Information and Computation 144, 155-190 (1998)
Article No. 1C982713

Double Horn Functions*™

iew metadata, citation and similar papers at core.ac.uk

Institut fiir Informatik, Universitdit Giefjen, Arndtstrafie 2, D-35392 Giefsen, Germany

Toshihide Ibaraki
Department of Applied Mathematics and Physics, Graduate School of Engineering,
Kyoto University, Kyoto 606, Japan

and

Kazuhisa Makino

Department of Systems and Human Science, Graduate School of Engineering Science,
Osaka University, Toyonaka, Osaka, Japan
E-mail: eiter@informatik.uni-giesen.de, ibaraki@kuamp.kyoto-u.ac.jp, makino@sys.es.osaka-u.ac.jp

In this paper, we define double Horn functions, which are the Boolean
functions f such that both f and its complement (i.e., negation) f are
Horn, and investigate their semantical and computational properties.
Double Horn functions embody a balanced treatment of positive and
negative information in the course of the extension problem of partially
defined Boolean functions (pdBfs), where a pdBf is a pair (T, F) of dis-
joint sets T, F={0, 1}” of true and false vectors, respectively, and an
extension of (T, F) is a Boolean function f that is compatible with T
and F. We derive syntactic and semantic characterizations of double Horn
functions, and determine the number of such functions. The characteriza-
tions are then exploited to give polynomial time algorithms (i) that
recognize double Horn functions from Horn DNFs (disjunctive normal
forms), and (ii) that compute the prime DNF from an arbitrary formula,
as well as its complement and its dual. Furthermore, we consider the
problem of determining a double Horn extension of a given pdBf. We
describe a polynomial time algorithm for this problem and moreover an
algorithm that enumerates all double Horn extensions of a pdBf with poly-
nomial delay. However, finding a shortest double Horn extension (in terms
of the size of a formula ¢ representing it) is shown to be intractable.
© 1998 Academic Press

* The major part of this research was conducted while the first author visited Kyoto University in
1995, by the support of the Scientific Grant in Aid by the Ministry of Education, Science and Culture
of Japan (Grant 06044112).

155 0890-5401/98 $25.00

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.

https://core.ac.uk/display/82404064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

156 EITER, IBARAKI, AND MAKINO

1. INTRODUCTION

A Boolean function (or a function in short) is Horn if it can be represented by
a DNF (disjunctive normal form) in which each term contains at most one negative
literal. Horn functions are at the heart of knowledge based systems, logical
databases, and logic in computer science (see, e.g., [1, 4, 11, 30]). Many problems
related to Boolean functions (resp., formulas) can be solved efficiently for Horn
functions (resp., formulas), while they are intractable for arbitrary functions (resp.,
formulas); a well-known example is the classical satisfiability problem. This is
a motivation for recent increasing activities on Horn functions, e.g., computing a
minimum representation of a Horn function [16-18], learning and identification
of Horn functions [1, 7, 29], constructing Horn approximations of non-Horn
functions [35], and constructing Horn extensions [3, 29].

Let us denote the set of true (resp., false) vectors of a function fas T(f) (resp.,
F(f)). There is an elegant semantical characterization of a Horn function that f is
Horn if and only if its F(/) is closed under intersection [20, 31]. This characteriza-
tion, however, reveals an asymmetry between the roles of T(f) and F(f) for a
Horn function f. From a conceptual point, therefore, we may want to have a more
balanced role of 7(f) and F(f) by imposing suitable additional constraints on
Horn functions. A natural and suggestive possibility at hand is to require complete
symmetry between 7'(f) and F(f). This gives rise to the concept of double Horn
functions: A function f'is double Horn if both T(f) and F(f) are closed under inter-
section (equivalently, if both f and its complement f are Horn). This characteriza-
tion is paralleled by the one in terms of rules: f is double Horn precisely if both f
and its negation f can be expressed by collections of Horn rules.

In this paper, we derive syntactic and semantic characterizations of double Horn
functions, and give polynomial time algorithms for various associated problems. We
also determine the number of such functions.

As another direction of applying double Horn functions, we consider partially
defined Boolean functions (pdBfs) and their extensions. A pdBf is a natural
generalization of the Boolean function, by allowing that the function values on
some input vectors are unknown; it is described by a pair (7, F) of sets 7 and F
of true and false vectors v € {0, 1}”, respectively, where T F= . A pdBf arises in
conjunction with data analysis, where T represents a set of positive examples and
F a set of negative examples. A natural and important issue is whether a pdBf
(T, F) can be completed to a Boolean function f chosen from a particular class of
Boolean functions % i.e., establish a Boolean function (i.e., extension) f: {0, 1}"
{0, 1} in €, such that T(f)=T and F(f)=2F.

For example, if a vector ve T'U F gives the results of physical tests of a patient
for some disease (e.g., v; denotes whether the patient is male (v, =1) or female
(v; =0), v, denotes whether the patient is a smoker (v,=1) or not (v, =0), and so
forth), an extension f of pdBf (7, F) is a description of the diagnosis for all possible
data vectors ve {0, 1}”. Finding an extension f of a pdBf (7, F) is therefore an
important subject in such fields as knowledge acquisition, knowledge discovery, and
data mining, which are receiving increasing attention currently. In fact, the exist-
ence of an extension in a class 4 of Boolean functions is a necessary condition for

DOUBLE HORN FUNCTIONS 157

the truth of a hypothesis that the relationship between different attributes is
described by some function in €. In the spirit of Popper’s falsification principle, we
can refute such a hypothesis if no extension in % exists. The extension problem is
also relevant to machine learning, in which a learning algorithm gradually refines
a pdBf (T, F), until it finally outputs a Boolean function. In exact learning, this is
a function f which should be learned, where f is known to be from a certain class
% of Boolean functions, while in a probabilistic setting, the output is a hypothesis
f obeying certain quality bounds.

The extension problem has been investigated for a number of classes % of
Boolean functions [3, 5, 29]. Among these classes are Horn functions, for which,
as shown in [3, 29], an extension can be found in polynomial time. We extend
these results to double Horn functions, and investigate related problems such as
enumerating all double Horn extensions. A double Horn extension may be con-
sidered more natural than a Horn extension in the sense that positive examples T
and negative examples F play a symmetric role in characterizing the existence of an
extension.

Our main contributions in this paper can be summarized as follows.

e We introduce the class %p; of double Horn functions and investigate its
properties. In particular, we present a useful syntactic characterization and analyze
relationships to other classes of Boolean functions. We show that %,y corresponds
1-1 to a syntactic fragment of the class %;_, of read-once functions, which are
definable by Boolean formulas in which no variable occurs more than once. Read-
once functions (resp., formulas) are well known and received a lot of attention, e.g.,
[8, 14, 15, 21, 23, 32, 33, 36, 37]. Moreover, we show that each double Horn func-
tion has the unique irredundant prime DNF, which contains few prime implicants.

o Based on the syntactic characterization, we develop an algorithm that
recognizes a double Horn function from a given formula ¢ (not necessarily Horn).
The algorithm runs in polynomial time if ¢ is from a class that satisfies some con-
straints. In particular, it is low-order polynomial for the class of Horn formulas.

e We also present a semantic characterization of double Horn functions in
terms of their characteristic sets (or models) [24, 25, 27]. The characteristic set of
a Horn function f'is the generating set of the false vectors F(f) under intersection,
ie., the minimum set of vectors C*(F) such that CI,(C*(F))=F, where CI,
denotes the intersection closure. This semantic characterization can be naturally
stated as a graph property, and we obtain a 1-1 correspondence between double
Horn functions and oriented complete bipartite graphs.

o We study transformations of double Horn functions, and show that all the
considered transformation problems are polynomially solvable. In particular, we
show that the problem of dualizing a double Horn function f (i.e., computing the
prime DNF of the dual function f? of f from an arbitrary representation of /) can
be done in polynomial time.

e The above characterizations of double Horn functions allow us to derive the
count of €. We show that there are precisely 2”+! nonisomorphic double Horn
functions on n variables xq, .., x,. The total number # DH(n) of double Horn

158 EITER, IBARAKI, AND MAKINO

functions on n variables is much larger and amounts to simple closed expressions
referring to (i) the number of ordered partitions of a set and (ii) the number of
cycle-free complete bipartite digraphs.

o For the extension problem of a pdBf, we also present efficient algorithms.
In particular, we present an algorithm that, given a pdBf (7, F), finds a double
Horn extension in polynomial time (if any exists). This positive result is com-
plemented by the fact that computing a shortest double Horn extension (measured
by the length of a formula describing it) is intractable. Moreover, we describe an
algorithm that enumerates all double Horn extensions of a given pdBf (7, F) with
polynomial delay. By means of this result, we obtain that the uniqueness problem
(ie., deciding whether (7, F) implicitly defines a unique double Horn function) is
solvable in polynomial time.

Notice that the above results can be fruitfully applied to machine learning. In
fact, our results on the extension problem allow us to immediately derive that
double Horn functions are PAC (probably approximately correct) learnable [37].
On the other hand, the result on the uniqueness of an extension implies that, given
a sample (i.e., a pdBf) consisting of positive and negative instances, it can be
decided in polynomial time whether this sample suffices to identify a double Horn
function which should be learned in a batch-mode [19], where no information
beyond the sample is available. Moreover, a DNF of the function can be output
efficiently in this case.

In passing, we note that, besides double Horn functions, other possibilities exist
to balance the role of T(f) and F(f). For example, to require that f and f¢ are
Horn gives rise to bidual Horn functions [9], and to require that f and f* (the
contra-dual of f; see Section 2 for a definition) are Horn gives rise to the sub-
modular functions [10].

The rest of this paper is organized as follows. In the next section, we state some
preliminaries and fix notations. In Section 3, we introduce double Horn functions,
derive a syntactical characterization of such functions, and consider the recognition
problem. In Section 4, we study double Horn extensions. In Section 5, we derive a
semantic characterization of double Horn functions, tackle the transformation
problem, and determine the count of the class %,. Section 6 concludes the paper
by addressing further issues on double Horn functions and stating open problems.

