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a b s t r a c t

In this paper, by using the fixed point theorem of differential inclusion theory
and constructing suitable Lyapunov functions, the existence, uniqueness and global
exponential stability of the periodic solution for BAM neural networks with discontinuous
neuron activations are investigated. Moreover, the global convergence in finite time of the
networks is discussed. The conditions that ensure the existence and stability of periodic
solution are given. The obtained results extend previous work on global stability of BAM
neural networks with Lipschitz continuous neuron activations but without delays, and
show that Forti’s conjecture is true for BAM neural networks without delays.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

During the last two decades, various neural network models such as Hopfield neural networks, Cellular neural networks
and Bi-directional associative memory (BAM) neural networks were extensively investigated and successfully applied to
signal processing, pattern recognition, associative memory and optimization problems [1–4]. In the application of neural
networks either as associative memories or as optimization solvers, the stability of networks is a prerequisite. Particularly,
when neural networks are employed as associative memories, the equilibrium points represent the stored patterns, and,
the stability of each equilibrium point means that each stored pattern can be retrieved even in the presence of noise. When
employed as an optimization solver, the equilibrium points of neural networks correspond to possible optimal solutions,
and the stability of networks then ensures the convergence to optimal solutions. Also, stability of neural networks is
fundamental to network designs. Due to these, stability analysis of neural networks has received extensive attention from
a lot of scholars so far [5–14]. It is well known that studies on neural networks not only involve discussions of stability
property of equilibrium point, but also involve investigations of other dynamics behaviors such as periodic oscillation,
bifurcation and chaos. In many applications, knowing the property of periodic oscillatory solutions is very interesting and
valuable. For example, the human brain is often in periodic oscillatory or chaos state, hence it is of prime importance to
study periodic oscillatory and chaos phenomenon of neural networks for understanding the function of the human brain. In
the existing literature, almost all results on the stability of periodic solutions of neural networkswith or without time delays
are conducted under some special assumptions on neuron activation functions. These assumptions frequently include those
such as Lipschitz conditions, bounded and/or monotonic increasing property (see, for instance, [6–8] and the references
therein). Recently, in Refs. [10–14], the authors discussed global stability for Hopfield neural networks with discontinuous
neuron activations. Particularly, in [14], Forti conjectures that all solutions of Hopfield neural networks with discontinuous
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neuron activations converge to an asymptotically stable limit cycle (periodic solution) whenever the neuron inputs are
periodic functions. As far as we know, there are few papers dealing with this conjecture for BAM neural networks. The
purpose of this paper is to study the existence, uniqueness and global exponential stability of periodic solution of BAM
neural networks with discontinuous neuron activations by using the fixed point theorem of differential inclusion theory
and some new analysis techniques, and by constructing suitable Lyapunov functions. The conclusions obtained in this paper
can be thought of as a generalization of the previous results established for BAMneural networks possessing smooth neuron
activations [6–8]. We have proved that Forti’s conjecture in [14] is true for BAM neural networks without delays.

For later discussion, we introduce the following notations.
Let x = (x1, . . . , xn)′ , y = (y1, . . . , yn)′ , x, y ∈ Rn, where the prime means the transpose. By x > 0 (respectively,

x ≥ 0) we mean that xi > 0 (respectively, xi ≥ 0) for all i = 1, . . . , n. ‖x‖ = (
∑n

i=1 x
2
i )

1
2 denotes the Euclidean norm of x.

〈x, y〉 =
∑n

i=1 xiyi, 〈·, ·〉 denotes the inner product. By the Cauchy inequality, it easily follows

|〈x, y〉| ≤ ‖x‖‖y‖.

Given a set Q ⊂ Rn, by K [Q ]we denote the closure of the convex hull of Q . If x̂ ∈ Rn and r > 0, B(x̂, r) = {x ∈ Rn
: ‖x− x̂‖ <

r} denotes the ball with radius r and center x̂.µ(Q ) denotes the Lebesgue measure in Rn of Q . Let X be a Banach space. ‖x‖X
denotes the normof x,∀x ∈ X . By L1([0, ω], Rn),ω ≤ +∞, we denote the Banach spaces of the Lebesgue integrable functions
x(·): [0, ω] → Rn equipped with the norm

∫ ω
0 ‖x(t)‖dt . Let V : Rn

→ R be a locally Lipschitz continuous function. Clarke’s
generalized gradient [15] of V at x is defined by

∂V (x) = K [lim∇V (xi) : xi → x, xi ∈ Rn
\ΩV ∪ N ],

whereΩV ⊂ Rn is the set of Lebesgue measure zero where ∇V does not exist, and N ⊂ Rn is an arbitrary set with measure
zero. For example, if V : R → R is given by V (x) = |x|, then we have

∂V (x) = K [sign(x)] =

{1, x > 0,
[−1, 1], x = 0,
−1, x < 0.

