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a b s t r a c t

In this paper, the authors establish certain results concerning the Hadamard product for
two classes related to starlike and convex univalent meromorphic functions of order α and
type β with positive coefficients.
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1. Introduction

Throughout this paper, let the functions of the form :

ϕ(z) = c1z −
∞∑
n=2

cnzn (c1 > 0, cn ≥ 0), (1.1)

and

ψ(z) = d1z −
∞∑
n=2

dnzn (d1 > 0, dn ≥ 0) (1.2)

be regular and univalent in the unit disc U = {z : |z| < 1}; and let

f (z) =
a0
z
+

∞∑
n=1

anzn (a0 > 0, an ≥ 0), (1.3)

fi(z) =
a0,i
z
+

∞∑
n=1

an,iz (a0,i > 0, an,i ≥ 0), (1.4)

g(z) =
b0
z
+

∞∑
n=1

bnzn (b0 > 0, bn ≥ 0), (1.5)

and

gj(z) =
b0,j
z
+

∞∑
n=1

bn,jzn (b0,j > 0, bn,j ≥ 0), (1.6)
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be regular and univalent in the punctured disc U∗ = {z : 0 < |z| < 1}.
For a function f (z) defined by (1.3) (with a0 = 1) we define

I0f (z) = f (z),

I1f (z) = zf
′

(z)+
2
z
,

I2f (z) = z(I1f (z))
′

+
2
z

and for k = 1, 2, 3, . . . ...

Ikf (z) = z (Ik−1f (z))
′

+
2
z

=
1
z
+

∞∑
n=1

nkanzn.

The operator Ik was introduced by Frasin and Darus [1].
With the help of the differential operator Ik, we define the classes

∑
S∗0 (k, α, β) and

∑
C0(k, α, β) as follows :

Denote by
∑
S∗0 (k, α, β), the class of functions f (z)which satisfy the condition∣∣∣∣∣∣

z(Ikf (z))
′

Ikf (z)
+ 1

z(Ikf (z))′

Ikf (z)
+ 2α − 1

∣∣∣∣∣∣ < β (1.7)

(z ∈ U∗, 0 ≤ α < 1, 0 < β ≤ 1, k ∈ N0).

Let
∑
C∗0 (k, α, β) be the class of functions f (z) for which−zf

′

(z) ∈
∑
S∗0 (k, α, β).

We note that :

(i)
∑
S∗0 (0, α, β) =

∑
S∗0 (α, β), is the class of of meromorphic starlike functions of order α (0 ≤ α < 1) and type

β (0 < β ≤ 1)with a0 = 1; studied by Mogra et al. [2];
(ii)

∑
C∗0 (0, α, β) =

∑
C∗0 (α, β), is the class of meromorphic convex functions of order α(0 ≤ α < 1) and typeβ (0 <

β ≤ 1)with positive cofficients;
(iii)

∑
S∗0 (k, α, 1) =

∑
∗
(k, α) (Frasin and Darus [1]).

Using similar arguments as given in [1],we can easily prove the following results for functions in the classes
∑
S∗0 (k, α, β)

and
∑
C∗0 (k, α, β).

A functionf (z) ∈
∑
S∗0 (k, α, β) if, and only if,

∞∑
n=1

nk[(1+ β)n+ (2α − 1)β + 1]an ≤ 2β(1− α)a0; (1.8)

and f (z) ∈
∑
C∗0 (k, α, β) if, and only if,

∞∑
n=1

nk+1[(1+ β)n+ (2α − 1)β + 1]an ≤ 2β(1− α)a0. (1.9)

The quasi-Hadamard product of two or more functions has recently been defined and used by Owa [3–5], Kumar [6–
8], Mogra [9,10], Aouf and Darwish [11,12], Hossen [13] and Sekine [14]. Accordingly, the quasi-Hadamard product of two
functions ϕ(z) and ψ(z) given by (1.1) and (1.2) is defined by

ϕ ∗ ψ(z) = c1d1z −
∞∑
k=2

cndnzn.

Let us define the Hadamard product of two meromorphic univalent functions f (z) and g(z) by

f ∗ g(z) =
a0b0
z
+

∞∑
n=1

anbnzn. (1.10)

The Hadamard product of more than two meromorphic functions can similarly be defined.
In [10], Mogra obtained certain results concerning the quasi-Hadamard product of two or more functions in∑
S∗0 (0, α, β) =

∑
S∗0 (α, β) and

∑
C∗0 (0, α, β) =

∑
C∗0 (α, β).