2. PRELIMINARIES AND NOTATIONS

We usually use letters a, b, ¢ and u, v, w to denote vectors in {0, 1}”, and use
0=(0,0,..,0) and 1=(1, 1, .., 1). In general, we allow n=0; here, {0, 1}°={()},
where () is the empty vector. For each a=(a,,a,, .., a,), we define ON(a)=
{i|a;=1} and OFF(a)={i|a;=0}, and denote a=(a,,a,,..a,), where
a,=1—a;, i=1,2,..,n As usual, v A w denotes the intersection (i.e., the com-
ponentwise conjunction) of vectors v and w; e.g., if v=(1100) and w=(1010), then
v Aw=(1000). Let S={0,1}"”. The closure of S under pairwise intersections
(called the intersection closure of S) is denoted by CI,(S). Furthermore, for a set

DOUBLE HORN FUNCTIONS 159

I={1,2,..n}, S[I] denotes the projection of S to I, by x" we denote the charac-
teristic vector of I, which is defined by ON(x')=I For example, let S=
{(11011), (01010), (00111)}. Then, C/ ,(S) =S U {(00011), (00010)}. For I = {2, 4},
we have S[1]={(11),(01)} and x"=(01010).

Recall that a Boolean function (in short, function) is a mapping f: {0, 1}" —
{0, 1}, n=0. For n=0, there are precisely two Boolean functions, f = L and f =T,
which correspond to truth and falsity, respectively. The sets T(f)={v| f(v)=1}
and F(f)={v| f(v)=0} are the true vectors and false vectors of f, respectively.

For any function f, we denote by f, £, and f* its negation (or complement),
dual, and contra-dual, respectively, which are defined by T(f)=F(f), T(f%) =
{alaeF(f)}, and T(f*)={a|aeT(f)}. Note that f?=7*. For any assignment
A=(x; < ay, x; < a, ..., x; < a;) to the variables x,, where each of a,, as, ..., a; is
either 0 or 1, we denote by fA=f(xil(_al’xi2<_a2, Xy) the function of (n—k)
variables obtained by fixing variables x;, x;, ..., x; as specified by 4, and use the
same notation for formulas ¢.

A partially defined Boolean function (pdBf) is a mapping g: Tu F— {0, 1}
defined by g(v)=1ifve T; 0 if ve F, where T< {0, 1}” denotes a set of true vectors
(or positive examples) and F< {0, 1}” denotes a set of false vectors (or negative
examples) such that 7'n F= . For simplicity, a pdBf is denoted by a pair of sets
(T, F). It can be seen as a representation for all Boolean functions f such that
T(f)=T and F(f)=F; any such f'is called an extension of (T, F). A pdBf is called
complete if TU F=1{0, 1}".

Among the many classes of Boolean functions, the classes %, of positive func-
tions and %p,,, of Horn functions are well known, cf. [11, 30, 38]. A function f'is
positive (also called monotone) if v<w implies f(v)< f(w), where < is com-
ponentwise and 0 < 1. A function f'is Horn if F(f)=CI ,(F(f)) holds, i.e., its false
vectors are closed under intersection. This is equivalent to the well-known algebraic
characterization

flo Aw)< f(v) v fw), for all v, we{0,1}"

Assume that Boolean variables are from x, x,, ..., X,,. A positive (resp., negative)
literal L is a variable x; (resp., its complement X;). A ferm t is a conjunction
NicpyXi A Njemn X, of literals such that P(¢), N(r)={1,2,...,n} and P(1)n
N(t)=J; in the sequel, we omit conjunction symbols if no confusion arises. The
empty term (representing truth) with P(¢)=N(¢t)=(J is denoted by T. Let
V(t)=P(t) u N(t) denote the indices of variables in t. A disjunctive normal form
(DNF) ¢ is a disjunction \/*_, t; of terms; the empty DNF (representing falsity) is
denoted by L. The length of a DNF (or arbitrary formula) ¢, denoted by |¢|, is
the number of symbols in ¢ (here a negative literal x; counts as a single symbol).
A term ¢ is positive if N(t)=f and Horn if |[N(t)| <1. A DNF ¢ =V,¢, is called
positive if all t; are positive and Horn if all ¢; are Horn.

It is well-known (and easy to prove) that a function is positive (resp., Horn) if
and only if it can be represented by some positive (resp., Horn) DNF (see, e.g.,
[7, 20, 31, 38]). For example, t; =x;X,X4, 1, =X;X4XsX¢ and f;=Xx,X;Xs are
terms, while 7,=x,x,X, is not. Term ¢; is positive (and hence Horn) and has

160 EITER, IBARAKI, AND MAKINO

P(t;)={1,2,4} and N(¢,)=J; t, is Horn and has P(z,)={1,4,6} and N(t,) =
{5}; and 15 is neither positive nor Horn. The DNFs ¢ =x, v x,;x; v x;x, and
@® =x,%; vV X1 X3 V X,Xx; are positive and Horn, respectively.

A term ¢ or a formula ¢ is also viewed as a function that it represents, if no con-
fusion arises. For two functions f'and g, f<g denotes T(f) = T(g). A term ¢ is an
implicant of a formula ¢ (resp., function f) if t < ¢ (resp., ¢ < /) holds. An implicant
t is prime if no proper subterm of ¢ is an implicant. A DNF ¢ =V, ¢, is called prime
if all terms ¢, in ¢ are prime implicants, and irredundant if no DNF, which is
obtained by dropping some terms ¢, in ¢, represents the same function. For exam-
ple, a DNF ¢ =x;X, v x{X;3 V X,X3 V X, is prime because all terms x;X,, x; X5,
X, X3, and x, are prime implicants, but it is not irredundant because ¢’ =
X1 X, V X,X;5 V x4 also represents the same function as ¢.

The prime implicants of a DNF ¢ can be generated by iterated consensus on
terms. More precisely, let 7, and 7, be terms such that P(z;) nN(t,)={l/} and
N(t)mP(lz) . A term t; is called the consensus of terms t; and 1, if
P(1, t)\{/})u P(t,) and N(z3)=N(t;)uU (N(t,)\{l}); note that consensus
operdtlon is the dual of resolution. E.g., x,X3x,X5X¢ is the consensus of x;X;x,Xs
and X;x,X3Xx,Xe. It is well known [34] that every prime implicant ¢ of an arbitrary
function f can be derived from the terms in any DNF ¢ =V, ¢, for f by applying
a consensus procedure. In other words, there is a sequence U, 1@, . 1™ =t of
terms such that each * is either in ¢ (ie., 1) =1¢, for some i) or the consensus of
two terms %1 and #*2 such that k,, k, <k.

3. DOUBLE HORN FUNCTIONS

In this section, we introduce double Horn functions and investigate their proper-
ties. We start with syntactical characterization of such functions, which will then be
used in Section 3.3. Moreover, these characterizations allow us to precisely deter-
mine the count of the class of double Horn functions.

3.1. Definitions and Characterizations

DerFiniTION 1. A Boolean function f is double Horn if and only if 7(f)=
Cl (T(f)) and F(f)=CIl, (F(f)) (e, CI(T(f)) and CI,(F(f)) satisty
Cl (T(f))nCl (F(f)=& and CI, (T(f))u Cl (F(f))=1{0,1}"). The class of

all double Horn functions is denoted by € .

Equivalently, a function f'is double Horn if and only if it satisfies

S Af) < Sx A p) < flx) v (),

ie., both f and f are Horn. For example,

f=X1V XpX3X4 V XpX3X5X6X5

DOUBLE HORN FUNCTIONS 161

is double Horn, because

f=x1(X, VX3V X4)(X3V X3V X5V XgV Xq)

=X1X5 VX1X3V X1 X3X5V X[X4Xg V X1 X4X7

is also Horn. Notice that the above inequations are different, but not unrelated, to
the condition

Sxap) v fixvy)<flx)vf(y), forevery x, ye{0,1}"

which defines the class of submodular functions. As pointed out in [10], this condi-
tion is equivalent to the property that both f and its contra-dual f* are Horn.

There is also a simple logical characterization of double Horn functions: Both f
and the negation f of a double Horn function f can be expressed by collections of
Horn rules

X

B

A e A X X
where the antecedent and/or the consequent of the rule may be empty. In the above
example, f is expressed by the rules x; — x,, X; = X3, X; A X4 — X5, X1 A X4 — X,
and x; A X, A x;— O (meaning that x,, x, or x, is false); the complement f is
expressed by the rules [— x; (meaning that x, is true), x, A x;— x,, and
X, A X3 A X5 A Xg — X5, Where [denotes empty.

3.2. Horn DNFs and Read-Once Formulas of Double Horn Functions

We shall present in this subsection syntactical characterizations of double Horn
functions.

LemMa 3.1. Let f be a double Horn function. Then f, is double Horn for every
assignment A.

Proof. Immediate from the definitions. ||

Let V'={1,2, .., n}. Given an ordering L =1y, i,, ..., i,, on V, define a set of n+ 1
Horn terms by

X Xy Xp oo Xy X, X

Tp={X;, X; Xy o X3 X 00 X; -

e X
) Iy 1

i i i, X, '“xin}'

In particular, ', = { T} if n=0. Note that all terms in /", are mutually orthogonal;
ie., tt'= 1 holds for any t#¢" in I,.

LemMa 3.2. For every ordering L on Vand S< Iy, a DNF ¢ =\ ,.st represents
a double Horn function f.

Proof. Since ¢ is obviously Horn, we show that there exists a DNF ¢’ repre-
senting / which is also Horn, which proves the lemma. Note that \/,. r,t=T and
1" = 1 holds for all pairs of two terms 7, #' € I',. This means that f =¢' =V, r\s
which is clearly Horn. |

162 EITER, IBARAKI, AND MAKINO

LemMMA 3.3. A double Horn function f can be represented by f =\ ,.st for some
ordering L on V and S<T;.