The rest of this paper is organized as follows. In Section 2, a new BAM neural network model considered in this paper is
developed, and some preliminaries also are given. In Section 3, the proof on the existence of periodic solution for BAM
neural network is presented. Section 4 discusses global exponential stability and convergence in finite time for the neural
networks. The conditions that ensure the stability of periodic solution are given. Illustrative examples are provided to show
the effectiveness of the obtained results in Section 5. Some conclusions and hints are drawn in Section 6.

2. Preliminaries

The model we consider in the present paper is the BAM neural networks modelled by the differential equation
ẋi(t) = −aixi(t)+

m∑
j=1

pjifj(yj(t))+ ci(t), i = 1, 2, . . . , n,

ẏj(t) = −bjyj(t)+

n∑
i=1

qijgi(xi(t))+ dj(t), j = 1, 2, . . . ,m,
(1)

where ai > 0, bj > 0, they denote the neural self-inhibitions; xi(t), yj(t) are the states of the ith neurons and the jth neurons,
respectively; pji, qij are the connection weights; fj and gi represent the neuron input–output activations; and ci(t), dj(t) are
continuous ω-periodic functions which denote the external inputs at time t .

For the neuron activations fj and gi, we assume that
H1: (1) fj and gi, i = 1, . . . , n, j = 1, . . . ,m are piecewise continuous, i.e., fj and gi are continuous in R except a countable

set of jump discontinuous points, and in every compact set of R, have only a finite number of jump discontinuous points.
(2) fj and gi are nondecreasing and bounded.
Set z(t) = (x1(t), . . . , xn(t), y1(t), . . . , ym(t))′, I(t) = (c1(t), . . . , cn(t), d1(t), . . . , dm(t))′, h(z(t)) = (g1(x1(t)), . . . ,

gn(xn(t)), f1(y1(t)), . . . , fm(ym(t)))′,
P = (pij)m×n, Q = (qji)n×m, B =

(
P ′

Q ′

)
, and D = diag(a1, . . . , an, b1, . . . , bm).

Eq. (1) can be equivalently represented by

ż(t) = −Dz(t)+ Bh(z(t))+ I(t). (2)

Under the assumption H1, h(z) is undefined at the points where h(z) is discontinuous. It is obvious that

K [h(z)] = (K [g1(x1)], . . . , K [gn(xn)], K [f1(y1)], . . . , K [fm(ym)])′ ,

where K [gi(xi)] = [gi(x−

i ), gi(x
+

i )], K [fj(yj)] = [fj(y−

j ), fj(y
+

j )], i = 1, . . . , n, j = 1, . . . ,m.
Eq. (2) is a differential equation with a discontinuous right-hand side. For differential Eq. (2), we adopt the following

definition of the solution in the sense of Filippov [16] in this paper.
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Consider the differential equation with discontinuous right-hand side

dx
dt

= f (x, t) (3)

where x ∈ Rn, f : Rn
× R+

→ Rn is a discontinuous function on x.

Definition 2.1. Define the set-valued map φ by

φ(x, t) =

⋂
r>0

⋂
µ(N )=0

K [f (B(x, r) \ N , t)],

where N is an arbitrary set with measure zero. A solution x(t) of Eq. (3) on an interval [0, T ), T ∈ (0,+∞] with the initial
conditions x(0) = x0 is an absolutely continuous function defined on [0, T ), such that x(0) = x0, and which satisfies the
differential inclusion{

ẋ(t) ∈ φ(x, t), for a.e. t ∈ [0, T ),
x(0) = x0.

By Definition 2.1, we can get the definition of the Filippov solution of Eq. (2) as follows:

Definition 2.2. Under the assumption H1, a solution of Eq. (2) on an interval [0, T )with the initial condition z(0) = z0 is an
absolutely continuous function satisfying{

ż(t) ∈ −Dz(t)+ BK [h(z(t))] + I(t), for a.e. t ∈ [0, T )
z(0) = z0.