In this paper, we introduce the following class of meromorphic univalent functions in U∗.
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A function f (z) ∈
∑
∗

h(α, β) if, and only if,
∞∑
n=1

{
nh[(1+ β)n+ (2α − 1)β + 1]an

}
≤ 2β(1− α)a0 (1.11)

where 0 ≤ α < 1, 0 < β ≤ 1 and h is any fixed nonnegative real number.
Evidently,

∑
∗

k(α, β) ≡
∑
S∗0 (k, α, β) and

∑
∗

k+1(α, β) =
∑
C∗0 (k, α, β).

Further,
∑
∗

h(α, β) ⊂
∑
∗

ϕ(α, β) if h > ϕ ≥ 0, the containment being proper.Moreover, for anypositive integer h > k+1,
we have the following inclusion relation

∗∑
h

(α, β) ⊂

∗∑
h−1

(α, β) ⊂ · · · ⊂

∗∑
k+2

(α, β) ⊂

∗∑
C0(k, α, β) ⊂

∗∑
S∗0 (k, α, β).

We also note that, for every nonnegative real number h, the class
∑
∗

h(α, β) is nonempty as the functions of the form

f (z) =
a0
z
+

∞∑
n=1

n−h
{

2β(1− α)
(1+ β)n+ (2α − 1)β + 1

}
a0λnzn (1.12)

where a0 > 0, λn ≥ 0 and
∑
∞

n=1 λn ≤ 1,satisfy the inequality (1.11).
The objective of this paper is to establish certain results concerning the Hadamard product of meromorphic univalent

functions in U∗.

2. The main theorems

Theorem 1. Let the functions fi(z) belong to the class
∑
C∗0 (k, α, β) for every i = 1, 2, . . . ,m. Then the Hadamard product

f1 ∗ f2 ∗ · · · ∗ fm(z) belongs to the class
∑
∗

m(k+2)−1(α, β).

Proof. It is sufficient to show that
∞∑
n=1

{
nm(k+2)−1[(1+ β)n+ (2α − 1)β + 1]

m∏
i=1

an,i

}
≤ 2β(1− α)

[
m∏
i=1

a0,i

]
. (2.1)

Since fi(z) ∈
∑
C∗0 (k, α, β),we have

∞∑
n=1

nk+1[(1+ β)n+ (2α − 1)β + 1]an,i ≤ 2β(1− α)a0,i. (2.2)

for every i = 1, 2, . . . .,m. Therefore,

nk+1[(1+ β)n+ (2α − 1)β + 1]an,i ≤ 2β(1− α)a0,i.

or

an,i ≤
{

2β(1− α)
nk+1[(1+ β)n+ (2α − 1)β + 1]

}
a0,i,

for every i = 1, 2, . . . .,m. The right-hand expression of the last inequality is not greater than n−(k+2)a0,i. Hence

an,i ≤ n−(k+2)a0,i (2.3)

for every i = 1, 2, . . . .,m.
Using (2.3) for i = 1, 2, . . . ,m− 1, and (2.2) for i = m, we obtain

∞∑
n=1

{
nm(k+2)−1[(1+ β)n+ (2α − 1)β + 1]

m∏
i=1

an,i

}

≤

∞∑
n=1

{
nm(k+2)−1[(1+ β)n+ (2α − 1)β + 1]

(
n−(k+2)(m−1)

m−1∏
i=1

a0,i

)
an,m

}

=

[
m−1∏
i=1

a0,i

]
∞∑
n=1

{
nk+1[(1+ β)n+ (2α − 1)β + 1]an,m

}
≤ 2β(1− α)

[
m∏
i=1

a0,i

]
.

Hence f1 ∗ f2 ∗ · · · ∗ fm(z) ∈
∑
∗

m(k+2)−1(α, β). �
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Theorem 2. Let the functions fi(z) belong to the class
∑
S∗0 (k, α, β) for every i = 1, 2, . . . ,m. Then the Hadamard product

f1 ∗ f2 ∗ · · · ∗ fm(z) belongs to the class
∑
∗

m(k+1)−1(α, β).