Proof. We prove the lemma by induction on the number of variables n. In case
of n=0, L is empty and I", = { T} holds. All functions of zero variables, T and L,
are double Horn, and hence the lemma holds for n=0. Assume that the lemma
holds for n =k, and consider the case of n =k + 1. We consider two cases.

First, let us assume f(0) = 1. Since f'is Horn, there exists a Horn term ¢ < f such
that #(0) = 1, which is either =T or 7= x; for some x;. Since T > x; holds for all
Jj€V, there is an index je V" such that x;< f. Now f can be represented by

S =%V X (3.1)

By Lemma 3.1, f(xj<_ 1) is double Horn. Hence by the induction hypothesis, there is
an ordering L on V\{,} and a subset S< I, such that Je1y=Vicst. Define the
ordering L' on ¥V by L' = j, L by ordering j before L. Let S'={X;} U {x;t|1eS}.
Then we can see S’ = I, and by (3.1), we have f =V, ¢, which proves the state-
ment for k+ 1.

Similarly, if /(0) =0, then there exists an index je V such that x;< f, and

S =T =%V Jige% = iy 1)%;- (3.2)

Then, the lemma can be proved by a similar argument. ||

LeMMA 3.4. A function f is double Horn if and only if f can be represented by a
DNF ¢ =V, st for some ordering L on V and S<T;.

Proof. Combine Lemmas 3.2 and 3.3. ||

From this lemma, we obtain the following result, which gives an alternative syn-
tactical characterization of double Horn functions. Let ¥ _, denote the class of
read-once functions, where f is called read-once if f can be represented by a read-
once formula, i.c., a formula in which every variable occurs at most once (cf. [14,
15, 21, 23, 32, 37]).

THEOREM 3.1. A function f is double Horn if and only if it can be represented by
a read-once formula of the type

x11x12"'x1n1(x21 VXV ooV Xy,
= v (x31x32"‘x3n3((X VXp VoV and)))) if dis even (3.3)
x11x12"'x1n1(f21 V Xgp Vs VX,
Vv (x31x32"'x3n3("'(xdlxdz"'xdnd)))) if d is odd,

where d=0, ny =0, n;>1 for i=2,3, ..., d, and the variables x.1, X132, ..., X4

are all
nq
different (see Fig. 1). In particular, (3.3) implies = L if d=0.

Proof. To show the if-part, let yy be a formula (3.3). Then, by expanding i/, we
can see that y can be transformed into a Horn DNF. Furthermore, i can also be
transformed into the formula (3.3) (by exchanging v and A, as well as positive

DOUBLE HORN FUNCTIONS 163

Td1 Tdz -+ Tdng

(1) d is even. (ii) d is odd.
FIG. 1. Read-once formulas of a double Horn function.

literals and negative literals). Hence, there is a Horn DNF, which is equivalent
to Y. Therefore, represents a double Horn function.

We next prove the only-if-part by induction on the number of variables n. Check
that the statement holds for »=0. Assume that it holds for n=k, and consider
n=k+1. By Lemma 3.4, f can be represented by ¢ =\, st for some ordering
L=i,,i,,...i,on Vand S<TI,. In the cases where ¢ contains no term (i.e., fis
always 0), a single term, or all terms from I, (i.., f is always 1), clearly f is
represented by a formula of (3.3). In the remaining case, consider f’ = f“‘u“ -
Note that, by Lemma 3.1 and the induction hypothesis, /' can be represented by a
formula " of type (3.3), and y' # L, T holds. If a term x; occurs in ¢, then choose
Y =x,; v ', which is a formula (3.3), and represents f; otherwise, x; appears in all
terms re S of ¢ (since S<17;). Therefore, choose ¥ =x; ', which is again a for-
mula (3.3). In either case, i/ represents f. ||

COROLLARY 3.1. Every f €@y, has the unique prime DNF, which has the form

m

p=\ tity---1,%,,

i=1

where t; and x,, i=1,2,..,m, are pairwise disjoint positive terms (in this case,
literals x, are also regarded as terms), and some of 1,15, .., 1, and x, may be
empty. In particular, (3.4) implies ¢ = L if m=0. Conversely, every such formula ¢
represents an f € €py.

Proof. By Lemma 3.4, or by expanding (3.3) in Theorem 3.1, we have a Horn
DNF ¢ of (3.4). To prove the unique primality of ¢ of (3.4), let ¢ be a prime impli-
cant of f,,, where f,, is the function ¢ represents. Then, as noted in Section 2, there
is a consensus sequence 1V, t®, .., 1" =¢ of terms such that each #*) is either in
¢ (ie, "' =1,1,..1;%, for some i) or the consensus of two terms ¢/ and 7“2 such
that k,, k, <k. However, ¢ of (3.4) has no pair of terms ¢V =1,¢,---1,X, and

164 EITER, IBARAKI, AND MAKINO

=11, -+ 1;X, such that P(1) A Nt = {1} and N(:?) n P(:Y) = &, implying
that no consensus operation is applicable to ¢. This means that 7 is a prime impli-
cant of f, if and only if 7 is in ¢, and hence ¢ is the unique prime DNF of f,,. |

This corollary also says that a double Horn function f has a short DNF in the
sense that formula ¢ of (3.4) has at most n terms and its length satisfies |¢| <n>
The unique prime DNF ¢ of (3.4) can be computed form the read-once formula of
(3.3) by simply expanding it. The required time for this is O(n?). These results also
apply to f since the definition of a double Horn function is symmetric between f
and f. Obtaining the unique prime DNF ¢’ for f from the unique prime DNF ¢ of
f1is also straightforward. As implicit in the proof of Lemma 3.2, this can be done
by first finding an ordering L on V'={1, 2, .., n} such that ¢ can be regarded as

p=\/ 1

teS

for some S< I, and then by defining

o=\

teI;)\S

We note that the dual /¢ of a double Horn function f also has the unique prime
DNF ¢"', which is obtained from ¢’ by complementing all literals. This DNF is not
Horn in general (recall that the dual of a double Horn function may not be Horn
any more). Summarizing these, we establish the next corollary.

COROLLARY 3.2. Let f be a double Horn function of n > 1 variables. Then f, f, and
f? have short unique prime DNFs, respectively, which contain at most n terms, and
whose lengths are at most n®. The prime DNF @ of f can be computed from its read-
once formula (3.3) in O(n*) time. Also prime DNFs for f and f can be obtained in
O(n?) time, respectively.

3.3. Recognition of Double Horn Functions

We consider the problem of recognizing a double Horn function from a DNF ¢.
In particular, we describe an algorithm that solves this problem in polynomial time
for classes of formulas that satisfy certain properties and show also that the
problem is intractable in general.

Lemma 3.5. Let f be a function of n>=1 variables. Then f € 6py if and only if (1)
either x;< f or)Ejéfholds for some j, and (ii)f(xj(_nengHfor all such j.

Remark 3.1. Note that, if a function f satisfies X;< f, then it has a formula
X; v ¢ for some @, and if f satisfies)ngf, then it has a formula x;¢. |

Proof. To prove the only-if-part, assume that f is double Horn. Then consider
vector 0. If f(0)=1 (resp., f/(0)=0), then there exists a j such that x;< f (resp.,
X;<f) by the discussion in the proof of Lemma 3.3. Thus (i) holds. Furthermore,
Lemma 3.1 tells that (ii) holds.

DOUBLE HORN FUNCTIONS 165

Conversely, let us assume that (i) and (ii) hold. Let W,={/|x,<f} and
Wo={jlx,<f}. Since ff=L1, it is easy to see that either (I) (W,# & and
W,=@) or (Il) (W, =& and W, # &) holds. We consider case (I) only, since the
other case is similar. Then f and f can be represented by

fzfj v.f‘(xjkl)xj and f_zf‘(xjkl)xj (3.5)

for any je W,. By (ii), f(x —1) is double Horn, that is, both f(x 1 and f(x 1) Can
be represented by Horn 'DNFs. Therefore f and f can be represented by Horn
DNFs. |

Let a function f be represented by a formula ¢. Then the above conditions X, < ¢
and X; < ¢ are equivalent to Plx,e0) = T and Plx,e0) = = 1, respectively. Whether the
condmon @' =T and ¢’ = 1 can be checked in polynomial time or not depends on
how formula ¢’ is given. If ¢’ is a DNF, for example, then it is trivial to check
if ¢'=_1 holds, but it may not be trivial to check if ¢'=T holds (problem
TAUTOLOGY). If ¢’ is a Horn DNF, both ¢’ =T and ¢’ = L can be checked in
linear time [6].

The previous lemma can be exploited for an algorithm CHECK-DH recognizing
a double Horn function, which proceeds as follows. It checks the condition (i), by
testing whether the current ¢ satisfies P, 0) = =T or Py 0) = 1 for some j, and
if’ so, applies the decomposition of ¢ =x; v Pty OF P=X;0(c 1) recursively,
until finally condition Pen=Tor L is reached.

Since CHECK-DH may need to check all the current variables x; for the condi-
tion of P, <_0) =T or Plx,e0) = = 1 in each iteration, and the level of recursion is at
most n, 0(%) is an upper bound on the number of tests for p =T and ¢ = L in
CHECK-DH. For a more detailed formulation, see [9]. This establishes the next
theorem.

THEOREM 3.2. Let F be a class of formulas, which is closed under assignments
and for which checking if ¢ =T and @ = L, respectively, can be done in O(t(n, |@|))
time for any ¢ € F, where n is the number of variables.! Then, deciding whether a
given @ € F represents a double Horn function can be done in O(n*t(n, |@|)) time.

Notice that if #(n, |¢]) is a polynomial, then the recognition of a double Horn
function from a given formula ¢ € # is polynomial.

ExampPLE 3.1. Let us apply algorithm CHECK-DH to a Horn DNF
§0(1)=XIX2)€3 Vv x2 \4 xleX4 \4 XIX3.X4

Since ¥, <@ (other x; satisfy neither x;<¢" nor x;<¢), pM=x, v o
holds, where 0@ =g{)) _|)=x,%; v X1x; vV X, X3X,. Slnce @@ satisfies %, < p®,
we have 9 =x,0®), where ¢ =9 _,)=%; v x; v X3x,. In the next iteration,

Tt is assumed that #(n, |@|) is monotonic in both arguments, i.e., fewer variables or shorter formulas
do not increase running time, which applies to all reasonable classes of formulas.

