Hadamard product of certain meromorphic starlike and convex functions

R.M. El-Ashwah *, M.K. Aouf
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

A R T I C L E IN F O

Article history:

Received 15 August 2007
Received in revised form 23 April 2008
Accepted 10 July 2008

Keywords:

Analytic
Meromorphic
Positive coefficients
Hadamard product

1. Introduction

Throughout this paper, let the functions of the form :

$$
\begin{equation*}
\varphi(z)=c_{1} z-\sum_{n=2}^{\infty} c_{n} z^{n} \quad\left(c_{1}>0, c_{n} \geq 0\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(z)=d_{1} z-\sum_{n=2}^{\infty} d_{n} z^{n} \quad\left(d_{1}>0, d_{n} \geq 0\right) \tag{1.2}
\end{equation*}
$$

be regular and univalent in the unit disc $U=\{z:|z|<1\}$; and let

$$
\begin{align*}
& f(z)=\frac{a_{0}}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \quad\left(a_{0}>0, a_{n} \geq 0\right) \tag{1.3}\\
& f_{i}(z)=\frac{a_{0, i}}{z}+\sum_{n=1}^{\infty} a_{n, i} z \quad\left(a_{0, i}>0, a_{n, i} \geq 0\right) \tag{1.4}\\
& g(z)=\frac{b_{0}}{z}+\sum_{n=1}^{\infty} b_{n} z^{n} \quad\left(b_{0}>0, b_{n} \geq 0\right) \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
g_{j}(z)=\frac{b_{0, j}}{z}+\sum_{n=1}^{\infty} b_{n, j} z^{n} \quad\left(b_{0, j}>0, b_{n, j} \geq 0\right) \tag{1.6}
\end{equation*}
$$

[^0]be regular and univalent in the punctured disc $U^{*}=\{z: 0<|z|<1\}$.
For a function $f(z)$ defined by (1.3) (with $a_{0}=1$) we define
\[

$$
\begin{aligned}
I^{0} f(z) & =f(z) \\
I^{1} f(z) & =z f^{\prime}(z)+\frac{2}{z} \\
I^{2} f(z) & =z\left(I^{1} f(z)\right)^{\prime}+\frac{2}{z}
\end{aligned}
$$
\]

and for $k=1,2,3, \ldots \ldots$

$$
\begin{aligned}
& I^{k} f(z)=z\left(I^{k-1} f(z)\right)^{\prime}+\frac{2}{z} \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} n^{k} a_{n} z^{n}
\end{aligned}
$$

The operator I^{k} was introduced by Frasin and Darus [1].
With the help of the differential operator I^{k}, we define the classes $\sum S_{0}^{*}(k, \alpha, \beta)$ and $\sum C_{0}(k, \alpha, \beta)$ as follows :
Denote by $\sum S_{0}^{*}(k, \alpha, \beta)$, the class of functions $f(z)$ which satisfy the condition

$$
\begin{align*}
& \left|\frac{\frac{z\left(I^{k} f(z)\right)^{\prime}}{I^{k} f(z)}+1}{\frac{z\left(I^{k} f(z)\right)^{\prime}}{I^{k} f(z)}+2 \alpha-1}\right|<\beta \tag{1.7}\\
& \left(z \in U^{*}, 0 \leq \alpha<1,0<\beta \leq 1, k \in N_{0}\right) .
\end{align*}
$$

Let $\sum C_{0}^{*}(k, \alpha, \beta)$ be the class of functions $f(z)$ for which $-z f^{\prime}(z) \in \sum S_{0}^{*}(k, \alpha, \beta)$.
We note that :
(i) $\sum S_{0}^{*}(0, \alpha, \beta)=\sum S_{0}^{*}(\alpha, \beta)$, is the class of of meromorphic starlike functions of order $\alpha(0 \leq \alpha<1)$ and type $\beta(0<\beta \leq 1)$ with $a_{0}=1$; studied by Mogra et al. [2];
(ii) $\sum C_{0}^{*}(0, \alpha, \beta)=\sum C_{0}^{*}(\alpha, \beta)$, is the class of meromorphic convex functions of order $\alpha(0 \leq \alpha<1)$ and type β ($0<$ $\beta \leq 1)$ with positive cofficients;
(iii) $\sum S_{0}^{*}(k, \alpha, 1)=\sum^{*}(k, \alpha)$ (Frasin and Darus [1]).