Proof. Since fi(z) ∈
∑
S∗0 (k, α, β),we have

∞∑
n=1

{
nk[(1+ β)n+ (2α − 1)β + 1]an,i

}
≤ 2β(1− α)a0,i (2.4)

for every i = 1, 2, . . . .,m. Therefore

an,i ≤
{

2β(1− α)
nk[(1+ β)n+ (2α − 1)β + 1]

}
a0,i,

and hence

an,i ≤ n−(k+1)a0,i (2.5)

for every i = 1, 2, . . . .,m.
Using (2.5) for i = 1, 2, . . . ,m− 1, and (2.4) for i = m, we get

∞∑
n=1

{
nm(k+1)−1[(1+ β)n+ (2α − 1)β + 1]

m∏
i=1

an,i

}

≤

∞∑
n=1

{
nm(k+1)−1[(1+ β)n+ (2α − 1)β + 1]

[
n−(k+1)(m−1)

m−1∏
i=1

a0,i

]
an,m

}

=

[
m−1∏
i=1

a0,i

]
∞∑
n=1

{
nk[(1+ β)n+ (2α − 1)β + 1]an,m

}
≤ 2β(1− α)

[
m∏
i=1

a0,i

]
.

Hence f1 ∗ f2 ∗ · · · ∗ fm(z) ∈
∑
∗

m(k+1)−1(α, β). �

Theorem 3. Let the functions fi(z) belong to the class
∑
C∗0 (k, α, β) for every i = 1, 2, . . . ,m; and let the functions gj(z) belong

to the class
∑
S∗0 (k, α, β) for every j = 1, 2, . . . , q. Then the Hadamard product f1 ∗ f2 ∗ · · · ∗ fm ∗ g1 ∗ g2 ∗ · · · ∗ gq(z) belongs

to the class
∑
∗

m(k+2)+q(k+1)−1(α, β).

Proof. Wedenote the Hadamard product f1∗ f2∗· · ·∗ fm∗g1∗g2∗· · ·∗gq(z) by the function h(z), for the sake of convenience.
Clearly,

h(z) =

[
m∏
i=1

a0,i.
q∏
j=1

b0,j

]
z−1 +

∞∑
n=1

[
m∏
i=1

an,i.
q∏
j=1

bn,j

]
zn.

To prove the theorem, we need to show that

∞∑
n=1

{
nm(k+2)+q(k+1)−1[(1+ β)n+ (2α − 1)β + 1]

[
m∏
i=1

an,i.
q∏
j=1

bn,j

]}
≤ 2β(1− α)

[
m∏
i=1

a0,i.
q∏
j=1

b0,j

]
.

Since fi(z) ∈
∑
C∗0 (k, α, β), the inequalities (2.2) and (2.3) hold for every i = 1, 2, . . . ,m. Further, since gj(z) ∈∑

S∗0 (k, α, β),we have

∞∑
n=1

{
nk[(1+ β)n+ (2α − 1)β + 1]bn,j

}
≤ 2β(1− α)b0,j, (2.6)

for every j = 1, 2, . . . ., q.Whence we obtain

bn,j ≤ n−(k+1)b0 ,j (2.7)

for every j = 1, 2, . . . ., q.
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Using (2.3) for i = 1, 2, . . . ,m; (2.7) for j = 1, 2, . . . q− 1; and (2.6) for j = q, we get

∞∑
n=1

{
nm(k+2)+q(k+1)−1[(1+ β)n+ (2α − 1)β + 1]

[
m∏
i=1

an,i.
q∏
j=1

bn,j

]}

≤

∞∑
n=1

{
nm(k+2)+q(k+1)−1[(1+ β)n+ (2α − 1)β + 1]

[
n−m(k+2)

m∏
i=1

a0,i.
q∏
j=1

bn,j

]}

≤

∞∑
n=1

{
nm(k+2)+q(k+1)−1[(1+ β)n+ (2α − 1)β + 1]

} [
n−m(k+2).n−(k+1)(q−1).

m∏
i=1

a0,i.
q−1∏
j=1

b0,j

]
bn,q

=

[
m∏
i=1

a0,i.
q−1∏
j=1

b0,j

]
∞∑
n=1

{
nk[(1+ β)n+ (2α − 1)β + 1]bn,q

}
≤ 2β(1− α)

[
m∏
i=1

a0,i.
q∏
j=1

b0,j

]
.

Hence h(z) ∈
∑
∗

m(k+2)+q(k+1)−1(α, β).
We note that the required estimate can also be obtained by using (2.3) for i = 1, 2, . . . ,m−1; (2.7) for j = 1, 2, . . . , q

and (2.2) for i = m. �

Remark 1. Putting k = 0 in the above results we obtain the results obtained by Mogra [10].
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