166 EITER, IBARAKI, AND MAKINO

we see that @@ satisfies ¥3<¢®, and we have @ =x; v 0@, where @@ =
@3 o 1y=x4. Finally, @ =x,0® holds, where ¢ =T. Therefore, ¢ =T,
eW=x,, 0¥=%, v x,, 0P =x,(%; v x,), and oV =%, v x;(¥5 v x,). Thus o
represents a double Horn function.

If we restrict ourselves to the class of Horn formulas, then it is known that
t(n, |@|)=|p| holds [6]. Therefore, the complexity in Theorem 3.2 becomes
O(n?|¢|). This complexity can be further improved to linear time O(|¢|) by exploit-
ing the data structure developed for handling Horn DNFs [6], and by devising
clever and efficient bookkeeping of data. The details are, however, technical, and
omitted; the interested readers are requested to consult [9].

Finally, we note that, for a general class of formulas, for which #(n, |@|) in
Theorem 3.2 may not be polynomial, it is very unlikely to have a polynomial time
algorithm, because we have the following negative result.

THEOREM 3.3. Given an arbitrary DNF ¢, checking if ¢ represents a double Horn
function is coNP-complete.

Proof. The problem is in coNP, since a guess for vectors u and v such that
either p(u) =¢@(v)=0 and ¢(u A v)=1, or p(u)=¢@(v)=1 and ¢(u A v) =0, which
proves that ¢ is not double Horn, can be easily verified in polynomial time.

To show the hardness, let ¥ be a DNF involving variables x,, x,, ..., X,,, and
define a DNF ¢ by ¢ =y v X, 1 X, ,. We claim that ¢ is double Horn if and only
if y is a tautology (i.e., Yy =T). If y is a tautology, then clearly, ¢ is a tautology,
and hence ¢ is double Horn. Conversely, if # T, then X, X, , is a prime impli-
cant of @, since @ o) P(x,,,—0 F | (i€, neither x, ., nor x, ., is an implicant
of ¢). Since such ¢ cannot be represented by a DNF of (3.4), Corollary 3.1 tells
that ¢ does not represent a double Horn function, which completes our claim.

Since deciding whether a given DNF is a tautology is known to be co-NP-hard
[12], it follows that deciding whether a given DNF is double Horn is co-NP-
hard. |

4. DOUBLE HORN EXTENSIONS

In this section, we study double Horn extensions of partially defined Boolean
functions. We first present a criterion for the existence of a double Horn extension
of a pdBf (T, F) in terms of a simple declarative condition on intersection closures.
This criterion leads to a polynomial time algorithm for the double Horn extension
problem. This positive result is complemented by the negative result that finding a
shortest double Horn extension, i.e., a double Horn extension that has a shortest
DNF (or even arbitrary) formula ¢ is NP-hard. Finally, we consider enumerating
all double Horn extensions ¢4, ¢,, ... of (7, F) with polynomial delay. As a conse-
quence, we obtain that deciding whether a pdBf (7, F) has the unique double Horn
extension, i.e., (7, F) implicitly defines the unique double Horn function f, is solv-
able in polynomial time.

DOUBLE HORN FUNCTIONS 167

4.1. Existence of a Double Horn Extension

The existence of a double Horn extension is described by a surprisingly simple
criterion. Revisiting the definition of double Horn, CI,(T(f))=T(f) and
Cl,(F(f))=F(f), we obtain an immediate necessary condition

Cl (T)nCl, (F)= (4.6)

for the existence of a double Horn extension of a pdBf (7, F). This condition also
turns out to be sufficient.

THEOREM 4.1. Let (T, F) be a pdBF. Then (T, F) has an extension f € €py if and
only if Cl ,(T)nCIl,(F)=.

Proof. To prove the only-if-part, assume that f'€ €, is an extension of (7, F).
Then clearly CI, (T(f))nCl, (F(f))= holds. Since T<CIl,(T(f)) and
F< Cl, (F(f)), this implies CI ,(T)n Cl . (F)= .

For the converse direction, assume that C/,(7') n CI ,(F)= (, but no extension
f € 6pyy exists. We will derive a contradiction. Let 7%, F* < {0, 1}” be maximal sub-
sets (with respect to inclusion) such that 7 7* F<F* and CI, (T*)n
Cl (F¥)= (but CI,(T*)u Cl, (F*)#{0,1}” by the assumption). Maximality
of T* and F* implies that T*=C/ ,(T*) and F*=CI ,(F*), and hence vV =
ANpersveT* and v'P = A, _ g+ ve F* satisfy vV # v®. Consider two possible cases:

Case 1. vV and v® are comparable. We assume vV <v® without loss of
generality. By the maximality of T%*, it follows that every vector w'V such that
w2 v® is contained in 7%, and hence vV =0. Let T%={weT*|w>0v?}. If
T¥ =, then the maximality of F* implies that every w® such that w® >v®
satisfies w® e F*. This means T*uF*={0,1}", which is a contradiction.
Otherwise, let v®= A, z+v. Note that v® <v® must hold by assumption
Cl, (T*)nCl,(F*)= . Then, by a similar argument, it follows that every vector
w® such that w® > 0@ but w® % v® must be in F*. Continuing this argument,
we obtain a finite chain vV <v® <..<v® in {0,1}" such that all vectors w®
satisfying w? = v@ but w® % v+ belong to T* (resp., F*) if v® e T* (resp., F*),
where vV =1 is assumed for convenience. Consequently, 7* U F* = {0, 1}”. This
implies that there exists a double Horn extension f of (7, F) such that T(f)=T%*
and F(f)=F¥*, which is a contradiction.

Case 2. vV £ 0@, v % v@. Then obviously 0¢ T* U F*, but CI ,(T* U {0})
N F* = holds. This is a contradiction to the maximality of 7* and F*. |

This criterion shows a similarity between the existence problems of double Horn
extensions and arbitrary Horn extensions, because 7' n CI ,(F)= & is a necessary
and sufficient condition for the latter problem [3, 297.

We remark that the proof of Theorem 4.1 provides another characterization of
double Horn functions. Namely, for any double Horn function f there is a collec-
tion of vectors vV <v@ ... <v® and a be {0, 1} such that f(x) can be expressed
as:

168 EITER, IBARAKI, AND MAKINO

if x o'V then f(x) =b,
else

if x 2 v® then f(x)=1—b,
else

if x # v then f(x)=b,

4.2. Finding a Double Horn Extension

The condition in Theorem 4.1 can be checked in polynomial time, exploiting the
following observation: A vector v belongs to CI/,(T)n CI,(F) only if v= v,
where vyr=(A,crtt) V (A erpt). This gives rise to a natural algorithm which
checks the condition CI,(T)n Cl,(F)=J, by starting with a test (A,cru)#
(A,cru) and then iteratively reducing 7 and F to the vectors = v, [9]. We now
show below that this algorithm can be adapted to run in O(n3(|T|+ |F|)) time.
However, a faster linear time O(n(|7T| + |F|)) algorithm is possible, but its details
are not given here for simplicity; we refer to [9] for the interested reader.

The algorithm recursively exploits the decompositions of Lemma 3.5, which are
always possible for double Horn functions.

ALGorITHM. DH-EXTENSION
Input. A pdBf (T, F), where T, F< {0, 1}".
Output. A read-once formula y of (3.3) for f if there is a double Horn extension
fof (T, F); otherwise “No”.

Step 1. Call DH-AUX(T, F, {1, 2, ---, n}) and output the obtained result;
Halt.

Procedure DH-AUX(T, F, I)

Input. T,F<={0,1}" and a set /= {1,2, ---,n} such that the pair of projections
(T[I], F[I]) is a pdBf.

Output. A read-once formula of (3.3) for f on variables x;, iel, if there is a
double Horn extension f of (T[1], F[I]); otherwise “No.”

Step 1. if T[1] = J then return y := 1 (exit) (* there are no true vectors *)
elsif F[I]=J then yy :=T (exit) (* there are no false vectors *)
fi;

Step 2. I* :=(),crry ON(v); (*each iel™ tells that y can be x,(---) *)
if I = then go to Step 3
else (* assume that i has form A;.;+ x;(---), and decompose *)
T':=T, F:=F\{weF | OFFw)nI*# g} and I' :=I\I";
Call DH-AUX(T", F', I');
if the answer is Y’ (# T) then return := A, ;+ x; A Y’ and exit
elsif the answer is T then return ¥ := A,;.;+ x; and exit

DOUBLE HORN FUNCTIONS 169

else return “No” and exit (* decomposition failed, and there is no
extension *)
fi
fi;

Step 3. J* :=(),cry ON(w); (*each ieJ™ tells that can be x; v (---) *)

if J* = then (* decomposition failed, and there is no extension *)
return “No” and exit

else (* assume y has form V;_,+ X; v (---), and decompose *)
T':=T\{veT | OFFv)nJ* #J}, F':==Fand I' :=I\J"*;
Call DH-AUX(T", F', I');
if the answer is ' (# L) then return y :=V,_;+ X; v ' and exit
elsif the answer is L then return :=V,_,+ X; and exit

else return “No” and exit (* decomposition failed *)

fi

fi.

Observe that in consecutive recursive calls of DH-AUX, the execution alternates
between steps 2 and 3.

ExampPLE 4.1. Let us apply algorithm DH-EXTENSION to a pdBf (7, F)
defined by 7= {(1111), (1010)} and F={(1101), (1110)}. As we see in the follow-
ing, it outputs a double Horn extension ¥ = x; x5(X, v x,) of (T, F).