It is easy to see that φ(z, t): (z, t) ↪→ −Dz + BK [h(z)] + I(t) is an upper semicontinuous set-valued map with nonempty
compact convex values, hence it is measurable [17]. By the measurable selection theorem [18], we can get that if z(t) is a
solution of Eq. (2), then there exists a bounded measurable function η(t) ∈ K [h(z(t))] such that

ż(t) = −Dz(t)+ Bη(t)+ I(t), for a.e. t ∈ [0, T ). (4)

Consider the following differential inclusion{
ż(t) ∈ −Dz(t)+ BK [h(z(t))] + I(t), for a.e. t ∈ [0, ω],
z(0) = z(ω). (5)

It easily follows that if z(t) is a solution of (5), then z∗(t) defined by

z∗(t) = z(t − jω), t ∈ [jω, (j + 1)ω], j ∈ N

is an ω-periodic solution of Eq. (2). Hence, for the neural network (1), finding the periodic solutions is equivalent to finding
solutions of (5).

Definition 2.3. The periodic solution z∗(t) = (x∗

1(t), . . . , x
∗
n(t), y

∗

1(t), . . . , y
∗
m(t))

′ of the neural network (2) is said to be
globally exponentially stable, if, for any solution z(t) of Eq. (2), there exist constants α > 0 and λ > 0 such that

n∑
i=1

|xi(t)− x∗

i (t)| +

m∑
j=1

|yj(t)− y∗

j (t)| ≤ λe−αt .

Definition 2.4. An n × n matrix A is said to be an M-matrix, if: (1) aii > 0, i = 1, . . . , n; (2) aij ≤ 0, i 6= j, i, j = 1, . . . , n;
(3) all successive principal minors of A are positive.

If A is anM-matrix, then there exists a positive vector β ∈ Rn such that β ′A > 0 [19].

Definition 2.5. An n × n matrix C = (cij) is said to be an H-matrix, if its comparison matrix C̃ = (̃cij) defined by, for
i, j = 1, . . . , n

c̃ij =

{
|cii|, i = j
−|cij|, i 6= j

is anM-matrix.
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Lemma 2.1 ([20]). Let X, Y be two Banach spaces, T : X → Y be a bounded linear operator. If T is one to one and surjective,
then the inverse operator of T , T−1

: Y → X is a bounded linear operator, i.e., there exists a constant M > 0, such that

‖T−1y‖X ≤ M‖y‖Y , ∀ y ∈ Y .

Lemma 2.2 ([21]). Let X be a Banach space, and Pkc = {C ⊂ X, nonempty, compact and convex}. If G : X → Pkc is an upper
semicontinuous set-valued map which maps bounded sets into relatively compact sets, then one of the following statements is
true:
(a) the set Γ = {x ∈ X : x ∈ λG(x), λ ∈ (0, 1)} is unbounded.
(b) the G(·) has a fixed point, i.e., there exists x ∈ X, such that x ∈ G(x).

Define

W 1,1([0, ω], Rm+n) = {z(t) : z(t) is absolute continuous, t ∈ [0, ω]} ,

W 1,1
p ([0, ω], Rm+n) =

{
z(t) ∈ W 1,1([0, ω], Rm+n) | z(0) = z(ω)

}
,

‖z‖W1,1 =

∫ ω

0
‖z(t)‖dt +

∫ ω

0
‖ż(t)‖dt, ∀z(t) ∈ W 1,1([0, ω], Rm+n),

then ‖ · ‖W1,1 is a class of norms ofW 1,1([0, ω], Rm+n),W 1,1([0, ω], Rm+n) andW 1,1
p ([0, ω], Rm+n) ⊂ W 1,1([0, ω], Rm+n) are

Banach spaces under the norm ‖ · ‖W1,1 .

Lemma 2.3 ([22]). If S ⊂ W 1,1([0, ω], Rm+n) is a bounded set, then S is a relatively compact subclass of L1([0, ω], Rm+n).

3. Existence of periodic solution

In this section, by using the fixed point theorem (Lemma 2.2) of differential inclusion theory, we shall give the proof of
the existence of periodic solution for the neural network (1).

Proposition 3.1. Under the assumption H1, for any z0 ∈ Rm+n, the neural network (1) has at least one solution satisfying the
initial condition z(0) = z0.

Proof. See Appendix A.
Proposition 3.1 shows the existence of solutions of the neural network (1). In the following, we shall prove that the neural

network (1) has an ω-periodic solution. �

Theorem 3.1. Under the assumption H1, there exists a solution for the differential inclusion system (5). i.e. the neural network
(1) has an ω-periodic solution.

Proof. By Lz = ż + Dz, we define linear operator L : W 1,1
p ([0, ω], Rm+n) → L1([0, ω], Rm+n), then L is a bounded linear

operator. Moreover, L is also one to one and surjective (the proof of this conclusion can been seen in Appendix B).
By Lemma 2.1, we can get that L−1

: L1([0, ω], Rm+n) → W 1,1
p ([0, ω], Rm+n) is a bounded linear operator.