Using similar arguments as given in [1], we can easily prove the following results for functions in the classes $\sum S_{0}^{*}(k, \alpha, \beta)$ and $\sum C_{0}^{*}(k, \alpha, \beta)$.

A function $f(z) \in \sum S_{0}^{*}(k, \alpha, \beta)$ if, and only if,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k}[(1+\beta) n+(2 \alpha-1) \beta+1] a_{n} \leq 2 \beta(1-\alpha) a_{0} \tag{1.8}
\end{equation*}
$$

and $f(z) \in \sum C_{0}^{*}(k, \alpha, \beta)$ if, and only if,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k+1}[(1+\beta) n+(2 \alpha-1) \beta+1] a_{n} \leq 2 \beta(1-\alpha) a_{0} \tag{1.9}
\end{equation*}
$$

The quasi-Hadamard product of two or more functions has recently been defined and used by Owa [3-5], Kumar [68], Mogra [9,10], Aouf and Darwish [11,12], Hossen [13] and Sekine [14]. Accordingly, the quasi-Hadamard product of two functions $\varphi(z)$ and $\psi(z)$ given by (1.1) and (1.2) is defined by

$$
\varphi * \psi(z)=c_{1} d_{1} z-\sum_{k=2}^{\infty} c_{n} d_{n} z^{n}
$$

Let us define the Hadamard product of two meromorphic univalent functions $f(z)$ and $g(z)$ by

$$
\begin{equation*}
f * g(z)=\frac{a_{0} b_{0}}{z}+\sum_{n=1}^{\infty} a_{n} b_{n} z^{n} \tag{1.10}
\end{equation*}
$$

The Hadamard product of more than two meromorphic functions can similarly be defined.
In [10], Mogra obtained certain results concerning the quasi-Hadamard product of two or more functions in $\sum S_{0}^{*}(0, \alpha, \beta)=\sum S_{0}^{*}(\alpha, \beta)$ and $\sum C_{0}^{*}(0, \alpha, \beta)=\sum C_{0}^{*}(\alpha, \beta)$.

In this paper, we introduce the following class of meromorphic univalent functions in U^{*}.

A function $f(z) \in \sum_{h}^{*}(\alpha, \beta)$ if, and only if,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\{n^{h}[(1+\beta) n+(2 \alpha-1) \beta+1] a_{n}\right\} \leq 2 \beta(1-\alpha) a_{0} \tag{1.11}
\end{equation*}
$$

where $0 \leq \alpha<1,0<\beta \leq 1$ and h is any fixed nonnegative real number.
Evidently, $\sum_{k}^{*}(\alpha, \beta) \equiv \sum S_{0}^{*}(k, \alpha, \beta)$ and $\sum_{k+1}^{*}(\alpha, \beta)=\sum C_{0}^{*}(k, \alpha, \beta)$.
Further, $\sum_{h}^{*}(\alpha, \beta) \subset \sum_{\varphi}^{*}(\alpha, \beta)$ if $h>\varphi \geq 0$, the containment being proper. Moreover, for any positive integer $h>k+1$, we have the following inclusion relation

$$
\sum_{h}^{*}(\alpha, \beta) \subset \sum_{h-1}^{*}(\alpha, \beta) \subset \cdots \subset \sum_{k+2}^{*}(\alpha, \beta) \subset \sum^{*} c_{0}(k, \alpha, \beta) \subset \sum^{*} S_{0}^{*}(k, \alpha, \beta) .
$$

We also note that, for every nonnegative real number h, the class $\sum_{h}^{*}(\alpha, \beta)$ is nonempty as the functions of the form

$$
\begin{equation*}
f(z)=\frac{a_{0}}{z}+\sum_{n=1}^{\infty} n^{-h}\left\{\frac{2 \beta(1-\alpha)}{(1+\beta) n+(2 \alpha-1) \beta+1}\right\} a_{0} \lambda_{n} z^{n} \tag{1.12}
\end{equation*}
$$

where $a_{0}>0, \lambda_{n} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{n} \leq 1$, satisfy the inequality (1.11).
The objective of this paper is to establish certain results concerning the Hadamard product of meromorphic univalent functions in U^{*}.