(DH-EXTENSION) Step 1. Call DH-AUX with the above T,F and
I={1,2,3,4}.
(DH-AUX (1)) Step 1. Since T[I]# &, F[I]# & and [I# ¢, the computa-
tion continues.
Step 2. I :={1,3}, T':={(1111),(1010)}, F'={(1110)}, and I'={2,4}.
Call DH-AUX(T", F', I').
(DH-AUX (2)) Step 1. Continue to Step 2.
Step 2. I* := J, hence continue to Step 3.
Step 3. J*:={2}, T’ :={(1111)}, F':={(1110)}, I':={4}. Call DH-
AUX(T', F', I').
(DH-AUX (3)) Step 1. Continue to Step 2.
Step 2. I*:={4}, T :={(1111)}, F:=g, [I':=¢. Cal DH-
AUX(T, F', T).
(DH-AUX (4)) Step 1. Since F[I] =, it returns Yy =T.
(DH-AUX (3)) As ¢y =T, it returns ¥ = x,.
(DH-AUX (2)) As y/' = x,, it returns y =X, Vv x4.
(DH-AUX (1)) As /' # T, it returns y = x;x5(X, vV Xy4).
(DH-EXTENSION) Output y = x; x5(X, V Xg4).

THEOREM 4.2. Given a pdBf (T,F), where T,F<{0,1}", algorithm DH-
EXTENSION correctly finds a read-once formula of (3.3) for a double Horn
extension (if such an extension exists) or outputs “No” (if no such extension exists),
in O(n*(|T| + |F|)) time.

170 EITER, IBARAKI, AND MAKINO

Proof. For the correctness part, we prove by induction on |/| that DH-AUX is
correct, which clearly implies the correctness of DH-EXTENSION.

If |7] =0, then either T[] or F[I] is empty and the returned value is obviously
correct. Assume that DH-AUX is correct for |I| <k —1, and then consider the case
of |I| =k.

Case 1. I* # (. Notice that all vectors in 7' U F' have value 1 at all com-
ponents iel*. By the induction hypothesis, DH-AUX(T", F', I') tells correctly
whether (T'[I'], F'[I']), where I' =I\I", has a double Horn extension. If DH-
AUX(T', F', I') returns ' (# T), then by the definition of 7" and F’, the constructed
formula W (= A;c+x; AY') satisfies T[I] <= T(y) and F[I]1nT(Y)= . Thus ¢
represents an extension of (7[[7], F[I]). Furthermore, by Theorem 3.1, this ¢
represents a double Horn function. Hence the returned value is correct. Similarly,
in case that DH-AUX(T', F', I') returns T, we can show that DH-AUX(T, F, I)
returns the correct value. Finally, consider the case that DH-AUX(T’, F',I')
returns “No.” For this case, assume toward a contradiction that (7[7], F[I]) has
a double Horn extension f. By Lemma 3.1, f, €%y holds for the assignment
A=(x;< 1]iel"). Therefore, (T'[I'], F'[I']) has a double Horn extension. Thus,
by the induction hypothesis, DH-AUX(T", F', I') does not output “No.” This is a
contradiction.

Case 2. J* # . Analogously to case 1, it is shown that the returned value is
correct.

Case 3. I uUJ* = . This means that for each component i€ I, there are two
vectors ve T[I] and we F[I] such that v;=w;=0. Thus no extension f of
(T[I], F[I]) satisfies x;< f or x;< f for any ie I Therefore, Lemma 3.5 tells that
there is no double Horn extension of (T[], F[I]). Therefore, the returned value
“No’’ is correct.

Finally, concerning the time complexity, it is easily checked that the body of DH-
AUX can be executed in O(n(|T'|+ |F|)) time. Since the recursion is linear and its
depth is bounded by n, it follows that DH-EXTENSION runs in O(n*(|T| + |F|))
time. ||

We remark here that the running time of the above algorithm can be further
improved to O(n(|T|+ |F|)) time (ie., linear time with respect to input length).
Basically, the method is to use lists with cross-references and counters to achieve
that the same bit of the input is looked up only once after a linear-time initializa-
tion phase. The details are however omitted, as they can be found in [9].

4.3. PAC Learnability of Double Horn Functions

The above result on the extension problem enables us to derive as a corollary,
applying a general result of [2], that the class of double Horn functions is PAC-
learnable.

A hypothesis class # of Boolean functions is probably approximately correct
(PAC) learnable (with respect to a fixed encoding of the hypotheses) [2, 37], if

DOUBLE HORN FUNCTIONS 171

there exist a learning algorithm for # and a minimal sample size m(e, J, n) polyno-
mial in 1/¢, 1/0, and n, where n is the size of the encoding of the hypothesis, such
that

(a) for all f'e # which have encoding of size at most n, and all distributions
P on the sample space X (in our context, the set of all Boolean vectors), given
m(e, 0, n) observations of f (in our terms, a pdBF (7, F) which has f as a possible
extension), the algorithm produces a hypothesis with error at most ¢ with proba-
bility at least 1 —¢, and

(b) the algorithm produces its hypothesis in time polynomial in the length of
the given sample.

As shown in [2], PAC learnability of a class # is guaranteed if it possesses a
so-called Occam-algorithm. Formally, an Occam-algorithm [2] for »# with con-
stant parameters ¢ =1 and 0 <a <1 is a learning algorithm which

(1) produces a hypothesis of complexity at most n“m™ when given a sample
of size m of any function in J# of complexity at most n, and

(i1) runs in time polynomial in the length of the sample.

Here, the complexity of a function is its size with respect to the chosen encoding,
measured in bits.

It is easy to see that algorithm DH-EXTENSION is an Occam-algorithm. We
thus obtain the following result.

THEOREM 4.3. The class €py is PAC learnable.

The underlying reason for this result is the fact that the class %, is small and
has only O(27™) functions, where p(n) is a polynomial, on n variables (for a
detailed analysis, see Section 5.3).

Notice that Theorem 4.3 is known, as it appears to be a special case of a pre-
viously developed learning result on nested differences of concepts [19]. In that
paper, the authors introduced a framework for constructing learning algorithms
and employed a master algorithm TOTAL RECALL, which is capable of learning
any concept class whose members can be expressed as nested differences of concepts
from an intersection-closed class. The class %), fits this framework.

For example, it is easy to see that the double Horn function f = x; x,(X3 v X,X5)
can be expressed as a nested difference x,x,\(x3x,\x5) (where the set operation is
taken over the true vectors of x;x,, x3x4, and x5, respectively).

Furthermore, it turns out that our algorithm DH-EXTENSION is a close
relative of algorithm TOTAL RECALL. However, notice the following differences.
First, algorithm TOTAL RECALL outputs a hypothesis for a function f which is
known to be from %), while the aim of algorithm DH-EXTENSION, which was
independently developed for a different purpose, has to decide whether membership
of fin %py is possible (and output some extension in case it is). Moreover, the
refined version of our algorithm is linear time which is not discussed in [19].
Finally, we have an extended algorithm for enumerating all different extensions in
®pp With polynomial delay, which allows to solve the exact learning problem in a
batch-mode setting in polynomial time (see Section 4.5).

172 EITER, IBARAKI, AND MAKINO

4.4. Computing a Shortest Double Horn Extension

Since computing one double Horn extension of a pdBf (7, F) is fast, the follow-
ing natural question arises: How complex is computing a double Horn extension
with the shortest DNF ? This problem is intractable, however.

THEOREM 4.4. Given a pdBf (T, F), computing a shortest Horn DNF (or even any
formula) ¢ representing a double Horn extension of (T, F) is NP-hard.

Proof. We reduce the classical problem of deciding whether a graph G =(V, E)
has a vertex cover of size at most k [12] to this problem. Suppose that
V={1,2,..n}, and define a pdBf (7, F) by T= {1} and F={x"M"7 | {i, j} e E}.
We claim that (7, F) has a double Horn DNF ¢ that contains at most k literals
if and only if G has a vertex cover of size at most k. Indeed, if C= V' is a vertex
cover of G, then ¢ = A\, ¢ x; represents an extension, which is clearly double Horn.
This proves the if-part. To show the only-if-part, assume that G has no vertex cover
of size at most k, and let ¢ represent any Horn (in particular, double Horn) exten-
sion. Then 7(1)=1 holds for some Horn implicant ¢ of ¢. Let 1= A;cpq) X; X
Njenwy X;. Since N(t) = & must hold to satisfy #(1) =1, P(z) is a vertex cover of G.
Hence || > |P(t)| =k + 1, a contradiction. This proves the claim, from which the
result clearly follows. |

4.5. Computing all Double Horn Extensions

In this section, we consider the problem of computing all double Horn extensions
of a pdBf(7, F) and describe an algorithm that outputs the corresponding read-
once formulas with polynomial delay [22]; i.e., the time between consecutive out-
puts is bounded by a polynomial in the input size, and the first (resp., last) output
occurs also in polynomial time after the start (resp., before halt) of the algorithm.
A polynomial delay algorithm is of course polynomial total time [22], that is, its
running time is polynomial in the size of the input and output. These concepts take
into account that the output size can be much larger (in particular, exponentially
longer) than the input size.

The algorithm, ALL-DH-EXTENSIONS, is a slight variant of algorithm DH-
EXTENSION in Subsection 4.2. It builds read-once formulas y of all extensions
from left to right in the order to be defined later by making use of Lemma 3.5. Each
extension output has a maximum common prefix with the immediately preceding
extension. The formula y of (3.3) is represented by a list of its literals, which is
preceded for technical convenience by a special literal x, that represents T. For
example, y = X; Vv x3X, is represented by an ordered list of literals L = x,, X;, x5,
X,, which is obtained by simply listing all the literals in y in the order of their
appearance, after the initial special literal x,. We call this the list representation
of y. It is easy to see that there is a one-to-one correspondence between formulas
y of (3.3) and ordered lists of literals. (In this case, we regard formulas y =%, v ¥,
and y=Xx, v X; as being different, for example, even if they represent the same
functions.)