For any z ∈ L1([0, ω], Rm+n), define the set-valued map M as

M(z) =
{
v(t) ∈ L1([0, ω], Rm+n) | v(t) ∈ ψ(t, z(t)), for a.e. t ∈ [0, ω]

}
.

Since ψ(t, z) = BK [h(z)] + I(t) is an upper semicontinuous set-valued map with nonempty compact convex values on z,
we can get that the set-valued map M : L1([0, ω], Rm+n) ↪→ L1([0, ω], Rm+n) has nonempty compact convex values. In
particular, it is also upper semicontinuous.

Consider the set-valued map

L−1
◦ M : L1([0, ω], Rm+n) ↪→ L1([0, ω], Rm+n).

Since L−1 is continuous and M is upper semicontinuous, the set-valued map L−1
◦ M is upper semicontinuous.

Let K ⊂ L1([0, ω], Rm+n) be a bounded set, then

M(K) =

⋃
z∈K

M(z)

is a bounded subset of L1([0, ω], Rm+n). Since L−1 is a bounded linear operator, L−1 (M(K)) is a bounded subset of
W 1,1

p ([0, ω], Rm+n). By Lemma 2.3, L−1 (M(K)) is a relatively compact subset of L1([0, ω], Rm+n). This shows that L−1
◦ M is

the upper semicontinuous set-valued map which maps bounded sets into relatively compact sets.
Set

Γ =
{
z(·) ∈ L1([0, ω], Rm+n) : z ∈ λL−1

◦ N (z), λ ∈ (0, 1)
}
,

then Γ is a bounded subset of L1([0, ω], Rm+n) (the proof of this conclusion can been seen in Appendix C).
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By Lemma 2.2, we can get that the set-valued map L−1
◦ M has a fixed point, i.e., there exists z∗

∈ L1([0, ω], Rm+n) such
that z∗

∈ L−1
◦ M(z∗). Hence, we have Lz∗

∈ M(z∗), i.e, there exists a measurable selection η∗(t) ∈ K [h(z∗(t))], such that

ż∗(t)+ Dz∗(t) = Bη∗(t)+ I(t). (6)

According to the definition of L−1, we can get z∗
∈ W 1,1

p ([0, ω], Rm+n). Moreover, by Definition 2.2 and (6), we can get
that z∗(t) is a solution of the differential inclusion (5), i.e., the neural network (1) has an ω-periodic solution. The proof is
completed. �

4. Global exponential stability of neural network

In this section, we shall establish the conditions that ensure global exponential stability of periodic solution for the neural
networks (1) under the assumption H1. Furthermore, we shall derive a result on global convergence in finite time for the
neural network (1).

Theorem 4.1. If the assumption H1 and m = n hold, suppose further pii < 0, qii < 0, i = 1, . . . , n, and P ′,Q ′
∈ Rn×n are

H-matrices, then the ω-periodic solution of the neural network (1) is globally exponentially stable.

Proof. Under the assumption H1, without loss of generality, we can assume that fj and gi satisfy

ηs ≥ 0, ∀ η ∈ K [fj(s)], ∀ s ∈ R, (7)

ζ t ≥ 0, ∀ ζ ∈ K [gi(t)], ∀ t ∈ R. (8)

Set P̃ ′ = (̃pij)n×n, p̃ij =

{
−pii, i = j,
−|pij|, i 6= j, and Q̃ ′ = (̃qij)n×n, q̃ij =

{
−qii, i = j,
−|qij|, i 6= j. Since P ′,Q ′ are H-matrices, there exist

β = (β1, . . . , βn)
′ > 0 and γ = (γ1, . . . , γn)

′ > 0 such that β ′P̃ ′ > 0, γ ′Q̃ ′ > 0.
By Theorem 3.1, we can get that the neural network (1) has a ω-periodic solution. Let z∗(t) be the ω-periodic solution of

the neural network (1), z(t) be the solution of (1) with the initial condition x(0) = x0. By (4), we can get

ż(t)− ż∗(t) = −D{z(t)− z∗(t)} + B{η(t)− η∗(t)}, η(t) ∈ K [h(z(t))], η∗(t) ∈ K [h(z∗(t))]. (9)

Moreover,

d
dt

|zi(t)− z∗

i (t)| = ∂|zi(t)− z∗

i (t)|(żi(t)− ż∗

i (t))

