was to evaluate the environmental
performance of source-segregated material recycling systems. In
order to contribute towards the growing debate amongst policy-
makers and waste managers in the UK and abroad concerning the
relative merits of different dry recycling collection systems (par-
ticularly with regards to household kerbside collection) (see e.g.,
Cimpan et al., 2015; Eunomia Research & Consulting et al., 2011;
Fitzgerald et al., 2012; Punkkinen et al., 2012), there is a need for
further research that compares the environmental performance of
source-segregated waste collection systems with that of alternative
systems, namely single- or dual-stream commingled collection.

Such research would also serve as a means of developing addi-
tional GHG EFs for recycling of materials collected from single-
or duel-stream commingled collection systems, which could be of
considerable benefit to decision makers.
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