DOUBLE HORN FUNCTIONS 173

ExaMPLE 4.2. Let us consider 7= {(111), (101)} and F={(110)} (i.e, n=3). It
will turn out later that this (7, F) has eight double Horn extensions, represented by
the following formulas of (3.3):

y=x,x3, (L=x¢, Xy, X3)
V(z):xl(fz Vv X3), (L=xg, Xy, X, X3)
PP =x,, (L=2xy, X3)
V(4):x3(fz Vv Xy), (L=xg, X3, X5, X1)
PP =%, v xs, (L=xg, Xy, X3)
yO=x, v X,V x;, (L=xg, X1, Xa, X3)
P =%, v xixs, (L =Xy, X3, Xy, X3)
P® =%, v x;. (L=xg, X5, X3).

Figure 2 shows the computational tree built by ALL-DH-EXTENSIONS, which
lists all double Horn extensions of (7, F). Scanning this tree from left to right in the
depth-first manner, extensions are generated corresponding to the paths from root
X, to the nodes marked with “*”; e.g., the leftmost path x,, x,, x5 represents y‘"),
the second path x,, x,, X,, x§ represents y'?, the third path x} represents y**), ...,
and the rightmost path x,, X,, x¥ represents y®.

Before describing the main algorithm, we first explain an algorithm for testing
whether a given pdBf (T[], F[I]), where T, F={0, 1}" and 1= {1, 2, ..,n}, has a
double Horn extension f under some additional restriction saying that the starting
literals must be chosen from a given set of positive (or negative) literals.

More precisely, let P be a set of positive literals such that {j|x,eP} <
Nucr ON(v) N1, and let N be a set of negative literals such that {j|x,eN} <
Nywer ON(w) n I Notice that we use the convention that an intersection (g, . S,
where ¢ is a collection of subsets S < B of a base set B, yields B, i.e., the unit with
respect to intersection, if % is empty. Thus, in particular (,., ON(v)={1,2, .., n}
if T=, and (),,cr OFF(w)={1,2, .., n} if F= . The base set B is always clear
from the context.

Then, property REST , (resp., REST) is defined as follows.

T zs T T
x3 To To x5 To z1 zg
| I | 1
z3 z zg z3

FIG. 2. The tree representing all extensions of (7, F), which is constructed by ALL-DH-
EXTENSIONS.

174 EITER, IBARAKI, AND MAKINO

Property REST , (I, P): The pdBf (T[], F[I]) has an extension f# L.
Moreover, if n; >0 holds in the decomposition of (3.3), then the starting (outer-
most) level of the decomposition (ie., literals xy;, Xy5, ..., X1,) must have only
literals from P.

Property REST,(I, N): The pdBf (T[[I], F[I]) has an extension f# T.
Moreover, if n; =0 holds in the decomposition of (3.3), then the starting (outer-
most) level of the decomposition (ie., literals X, Xa;, ..., X5,) must have only
literals from N.

For example, suppose that 7'={110, 111}, F={101,001}, I'={1,2,3}, and
P={x,} are given. Then extensions f=xX;Vv x, and g=x, have property
REST , (I, P), but i =x, x, does not. Let I, and I, respectively, denote { /| x; € P}
and {j|xeN}.

The properties REST , and REST,, can be checked by the following symmetric
algorithms.

ALGORITHM REST ,-DH-EXTENSION((T, F), I, P)
Input. A pdBf (T[I], F[I]), given by T, F= {0, 1}" and I={1,2, ..,n}, and a set
of positive literals P such that Ip,={j|x;e P} = (),c7ON(v) NI
Return. “Yes,” if (T[I], F[I]) has a double Horn extension having property
REST , (1, P); otherwise, “No.”

Step 1. if (7[1], F[I]) has no double Horn extension then return “No” and
exit fi;
(* this can be checked by DH-EXTENSION *)

Step 2. for each S </, such that |S|> || —1 do
Fg:={weF|ON(w)2S};
if Fs=@ o Nyer, ONOW 0 (1\S) # &
then return “Yes” and exit fi
end{for};

Step 3. return “No” and exit.

ALGORITHM REST ,-DH-EXTENSION((T, F), I, N)
Input. A pdBf (T[I], F[I]), given by T, F={0,1}"”, I={1,2, .., n}, and a set of
negative literals N such that Iy={j|X;e N} =), crON(w) NI
Return. “Yes,” if (T[I], F[I]) has a double Horn extension having property
REST,, (1, N); otherwise, “No.”

Step 1. if (7[7], F[I]) has no double Horn extension then return “No” and
exit fi;
Step 2. for each S <1, such that |S|>|[y|—1 do
Tg:={veT|ON(v)=2S};
if Tg=¢ or (yer, ON(v) N (I\S) # &
then return “Yes” and exit fi
end {for};

Step 3. return “No” and exit.

DOUBLE HORN FUNCTIONS 175

Lemma 4.1. The algorithms REST ,-DH-EXTENSION and REST, -DH-
EXTENSION correctly output the answer in O(n(|T|+ |F|)) time.

Proof. We prove only the correctness of REST ,-DH-EXTENSION, since the
other case is similar. It is easy to see that Step 1 is correct. For the correctness of
Step 2, assume first that (7[/], F[I]) has a double Horn extension and that the
algorithm outputs “Yes.” Then, there is some S </, such that |S|>|[p|—1 and
one of the following two cases applies.

Case (a). Fg= . Clearly ¢ = \;.sx; represents a double Horn extension of
(T[I], F[1]) and satisfies REST , (I, P).

Case (b). Fg#Jand I'=(),,c f,ON(w) N (I\S) # &. Then, it holds that every
we Fg fulfills ON(w)=21p,. This is obvious for |S|=|Ip|; if |S|=|Ip| —1 (in this
case, we assume that I, satisfies Fg+# ¢f and ﬂweFI,, ON(w) N (I\Ip) = &), then
S=1p\{/} for some jel, and hence I’ = {j}, which means ON(w)2>1,.

Consider now two cases for 7. If T= (J, then ¢ = A\;csx; (V;cp X;) represents a
double Horn extension of (7 1], F[1]) and satisfies REST , (Z, P). Otherwise (i.c.,
T +# &), because all w e Fg satisfy ON(w) 2 [, also all v e T satisfy ON(v) 2 1,, and
since (T[1], F[I]) has a double Horn extension, (7T, Fs) has a double Horn exten-
sion f projected to I\S, and hence so does (Fg, T') (since f is also double Horn).
Thus by executing procedure DH-AUX(Fg, T, I\S) of Subsection 4.2, we have a
read-once formula y representing a double Horn extension of (Fg, T') projected to
I\I. Furthermore, since T# & and I' # &, the formula output by DH-AUX
satisfies that the literals of its first decomposition are positive. Let i’ be a read-once
formula equivalent to y. Now we can easily see that ¢ = A\,_¢X; A Y’ represents a
double Horn extension of (T[7], F[I]) and that the first positive decomposition of
@ uses literals in P\{x;}. This means that ¢ satisfies REST , (Z, P). Hence Step 2 is
correct.

Now assume that algorithm REST ,-DH-EXTENSION outputs “No” in Step 3,
but there is a double Horn extension f of (7T I], F[I]), satisfying REST , (I, P). Let
¥ be a read-once formula for f. Then ¥’ =y . 1 ;cy, represents a double Horn
extension of (7, Fs), where S = I, projected to I\Ip. Then the following two cases
occur.

Case (¢). ' = 1. Obviously y # T, and furthermore, y # | holds since 7 # &
must hold (alternatively, we can conclude y # L from property REST , (/, P)). Let
us now consider the first positive literals (ie., literals x,y, X5, ..., X1,) and first
negative literals (i.e., literals X,;, Xp,, ..., X5,,) In the decomposition of (3.3) for y. By
REST , (1, P), the first positive literals are contained in P. We can see that n, #0
and that the first negative literals X, are also contained in P, since n, =0 and x,¢ P
would imply y'=T and ' =X, v ... or T, respectively. Thus iy has an implicant
t=(A\,_, X;)X;,,, where i,elp for p=1,2..,/+1. However, since Step 2 is
executed, for S=1,\{i,,,} there exists a we F such that ON(w) "I, =S. Such a
w satisfies #(w) =1, and hence y(w) =1, which is a contradiction.

Case (d). ' # L. Obviously ¥’ # T holds as for S=1,, Fg# J. Furthermore,
the first literal in the read-once formula /' is positive. Otherwise (i.e., ' =X; v @),

176 EITER, IBARAKI, AND MAKINO

since by assumption for S'=1 it holds that (), ¢z ON(w) N (I\S) =, there is a
we Fg such that '(w) =1, which is a contradiction. Therefore, let {y' = x,p, where
i¢Ip. We claim that x; is used in the first group of positive literals in the decom-
position of (3.3) for y, ie., in Xy, Xy, ..., X1, , Which derives a contradiction to
property REST , (7, P). Suppose this were not the case. Then, y has d>3 and
n,>1, and since ' = x,¢, every literal X,, from the first negative group must use
a variable x; such that je I, and at least one such j exists. Thus y has an implicant
t=(/\1f,=1 xip)ij, where i,elp for p=1,2..,/ and jelp,. However, there is weF
such that ON(w)nIp,=1p\{j}. Such a w satisfies #(w)=1, and hence y(w)=1,
which is a contradiction. This proves the correctness of REST ,-DH-EXTENSION.

Finally, we consider the time complexity of the algorithms. By applying a faster
version of algorithm DH-EXTENSION, Step 1 of REST ,-DH-EXTENSION
(resp., REST,-DH-EXTENSION) can be executed in O(||(|T|+|F|))=
O(n(|T|+|F|)) time. Step 2 can be done in O(|P||F|)=0(n|F|) (resp.,
O(IN||T|)=0(n|T|)) time. (To see this, let F'={weF ||ON(w)nIp|=
|[Ip| —1}; then, for S=1Ip, we have Fs={weF ||ON(w)nIp|=|Ip|}, and for
every S;=1,\{} such that je I, Fs=F,u {weF'| je OFF(w)}.) Finally, Step 3
requires constant time.