2. The main theorems

Theorem 1. Let the functions $f_{i}(z)$ belong to the class $\sum C_{0}^{*}(k, \alpha, \beta)$ for every $i=1,2, \ldots, m$. Then the Hadamard product $f_{1} * f_{2} * \cdots * f_{m}(z)$ belongs to the class $\sum_{m(k+2)-1}^{*}(\alpha, \beta)$.
Proof. It is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\{n^{m(k+2)-1}[(1+\beta) n+(2 \alpha-1) \beta+1] \prod_{i=1}^{m} a_{n, i}\right\} \leq 2 \beta(1-\alpha)\left[\prod_{i=1}^{m} a_{0, i}\right] . \tag{2.1}
\end{equation*}
$$

Since $f_{i}(z) \in \sum C_{0}^{*}(k, \alpha, \beta)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k+1}[(1+\beta) n+(2 \alpha-1) \beta+1] a_{n, i} \leq 2 \beta(1-\alpha) a_{0, i} . \tag{2.2}
\end{equation*}
$$

for every $i=1,2, \ldots, m$. Therefore,

$$
n^{k+1}[(1+\beta) n+(2 \alpha-1) \beta+1] a_{n, i} \leq 2 \beta(1-\alpha) a_{0, i} .
$$

or

$$
a_{n, i} \leq\left\{\frac{2 \beta(1-\alpha)}{n^{k+1}[(1+\beta) n+(2 \alpha-1) \beta+1]}\right\} a_{0, i}
$$

for every $i=1,2, \ldots, m$. The right-hand expression of the last inequality is not greater than $n^{-(k+2)} a_{0, i}$. Hence

$$
\begin{equation*}
a_{n, i} \leq n^{-(k+2)} a_{0, i} \tag{2.3}
\end{equation*}
$$

for every $i=1,2, \ldots, m$.
Using (2.3) for $i=1,2, \ldots, m-1$, and (2.2) for $i=m$, we obtain

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left\{n^{m(k+2)-1}[(1+\beta) n+(2 \alpha-1) \beta+1] \prod_{i=1}^{m} a_{n, i}\right\} \\
& \quad \leq \sum_{n=1}^{\infty}\left\{n^{m(k+2)-1}[(1+\beta) n+(2 \alpha-1) \beta+1]\left(n^{-(k+2)(m-1)} \prod_{i=1}^{m-1} a_{0, i}\right) a_{n, m}\right\} \\
& \quad=\left[\prod_{i=1}^{m-1} a_{0, i}\right] \sum_{n=1}^{\infty}\left\{n^{k+1}[(1+\beta) n+(2 \alpha-1) \beta+1] a_{n, m}\right\} \\
& \quad \leq 2 \beta(1-\alpha)\left[\prod_{i=1}^{m} a_{0, i}\right] .
\end{aligned}
$$

Hence $f_{1} * f_{2} * \cdots * f_{m}(z) \in \sum_{m(k+2)-1}^{*}(\alpha, \beta)$.

Theorem 2. Let the functions $f_{i}(z)$ belong to the class $\sum S_{0}^{*}(k, \alpha, \beta)$ for every $i=1,2, \ldots, m$. Then the Hadamard product $f_{1} * f_{2} * \cdots * f_{m}(z)$ belongs to the class $\sum_{m(k+1)-1}^{*}(\alpha, \beta)$.