= vi(t)(żi(t)− ż∗

i (t)),

where vi(t) = sign(zi(t) − z∗

i (t)), if zi(t) 6= z∗

i (t); while vi(t) can be arbitrarily chosen in [−1, 1], if zi(t) = z∗

i (t). In
particular, we choose vi(t) as follows:

vi(t) =

{sign(zi(t)− z∗

i (t)), if zi(t) 6= z∗

i (t),
sign(ηi(t)− η∗

i (t)), if zi(t) = z∗

i (t) and ηi(t) 6= η∗

i (t),
0, if zi(t) = z∗

i (t) = ηi(t) = η∗

i (t) = 0,

then by (7) and (8), we can get

vi(t)(zi(t)− z∗

i (t)) = |zi(t)− z∗

i (t)|,
vi(t)(ηi(t)− η∗

i (t)) = |ηi(t)− η∗

i (t)|, i = 1, . . . , 2n.
(10)

Choose a constant ρ, such that 0 < ρ < d̃ = min(a1, . . . , an, b1, . . . , bn). Consider the following Lyapunov function V (t)
defined by

V (t) = eρt
n∑

i=1

βi|xi(t)− x∗

i (t)| + eρt
n∑

j=1

γj|yj(t)− y∗

j (t)|. (11)

Obviously, V (t) is an absolutely continuous function. Calculate the derivative of V (t) along the solution z(t) of Eq. (2) with
the initial condition z(0) = z0. By (9) and (10), we can obtain:

V̇ (t) = ρeρt
n∑

i=1

βi|xi(t)− x∗

i (t)| + eρt
n∑

i=1

βivi(t)(ẋi(t)− ẋi∗(t))

+ ρeρt
n∑

j=1

γj|yj(t)− y∗

j (t)| + eρt
n∑

j=1

γjvn+j(t)(ẏj(t)− ẏj∗(t))
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= −eρt
n∑

i=1

βi(ai − ρ)|xi(t)− x∗

i (t)| + eρt
n∑

i=1

{
βipii|ηi(t)− η∗

i (t)|

+

n∑
j6=i

βipjivi(t)(ηj(t)− η∗

j (t))

}
− eρt

n∑
j=1

γj(bj − ρ)|yj(t)− y∗

j (t)|

+ eρt
n∑

j=1

{
γjqjj|ηn+j(t)− η∗

n+j(t)| +

n∑
i6=j

γjqijvn+j(t)(ηn+i(t)− η∗

n+i(t))

}

≤ −eρt
n∑

i=1

βi(̃d − ρ)|xi(t)− x∗

i (t)| + eρt
n∑

i=1

{
βipii|ηi(t)− η∗

i (t)|

+

n∑
j6=i

βi|pji||ηj(t)− η∗

j (t)|

}
− eρt

n∑
j=1

γj(̃d − ρ)|yj(t)− y∗

j (t)|

+ eρt
n∑

j=1

{
γjqjj|ηn+j(t)− η∗

n+j(t)| +

n∑
i6=j

γj|qij||ηn+i(t)− η∗

n+i(t)|

}

= −eρt
n∑

i=1

βi(̃d − ρ)|xi(t)− x∗

i (t)| − eρt
n∑

j=1

γj(̃d − ρ)|yj(t)− y∗

j (t)|

− eρtβ ′P̃ ′(|η1(t)− η∗

1(t)|, . . . , |ηn(t)− η∗

n(t)|)
′

− eρtγ ′Q̃ ′(|ηn+1(t)− η∗

n+1(t)|, . . . , |η2n(t)− η∗

2n(t)|)
′

≤ 0, for, a.e. t ≥ 0. (12)

By (11) and (12), we can get
n∑

i=1

|xi(t)− x∗

i (t)| +

n∑
j=1

|yj(t)− y∗

j (t)| ≤
V (t)
δ

e−ρt
≤

V (0)
δ

e−ρt , t > 0,

where δ = min(β1, . . . , βn, γ1, . . . , γn). This implies global exponential stability of the periodic solution of the neural
network (1). The proof is completed. �

Arguing like in the proof Theorem 4.1, we can obtain

Proposition 4.1. If the assumption of Theorem 4.1 holds, then for any z0 ∈ Rm+n, the neural network (1) has a unique solution
which satisfies the initial condition z(0) = z0. In particular, the periodic solution of the neural network (1) is unique.

In the following, we give the analysis of convergence in finite time for the neural network (1). To do so, we further give
the hypothesis

H2: There exists a finite amount of time t1, . . . , tl in [0, ω), such that z∗(ti), i = 1, . . . , l is a discontinuous point of h(z),
and

hi(z∗

i (tk)
−)− η∗

i (tk) < 0 < hi(z∗

i (tk)
+)− η∗

i (tk), i = 1, . . . , 2n, k = 1, . . . , l.