Totally, algorithm REST ,-DH-EXTENSION and REST ,-DH-EXTENSION
require O(n(|T|+ |F|)) time. |

The main algorithm ALL-DH-EXTENSIONS for finding all double Horn exten-
sions is now described in detail below. It initializes the variables and takes care of
the special case of extension f = L. Then, in the case that a double Horn extension
exists, it recursively calls an auxiliary procedure, ALL-DH-AUX, for outputting all
double Horn extensions subject to a restriction on the prefix of the extensions. The
above REST ,-DH-EXTENSION and REST ,, -DH-EXTENSION are used as sub-
procedures in ALL-DH-AUX.

ALGORITHM ALL-DH-EXTENSIONS
Input. A pdBf (T, F), where T, F< {0, 1}".
Output. List representations of read-once formulas V4, ¥/, ..., ¥, of (3.3) for all
double Horn extensions of (7, F).

Step 1. if 7= J then output L (continue)

else call DH-EXTENSION for (7, F);
if its answer is “No” then halt fi

fi;
Ly:=x¢; 1:={1,2,..,n};
P={x;|j€Noer ON(v)};
N={%1j€Nwer ON(W)};
Call ALL-DH-AUX((T, F), Ly, I, P, N).

Procedure ALL-DH-AUX((T, F), L, I, P, N)

Input. A pdBf (T, F), formula y of form (3.3) given by list L=L,, L, ..., L; of
literals (in this order), set I of the available variable indices and sets of literals P
and N allowed for decomposition (where I,(={j|x;eP})=TI and Iy(={/]|
X;€ N})< I are assumed).

DOUBLE HORN FUNCTIONS 177

Output. List representations of read-once formulas y v i or y Ay, where are
the read-once formulas of (3.3) for all double Horn extensions of (T[1], F[I]) (ie.,
all read-once formulas for double Horn extensions of (7, F), which have y as prefix)
such that the first literal L, , after L is chosen from P U N.

Step 1. (* Check if current formula y is an extension, and output p if it is the
case. *)
if L, is positive and F= (J, or L, is negative and 7= ¢J
then output y (continue) fi;

Step 2. (* Expand y by a positive literal. *)
while there is a literal x;e P do
I':=1\{j}; P':=P:=P\{x;};
T':=Tand F':={veF|v=1};
Call REST ,-DH-EXTENSION((T', F'), I', P');
if the answer is “Yes”
then (* expand y by x; *)
Liyy:=x;and L':=L, L, ;
N :={x;liel' 0"\, ON(W)};
Call recursively ALL-DH-AUX((T", F'), L', I', P', N')
fi
end { while}.

Step 3. (* Expand y by a negative literal. *)
while there is a literal X;e N do
I':=I\{j}; N':=N:=N\{x};
T':={veTlv,=1} and F' :=F;
Call REST ,,-DH-EXTENSION((T", F'), I', N');
if the answer is “Yes”
then (* expand y by x; *)
L;yi:=x;and and L' :=L, L, ;
P'i={xliel A),er ON()}:
Call recursively ALL-DH-AUX((T", F'), L', I', P', N')
fi
end{while}.

Step 1 of ALL-DH-AUX outputs the extension currently at hand. In particular,
if L =x,, we have by convention y = T. Steps 2 and 3 try to expand the current for-
mula given by list L, in all possible ways. By recursively restricting the possibilities,
it is achieved that each extension is output only once. The crux in the correctness
of the algorithm relies on the double assignments P’ :=P\{x,} and N':=N\{x;}
in Steps 2 and 3, respectively.

The computation of all double Horn extensions is illustrated in the following
example.

ExampLE 4.3. We apply ALL-DH-EXTENSIONS to the pdBf (7, F), where
T={(111),(101)} and F={(110)} as in Example 4.2. The entire computational

178 EITER, IBARAKI, AND MAKINO

process is represented by the tree in Fig. 2. It outputs the eight formulas 9,
i=1,2,..38, of Example 4.2, which represent all distinct double Horn extensions of
(T, F).

Step 1. DH-EXTENSION for (7, F) answers “Yes” (e.g., f =x5; is a double
Horn extension), and thus ALL-DH-AUX is called with (7, F), L=x,,
I={1,2,3}, P={x,x3} and N={x,, X,};

(AlIl-DH-AUX (1)) Step 1. No output, as L;,=x, (which represents y=T) is
positive and F# (5.
Step 2. Expand y=T by x;: T":={(111), (101)}, F':={(110)}, I' :={2, 3},
P':={x;}; The call of REST ,-DH- EXTENSION((T’ F'),I', P') answers
“Yes.” (Indeed, (T'[I'], F'[I'])=({(11), (01)}, {(10)}) has a double Horn
extension (Step 1), and in Step 3, F*={(110)} and ON((110))n
({2,3}\{3})# .) Thus, ALL-DH-AUX is called with (7", F'), L' =xg, x,
={2,3}, P'={x;}, and N' = {x,}.
(ALL-DH-AUX (2)) Step 1. No output, as L, =x, is positive and F# .
Step 2. Expand y=x; by x;: T':={(111), (101)}, F':=g, I':={2};
P :=¢; The call of REST,-DH-EXTENSION((T', F'),I', P') answers
“Yes”; hence, ALL-DH-AUX is called with (7", F'), L' =X, xy, x5, I' ={2},
P', and N' = (. The first step of this call outputs y (as L;= x5 is positive and
F=), ie., “x;x3”; the second and third steps are void.
Step 3. Expand y=x; by x,: T':={(111)}; F :={(110)}; I':={3};
N':= (we have P'=(F as a result of Step 2). The call of REST,,-DH-
EXTENSION((7", F'), I') N') answers “Yes”; thus, ALL-DH-AUX is called
with (7', F'), L' =xq, X1, X5, I' ={3}, P'={x3}, and N' = .

(ALL-DH-AUX (3)) Step 1. No output, as L;= X, is negative and 7 # .
Step 2. Expand y=x, by x5: T":={(111)}, F':=; I' :== J; P' := F (we
have N'=(J). The call of REST ,-DH-EXTENSION((T', F'),I', P')
answers “Yes.” The subsequent call of ALL-DH-AUX with (77, F’),
L' =x4,x1,%,, X3, I'=¢, PP=¢, and N'=J outputs y in the first step,
ie., “x;(X, v x3)”; the second and third steps are void.

Step 3. Void.

(end of ALL-DH-AUX (3))

(end of ALL-DH-AUX (2))
(Step 2. continued) Expand y=T by x5: ...
Step 3. Expand y=T by x;: ..
Expand y=T by X,: ...
(end of ALL-DH-AUX (1))
(end of ALL-DH-EXTENSIONS)

THEOREM 4.5. Algorithm ALL-DH-EXTENSIONS correctly outputs list repre-
sentations of read-once formulas ¢y, ¢y, ..., ¢,, for all double Horn extensions of
(T, F), with On*(|T| + |F|)) delay, i.e., polynomial delay, where ¢; % @; for i# j.

DOUBLE HORN FUNCTIONS 179

Proof. 1Tt can be shown by induction on |/| that all formulas output indeed
represent double Horn extensions of (7, F), similarly to the correctness of DH-
EXTENSION (Theorem 4.2). The additional part required here is the argument
that all extensions are actually found, and no one is output more than once.

For the former, we observe that for every double Horn extension s of (7, F),
there is a “computation path” in the procedure which outputs . Indeed, if) has
decomposition (3.3) where n; > 1, then some x;; will be picked by ALL-DH-AUX
in Step 2, and recursively the formula ‘/’(xw— 1) is constructed and = x;; A l//(xlf_ 1
is output. Similarly, if n, =0, then some x,; is picked in Step 3 and recursively the
extension for w(xyel) is constructed and ¥ =x,; v lp(xZ]_H) is output. A rigorous
proof by induction is straightforward.

Let us next assume that ALL-DH-EXTENSIONS outputs two lists L= L,,
Ly,.,L,and L'=Lj,L,.., L, where L,=Lfori<kbut L, ,#L%,;,and L
and L' represent the same double Horn function f. For example, L = x,, x;, X,, X3,
X, and L =x,, Xy, X5, X4, X3 With k=2 represent the same function x;x,(X; v X,).
Note first that L, ; and L ., must have the same polarity (i.e., both are positive
or negative), since otherwise L and L’ represent different functions. Now consider
the execution of ALL-DH-AUX for the common sublist L® =L, L,, .., L, (= L),
L, .., LY) of L and L'. Let us assume without loss of generality that L, ,, and
L), are both positive and that L, , , is checked before L), ., in expanding L* in
Step 2. In expanding L® by L), ,, ALL-DH-AUX is recursively called with L*+1
(=Lg, Lyyey Ly, L1 1), I', P' and N'. Note that this initial P’ does not contain
L,. Furthermore, in each subsequent recursion call, the generated P’ does not con-
tain L, unless some prior recursion step has already expanded the formula by a
negative literal. This implies that the expansion of L* by L/, , ; never produces L',
which represents the same function as L. Consequently, no two list representations
L and L', representing the same function, are output.

Concerning the complexity, Step 1 of algorithm ALL-DH-EXTENSIONS can be
executed in O(n(|T| + |F|)) time by using a faster version of DH-EXTENSION. For
procedure ALL-DH-AUX, Step 1 requires constant time. In Step 2 (resp., Step 3),
for each x;e P (resp., X;€ N), the body of the while-loop apart from the recursive
call of ALL-DH-AUX can be clearly done in O(n(|T| + |F]|)) time, as REST ,-DH-
EXTENSION (resp., REST ,-DH-EXTENSION) runs in O(n(|T| + |F])) time by
Lemma 4.1. Between two consecutive outputs, at most n* checks by REST ,-DH-
EXTENSION (resp., REST ,,-DH-EXTENSION) may fail in the worst case, since,
in each recursion step, at most n checks may be required, and the recursion depth
is bounded by n. Therefore, the algorithm outputs extensions with O(n*(|T| + | F|))
delay. |

COROLLARY 4.1. There is a polynomial delay algorithm for enumerating prime

DNFs for all double Horn extensions of a given pdBf (T, F).