Proof. Since $f_{i}(z) \in \sum S_{0}^{*}(k, \alpha, \beta)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\{n^{k}[(1+\beta) n+(2 \alpha-1) \beta+1] a_{n, i}\right\} \leq 2 \beta(1-\alpha) a_{0, i} \tag{2.4}
\end{equation*}
$$

for every $i=1,2, \ldots, m$. Therefore

$$
a_{n, i} \leq\left\{\frac{2 \beta(1-\alpha)}{n^{k}[(1+\beta) n+(2 \alpha-1) \beta+1]}\right\} a_{0, i}
$$

and hence

$$
\begin{equation*}
a_{n, i} \leq n^{-(k+1)} a_{0, i} \tag{2.5}
\end{equation*}
$$

for every $i=1,2, \ldots, m$.
$\operatorname{Using}(2.5)$ for $i=1,2, \ldots, m-1$, and (2.4) for $i=m$, we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left\{n^{m(k+1)-1}[(1+\beta) n+(2 \alpha-1) \beta+1] \prod_{i=1}^{m} a_{n, i}\right\} \\
& \quad \leq \sum_{n=1}^{\infty}\left\{n^{m(k+1)-1}[(1+\beta) n+(2 \alpha-1) \beta+1]\left[n^{-(k+1)(m-1)} \prod_{i=1}^{m-1} a_{0, i}\right] a_{n, m}\right\} \\
& =\left[\prod_{i=1}^{m-1} a_{0, i}\right] \sum_{n=1}^{\infty}\left\{n^{k}[(1+\beta) n+(2 \alpha-1) \beta+1] a_{n, m}\right\} \\
& \quad \leq 2 \beta(1-\alpha)\left[\prod_{i=1}^{m} a_{0, i}\right]
\end{aligned}
$$

Hence $f_{1} * f_{2} * \cdots * f_{m}(z) \in \sum_{m(k+1)-1}^{*}(\alpha, \beta)$.
Theorem 3. Let the functions $f_{i}(z)$ belong to the class $\sum C_{0}^{*}(k, \alpha, \beta)$ for every $i=1,2, \ldots, m$; and let the functions $g_{j}(z)$ belong to the class $\sum_{\sum_{*}} S_{0}^{*}(k, \alpha, \beta)$ for every $j=1,2, \ldots, q$. Then the Hadamard product $f_{1} * f_{2} * \cdots * f_{m} * g_{1} * g_{2} * \cdots * g_{q}(z)$ belongs to the class $\sum_{m(k+2)+q(k+1)-1}^{*}(\alpha, \beta)$.

Proof. We denote the Hadamard product $f_{1} * f_{2} * \cdots * f_{m} * g_{1} * g_{2} * \cdots * g_{q}(z)$ by the function $h(z)$, for the sake of convenience. Clearly,

$$
h(z)=\left[\prod_{i=1}^{m} a_{0, i} \cdot \prod_{j=1}^{q} b_{0, j}\right] z^{-1}+\sum_{n=1}^{\infty}\left[\prod_{i=1}^{m} a_{n, i} \cdot \prod_{j=1}^{q} b_{n, j}\right] z^{n} .
$$

To prove the theorem, we need to show that

$$
\sum_{n=1}^{\infty}\left\{n^{m(k+2)+q(k+1)-1}[(1+\beta) n+(2 \alpha-1) \beta+1]\left[\prod_{i=1}^{m} a_{n, i} \cdot \prod_{j=1}^{q} b_{n, j}\right]\right\} \leq 2 \beta(1-\alpha)\left[\prod_{i=1}^{m} a_{0, i} \cdot \prod_{j=1}^{q} b_{0, j}\right]
$$

Since $f_{i}(z) \in \sum C_{0}^{*}(k, \alpha, \beta)$, the inequalities (2.2) and (2.3) hold for every $i=1,2, \ldots, m$. Further, since $g_{j}(z) \in$ $\sum S_{0}^{*}(k, \alpha, \beta)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\{n^{k}[(1+\beta) n+(2 \alpha-1) \beta+1] b_{n, j}\right\} \leq 2 \beta(1-\alpha) b_{0, j}, \tag{2.6}
\end{equation*}
$$

for every $j=1,2, \ldots, q$. Whence we obtain

$$
\begin{equation*}
b_{n, j} \leq n^{-(k+1)} b_{0, j} \tag{2.7}
\end{equation*}
$$

for every $j=1,2, \ldots, q$.