Set

δ+

ik = hi(z∗

i (tk)
+)− η∗

i (tk), δ−

ik = η∗

i (tk)− hi(z∗

i (tk)
−),

∆ = min
i=1,...,2n.k=1,...,l

{
min

{
δ+

ik , δ
−

ik

}}
.

Theorem 4.2. If the assumption of Theorem 4.1 holds, suppose further H2 is satisfied, then the solution of the neural network (1)
with initial condition z(0) = z0 converges to the unique periodic solution in finite time, i.e., there exists a constant th ≥ 0, such
that z(t) = z∗(t) for t ≥ th,

th =
1
ρ

ln
(
1 +

ρV (0)
(l1 + l2)n∆

)
.

V (0) =
∑n

i=1 βi|xi(0) − x∗(0)| +
∑n

j=1 γj|yj(0) − y∗

j (0)|. l1 = mini=1,...,n
∑n

j=1 βj̃pij is the smallest entry of β ′P̃ ′, and
l2 = mini=1,...,n

∑n
j=1 γj̃qij is the smallest entry of γ ′Q̃ ′.
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Fig. 1. Time-domain behavior of the state variables x and y.

Proof. By the assumption H2, we can get∆ > 0, and when z(t) 6= z∗(t), |ηi(t)−η∗

i (t)| ≥ ∆, i = 1, . . . , 2n. From the proof
of Theorem 4.1, we have

V̇ (t) ≤ −eρtβ ′P̃ ′(|η1(t)− η∗

1(t)|, . . . , |ηn(t)− η∗

n(t)|)
′
− eρtγ ′Q̃ ′(|ηn+1(t)− η∗

n+1(t)|, . . . , |η2n(t)− η∗

2n(t)|)
′

≤ −eρt(l1 + l2)n∆, ∀t ∈ {t : z(t) 6= z∗(t), t ≥ 0}. (13)

An integration between 0 and t for (13) leads to

V (t) ≤ V (0)−
l1 + l2
ρ

n∆
(
eρt − 1

)
.

By (11), we can get
n∑

i=1

|xi(t)− x∗(t)| +

n∑
j=1

|yj(t)− y∗

j (t)| ≤
e−ρt

δ

{
V (0)−

l1 + l2
ρ

n∆
(
eρt − 1

)}
, t ≥ 0.

Hence, if t ≥ th, then
n∑

i=1

|xi(t)− x∗(t)| +

n∑
j=1

|yj(t)− y∗

j (t)| ≤ 0,

i.e., z(t) = z∗(t). This completes the proof. �

5. Illustrative examples

In this section, we give two examples to illustrate the effectiveness of the results obtained in this paper.

Example 1. Let us consider the following neural network{
ẋ(t) = −2x(t)− f [y(t)] + 0.5 + sint,
ẏ(t) = −y(t)− 3g[x(t)] − cost,

where f (θ) = g(θ) = sign(θ) =

{
1, θ > 0
−1, θ < 0 is discontinuous, and satisfies the assumption H1. P ′

= (−1), Q ′
= (−3)

are H-matrices. The conditions of Theorems 3.1 and 4.1 hold. Thus, this neural network has a unique 2π-periodic solution
which is globally exponentially stable.

Figs. 1 and 2 show the convergent behavior of the solutions of this neural network with the initial values (−1, 0)′, (1, 3)′,
(−0.5,−4)′, (0.8,−3)′ and (1.5, 1)′ respectively. It can be seen that all these solutions converge to the unique 2π-periodic
solution of this neural network. This is in accordance with the conclusion of Theorem 4.1.

Example 2. Let us consider the following neural network
ẋ1(t) = −0.8x1(t)− 0.4f1[y1(t)] + 0.2f2[y2(t)] + sint,
ẋ2(t) = −0.5x2(t)+ 0.1f1[y1(t)] − 0.2f2[y2(t)] + cost,
ẏ1(t) = −0.6y1(t)− 0.3g1[x1(t)] + 0.2g2[x2(t)] + sint,
ẏ2(t) = −0.7y2(t)− 0.1g1[x1(t)] − 0.5g2[x2(t)] + cost,
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Fig. 2. Phase plane behavior of the state variables x and y.

Fig. 3. Time-domain behavior of the state variables x1, x2, y1 and y2 .

where

fi(θ) = sign(θ) =

{
1, θ > 0
−1, θ < 0 , gi(θ) =

{
arctan(θ)+ 1, θ > 0
arctan(θ)− 1, θ < 0 , i = 1, . . . , n,

are discontinuous, and satisfy the assumption H1. P ′
=

(
−0.4 0.2
0.1 −0.2

)
, Q ′

=

(
−0.3 0.2
−0.1 −0.5

)
are H-matrices. The conditions

of Theorems 3.1 and 4.1 hold. Thus, this neural network has a unique 2π-periodic solution which is globally exponentially
stable.