Using (2.3) for $i=1,2, \ldots, m$; (2.7) for $j=1,2, \ldots q-1$; and (2.6) for $j=q$, we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left\{n^{m(k+2)+q(k+1)-1}[(1+\beta) n+(2 \alpha-1) \beta+1]\left[\prod_{i=1}^{m} a_{n, i} \cdot \prod_{j=1}^{q} b_{n, j}\right]\right\} \\
& \quad \leq \sum_{n=1}^{\infty}\left\{n^{m(k+2)+q(k+1)-1}[(1+\beta) n+(2 \alpha-1) \beta+1]\left[n^{-m(k+2)} \prod_{i=1}^{m} a_{0, i} \cdot \prod_{j=1}^{q} b_{n, j}\right]\right\} \\
& \quad \leq \sum_{n=1}^{\infty}\left\{n^{m(k+2)+q(k+1)-1}[(1+\beta) n+(2 \alpha-1) \beta+1]\right\}\left[n^{-m(k+2)} \cdot n^{-(k+1)(q-1)} \cdot \prod_{i=1}^{m} a_{0, i} \cdot \prod_{j=1}^{q-1} b_{0, j}\right] b_{n, q} \\
& \quad=\left[\prod_{i=1}^{m} a_{0, i} \cdot \prod_{j=1}^{q-1} b_{0, j}\right] \sum_{n=1}^{\infty}\left\{n^{k}[(1+\beta) n+(2 \alpha-1) \beta+1] b_{n, q}\right\} \\
& \leq 2 \beta(1-\alpha)\left[\prod_{i=1}^{m} a_{0, i} \cdot \prod_{j=1}^{q} b_{0, j}\right] .
\end{aligned}
$$

Hence $h(z) \in \sum_{m(k+2)+q(k+1)-1}^{*}(\alpha, \beta)$.
We note that the required estimate can also be obtained by using (2.3) for $i=1,2, \ldots, m-1$; (2.7) for $j=1,2, \ldots, q$ and (2.2) for $i=m$.

Remark 1. Putting $k=0$ in the above results we obtain the results obtained by Mogra [10].

Acknowledgments

The authors thank the referees for valuable suggestions to improve the paper.

References

[1] B.A. Frasin, M. Darus, On certain meromorphic functions with positive coefficients, South. Asian Bull. Math. 28 (2004) 615-623.
[2] M.L. Mogra, T.R. Ready, O.P. Juneja, Meromorphic univalent functions with positive coefficients, Bull Austral. Math. Soc. 32 (1985) $161-176$.
[3] S. Owa, On the classes of univalent functions with negative coefficients, Math. Japon. 27 (4) (1982) 409-416.
[4] S. Owa, On the starlike functions of order α and type β, Math. Japon. 27 (6) (1982) 723-735.
[5] S. Owa, On the Hadamard product of univalent functions, Tamkang J. Math. 14 (1983) 15-21.
[6] V. Kumar, Hadamard product of certain starlike functions, J. Math. Anal. Appl. 110 (1985) 128-425.
[7] V. Kumar, Hadamard product of certain starlike functions II, J. Math. Anal. Appl. 113 (1986) 230-234.
[8] V. Kumer, Quasi-Hadamard product of certain univalent function, J. Math. Anal. Appl. 126 (1987) 70-77.
[9] M.L. Mogra, Hadamard product of certain meromorphic univalent functions, J. Math. Anal. Appl. 157 (1991) 10-16.
[10] M.L. Mogra, Hadamard product of certain meromorphic starlike and convex functions, Tamkang J. Math. 25 (2) (1994) 157-162.
[11] M.K. Aouf, H.E. Darwish, Hadamard product of certain meromorphic univalent functions with positive coefficients, South. Asian Bull. Math. 30 (2006) 23-28.
[12] H.E. Darwish, The quasi-Hadamard product of certain starlike and convex functions, Appl. Math. Lett. 20 (2007) 692-695.
13] H.M. Hossen, Quasi-Hadamard product of certain p-valent functions, Demonstratio Math. 33 (2) (2000) 277-281.
[14] T. Sekine, On quasi-Hadamard products of p-valent functions with negative coefficients, in: H.M. Srivastava, S. Owa (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chicester), Brisbane, Toronto, 1989, pp. 317-328.

[^0]: * Corresponding author.

 E-mail addresses: elashwah@mans.edu.eg (R.M. El-Ashwah), mkaouf127@yahoo.com (M.K. Aouf).