Figs. 3–8 show the convergent behavior of the solution of this neural network with the initial value (−2, 0, 1, 3). It can
be seen that the solution converges to the unique 2π-periodic solution of this neural network. This is in accordance with
the conclusion of Theorem 4.1.

6. Conclusion

In this paper, we have presented a new BAM neural network with discontinuous neuron activations. By using the fixed
point theorem of differential inclusion theory, we have proved the existence of periodic solutions for the neural network.
The conditions that ensure the uniqueness and global exponential stability of periodic solution for the neural network have
been established.Moreover, the conditions that guarantee global convergence in finite time of the neural network have been
developed. The obtained results show that Forti’s conjecture in [14] is true for BAM neural networks with discontinuous
neuron activations.

How to investigate the stability of periodic solution for delayed BAM neural networks with discontinuous neuron
activations, in particular, how to investigate the existence of periodic solution in the framework of differential inclusion
theory will be the topic of future research.
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Fig. 4. Phase plane behavior of the state variables (x1, x2) and (y1, y2).

Fig. 5. Phase plane behavior of the state variables x1, x2 and y1 .

Fig. 6. Phase plane behavior of the state variables x1, x2 and y2 .
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Appendix A

Notice thatφ(z, t): (z, t) ↪→ −Dz+BK [h(z)]+ I(t) is an upper semicontinuous set-valuedmapwith nonempty compact
convex values, the local existence of a solution z(t) for Eq. (2) on [0, t0], t0 > 0, with z(0) = z0, is obvious [18].
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Fig. 7. Phase plane behavior of the state variables x1, y1 and y2 .

Fig. 8. Phase plane behavior of the state variables x2, y1 and y2 .

Setψ(t, z) = BK [h(z)]+ I(t). By the assumptionH1, h(z) is bounded on Rm+n and hence also K [h(z)] is bounded on Rm+n.
Since I(t) is a continuous ω-periodic function, the set-valued map ψ(t, z) is bounded, i.e., there exists a constant M > 0,
such that

sup
z∈Rm+n, t∈[0,+∞]

‖ψ(t, z)‖ ≤ M. (14)

Choose R̃ > 0, such that when ‖z(t)‖ > R̃,

M
‖z(t)‖

<
d̃
2
, (15)

where d̃ = min(a1, . . . , an, b1, . . . , bm). According to (4), (14) and (15), and by the Cauchy inequality, when ‖z(t)‖ > R̃, we
can get

1
2

d
dx

‖z(t)‖2
= 〈z(t), ż(t)〉

= 〈z(t),−Dz(t)+ Bη(z)+ I(t)〉
= −〈z(t),Dz(t)〉 + 〈z(t), Bη(t)+ I(t)〉
≤ −̃d‖z(t)‖2

+ M‖z(t)‖

=

(
−̃d +

M
‖z(t)‖

)
‖z(t)‖2

< −
d̃
2
‖z(t)‖2

< 0. (16)
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Let R̄ = max{‖z0‖, R̃}. By (16), we can get that ‖z(t)‖ ≤ R̄ on [0, t0]. This means that the local solution z(t) is bounded.
Thus, the neural network (1) has at least a solution with initial condition z(0) = z0 on [0,+∞).

Appendix B

By Lz = ż + Dz, we define linear operator L : W 1,1
p ([0, ω], Rm+n) → L1([0, ω], Rm+n). Then

‖Lz‖L1 =

∫ ω

0
‖ż(t)+ Dz(t)‖dt

≤

∫ ω

0
‖ż(t)‖dt +

∫ ω

0
‖Dz(t)‖dt

≤

∫ ω

0
‖ż(t)‖dt + d̄

∫ ω

0
‖z(t)‖dt

≤ max
{
1, d̄

}
‖z‖W1,1 , (17)

where d̄ = max {a1, . . . , an, b1, . . . , bm}. By (17), we can get that L is a bounded linear operator.
Let z1, z2 ∈ W 1,1

p ([0, ω], Rm+n). If Lz1 = Lz2, then we have

ż1(t)− ż2(t) = −D(z1(t)− z2(t)). (18)

By (18), we can get

d
dt
(−‖z1(t)− z2(t)‖2) = −2〈z1(t)− z2(t), ż1(t)− ż2(t)〉

= 2〈z1(t)− z2(t), D[z1(t)− z2(t)]〉

= 2

(
n∑

i=1

ai
(
x1i (t)− x2i (t)

)2
+

m∑
j=1

bi
(
y1i (t)− y2i (t)

)2)
. (19)

Noting z1(0) = z1(ω), z2(0) = z2(ω), we have∫ ω

0

d
dt
(−‖z1(t)− z2(t)‖2)dt = ‖z1(0)− z2(0)‖2

− ‖z1(ω)− z2(ω)‖2
= 0.

By (19), we can get

0 ≤ 2
∫ ω

0

(
n∑

i=1

ai
(
x1i (t)− x2i (t)

)2
+

m∑
j=1

bi
(
y1i (t)− y2i (t)

)2)

=

∫ ω

0

d
dt
(−‖z1(t)− z2(t)‖2)dt

= 0 .

It follows that z1(t) = z2(t), t ∈ [0, ω]. This shows that L is one to one.
Let f (t) ∈ L1([0, ω], Rm+n). In order to verify that L is surjective, in the following, we will prove that there exists

z(·) ∈ W 1,1
p ([0, ω], Rm+n) such that

Lz = f ,

i.e., we shall prove that there exists a solution for the differential equation{
ż(t) = −Dz(t)+ f (t),
z(0) = z(ω). (20)

Consider the initial value problem{
ż(t) = −Dz(t)+ f (t),
z(0) = ξ .

(21)

It is easily checked that

z(t) = e−Dtξ +

∫ t

0
e−D(t−s)f (s)ds (22)
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is the solution of (21). By (22), choose ξ = x(ω), we can get

e−Dωξ +

∫ ω

0
e−D(ω−s)f (s)ds = ξ,

i.e., (
I − e−Dω) ξ =

∫ ω

0
e−D(ω−s)f (s)ds, (23)

where I is an identity matrix. Since D is a positive diagonal matrix, I − e−Dω is a nonsingular matrix. By (23), we take

ξ = (I − e−Dω)−1
∫ ω

0
e−D(ω−s)f (s)ds,

in (22), then (22) is the solution of (20). This shows that L is surjective.

Appendix C

For any r(z) ∈ K [h(z)], when z 6= 0, λ ∈ (0, 1), by (14) and the Cauchy inequality, we can get

〈z,−Dz + λBr(z)+ λI(t)〉 = −〈z,Dz〉 + 〈z, λBr(z)+ λI(t)〉
≤ −̃d‖x‖2

+ M‖z‖

=

(
−̃d +

M
‖z‖

)
‖z‖2. (24)

Choose K0 > 0, such that when ‖z‖ > K0, M
‖z‖ <

d̃
2 .

Therefore, when ‖z‖ > K0, by (24), we can get

〈z,−Dz + λBr(z)+ λI(t)〉 < −
d̃
2
‖z‖2, ∀ r(z) ∈ K [h(z)]. (25)

Let z ∈ Γ , then z ∈ λL−1
◦ M(z), i.e., Lz ∈ λM(z). By the definition of M, there exists a measurable selection

v(t) ∈ K [h(z(t))], such that

ż(t)+ Dz(t) = λBv(t)+ λI(t). (26)

If z ∈ Γ , then we can derive maxt∈[0,ω] ‖z(t)‖ ≤ K0. Otherwise, maxt∈[0,ω] ‖z(t)‖ > K0. By L−1
: L1([0, ω], Rm+n) →

W 1,1
p ([0, ω], Rm+n), we have z(0) = z(ω). Since z(t) is continuous, we can choose t0 ∈ (0, ω], such that

‖z(t0)‖ = max
t∈[0,ω]

‖z(t)‖ > K0,

and there exists a constant δt0 > 0, such that when t ∈ (t0 − δt0 , t0], ‖z(t)‖ > K0. By (25) and (26), we can get

0 ≤
1
2
‖z(t0)‖2

−
1
2
‖z(t)‖2

=
1
2

∫ t0

t

d
ds
(‖z(s)‖2)ds

=

∫ t0

t
〈z(s), ż(s)〉ds

=

∫ t0

t
〈z(s),−Dz(s)+ λBv(s)+ λI(s)〉ds

< −
d̃
2

∫ t0

t
‖z(s)‖2ds

< 0, for t ∈ (t0 − δt0 , t0].

This is a contradiction. Thus, we get that for any z ∈ Γ , maxt∈[0,ω] ‖z(t)‖ ≤ K0. Furthermore, we have

‖z‖L1 =

∫ ω

0
‖z(s)‖ds ≤ ωK0, ∀ z ∈ Γ .

This shows that Γ is a bounded subset of L1([0, ω], Rm+n).
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