Proof. By Corollary 3.2, prime DNF for a read-once formula ¢ of (3.3) can be
obtained from ¢ in O(n?) time. ||

Clearly, the double Horn extensions of the pdBf (7, F), where T= F= (, are all
double Horn functions. Thus, an immediate consequence of the previous corollary
is the following one.

180 EITER, IBARAKI, AND MAKINO

COROLLARY 4.2. There is a polynomial delay algorithm for enumerating prime
DNFs of all functions in the class €pg(n), ie., the class of all double Horn functions
of n variables.

COROLLARY 4.3. Given a pdBf (T, F), deciding whether it has the unique double
Horn extension is possible in polynomial time.

The last result has an immediate application in the context of concept learning
as described in Section 1. It means that, given a sample for a double Horn func-
tion f, i.e., sets T< T(f) and F< F(f), respectively, it is possible to decide in poly-
nomial time whether the examples uniquely determine f, i.e., allow for only one
double Horn function compatible with the examples. Moreover, a DNF expression
for f can be output in polynomial time in this case.

Thus, we obtain that exact learning of a double Horn function f'in a batch-mode
(cf. [19]), in which the algorithm is given a sample and then has to extract the
function f from it without further information, is feasible in polynomial time,
Le., either the function f is output or the algorithm reports that the sample is
ambiguous.

It is not clear whether enumerating all double Horn extensions can be done with
linear time delay. The following example is an instance which has the unique double
Horn extension, but checking this in linear time seems not straightforward. Take
T={1} and F={v | |OFF(v)| =1}. Then (7, F) has the unique extension x; x,...x,,.
Although this is true even if arbitrary vectors except 1 are added to F, checking the
fact appears to be more difficult.

5. CHARACTERISTIC SETS

5.1. Characteristic Sets of Double Horn Functions

A vector xe X< {0,1}" is called extreme [7] with respect to a set X if
x¢ Cl,(X\{x}). The set of all extremal vectors of X is called the characteristic set
of X [24, 25, 27] (or its base [7]), and is denoted by C*(X'). Note that every set
X<={0,1}" has the unique characteristic set C*(X), and that C*(X)<= X is the
minimum set satisfying C/ , (C*(X))= CI ,(X). For convenience, we use the nota-
tion X[j]={ve X||OFF(v)|=j} throughout this section for any set of vectors X
and j=0,1, .., n

Let us first give the following lemma, which was proved in [9].

Lemma 5.1. Let T,F<{0,1}". Then CI, (T)uCl,(F)={0,1}" holds if and
only if

Cl (T)VCl, (F)2{x"\"||W|<2, WV} (5.7)

holds, where V ={1,2, .., n}.

DOUBLE HORN FUNCTIONS 181

Proof. The only-if-part is obvious. For the if-part, from the assumption that
(5.7) holds and there is a vector

ve {0, 1}"\(Cl (T)u CI (F)), (5.8)

we derive a contradiction. By (5.7), v satisfies |OFF(v)|=3. Let X7=
{weCl, (T)|w=v}, X'={weCl, (F)|w=v}, and denote V'=OFF(X"[1])
and V¥ =OFF(X*[1]), where OFF(X)=J,,c x OFF(w).

Then by (5.7), we have

VTU VF = OFF(v). (5.9)

Furthermore, VI\V¥# @& and VF\VT# & hold. In fact, if VI\V¥ = (resp.,
VI\V¥ =), then (5.9) implies V*= OFF(v) (resp., V7= OFF(v)); this means
v=Ayexrrijt (resp., v=A,cxrr17u), which is a contradiction to (5.8).

For every ie VT\V¥, define Q,={x"M*7'| je VI\VT}. Then, for each
ie VT\VF, some vector w' e Q, satisfies w'? € X*[2], since otherwise, (5.7) implies
that all vectors we Q; are in X”[2], and hence v= A, c x77174 A Ayexrp2yu holds,
which is a contradiction to (5.8). Now it is easy to see that by choice of the w” and
(5.9),

v="N\ un N\ w?

ue XF[1] ie VI\VF

holds; this is again a contradiction to (5.8). ||

By applying the above lemma, we can characterize the characteristic sets of
double Horn functions through graph-theoretical properties.

THEOREM 5.1. Let T* F*<{0,1}" and V={1,2,..,n}, and denote V.=
(1 X" eT*), Vi={j|x"\WeF*), T*[2]={veT*||OFF(v)|=2} and
F*[2]={weF*||OFF(w)|=2}. Then T*=C*(T(f)) and F*= C*(F(f)) hold
for some double Horn function f if and only if the following conditions hold.

(i) T*nF*= and T* U F*< {x"\W | |W|<2}.

(i) (x| W <2INT*OF*)={x""||W|=2, WSVu}u{x"V]
[W| =2, WS Vga}.

(i) Let T*[2] and F*[2] define an orientation to the complete bipartite
graph G=(Vyu, Ve, E=Vyux Vi) by directing the edges {i, j} corresponding
to x"N 7 e T*[2] from Vg« to Vi« and the edges {i, j} corresponding to
xV\MeT e F*[2] from Vs to Vs, Then G has no directed cycle.

Proof. Let us first show the only-if-part. (i) and (ii) are immediate from Defini-
tion 3 and Lemma 5.1. For (iii), note that if V.= or Vg« = F, then clearly (iii)
holds. Hence we assume V. # & and V. # . Then by (i) and (ii), T*[2] and
F*[2] give orientation to all edges in G. Assume that the oriented graph G* con-
tains a directed cycle C, and we will derive a contradiction. Denote by V' the set
of vertices in C, and by Cyzu (resp., Cp«) the set of arcs {7, j} in C such that

182 EITER, IBARAKI, AND MAKINO

xVMED e T#[2] (resp., x"M&7 e F*[2]). From the definition of G*, it is
immediate that every vertex je V. occurs both in Cz« and Cp«. This means that

MNVe= A x"MES (e CILL(T™))
{i, j} € Cps
= N "™ (edl, (F*).

{i. j} € Cpx

Consequently, x"\ce Cl,(T*) Cl ,(F*) and hence no double Horn function f
exists such that 7* = C*(7T(f)) and F* = C*(F(f)).

To prove the if-part, suppose that (i), (ii) and (iii) hold. Then it follows by
Lemma 5.1 that CI (T*)uCl,(F*)={0,1}". To show that CI, (T*)n
Cl, (F*)= &, we assume that x" e Cl . (T*)n CI ,(F*) and derive a contradic-
tion. Denote Wra=WnVye and Wee= W Ve, Notice that Wow, Wee =
hold by (i) and |W| =3 holds by (i) and (ii). Let G, denote the directed subgraph
of G* induced by W U Wp. Since x"\¥ e CI, (T*), for every i€ W, there is a
j€ W« such that G* contains an arc {i, j}, which corresponds to x" M/} e T*[2].
Hence the outdegree of ie Wy. is at least one in Gj;,. Similarly, since
x"\We CI, (F*), the outdegree of i€ W« is at least one in G,. Therefore, G}, con-
tains a directed cycle, which is a contradiction. |i

COROLLARY 5.1. If f is double Horn, then
CHT(f) =TTV T(AHLTV(T(NHI2NCL(T()[1]))

and

CHF(N)=FNHIOTUF(NI1TO(F(NOI2INCL(F(/)L1]).

We comment here that, by this corollary, we can check whether a given pdBf
(T, F) satisfies T=C*(T(f)) and F=C*(F(f)) for some double Horn function f
in linear time.

5.2. Transformations between Characteristic Sets and DNFs

In this subsection, we study the transformation problems for a double Horn func-
tion f between various representations such as C*(7(f)), C*(F(f)) and DNFs for

fo f and f.

LemmA 5.2. Let f be a double Horn function of n varaibles. Then C*(F(f)) can
be computed from C*(T(f)), and vice versa, in O(n>) time.

Proof. Given T*=C*(T(f)) < {x"\W||W|<2}, compute the set F* that
satisfies conditions (1), (ii), and (iii) of Theorem 5.1, and let this F* be C*(F(f)).
In fact, F* contains 1 if 1¢ 7*, all vectors x"M% where i€ Vs =V\V,s and
Vee=1{j | x" e T*}, and every vector x” M%7} such that i€ V., j€ Vps, and
xVMé7b ¢ T* To determine those xV M%7/} fast, build for all ie V. sorted lists L,
containing all je V. such that x"M%/} e T* Then, for each i€ V. and j€ Vi,
select vector x" M%7} for F* if j does not occur in L,. Clearly, construction of all L,

DOUBLE HORN FUNCTIONS 183

and selection of all x"M%/} can be done in O(n|T*| +n|Vy«| | Ves|) = O(n®) time.
Hence, the overall time to conduct the computation of F* is O(n®); note that
C*(T(f)) and C*(F(f)) may have @(n?) vectors. ||

The computation of the characteristic set of a general Horn function has been
considered in [24-27] and in a different setting in [7]. In general, the computation
may take exponential time, even from a Horn formula, since the characteristic set
may be exponentially large. The result in Theorem 5.1 identifies a nontrivial sub-
class of Horn functions for which characteristic sets are small and, as will be shown
by the next theorem, polynomially computable. Moreover, it will be shown in [9]
that this property also extends to renamings of double Horn functions.

Characteristic sets appear to be useful for manipulating a double Horn function
f represented by a general formula ¢. If a function f is known to be double Horn
(which cannot be checked in polynomial time), we will show below that its charac-
teristic sets C*(7(f)) and C*(F(f)), and its prime DNF ¢ can be computed in
polynomial time. Note that this is not straightforward since reducing a DNF to a
prime DNF, for example, is computationally expensive in general.

THEOREM 5.2. Let f be a double Horn function of n variables.

(1) If f is given by an arbitrary formula ¢, then its characteristic sets
C*(T(f)) and C*(F(f)) can be computed in O(n?|p|) time.

(i1) If f is given by its characteristic set C*(T(f)) or C*(F(f)), then the
unique prime DNFs of f, f, and f* can be computed in O(n?) time.

(1) If f is given by an arbitrary formula @, then the unique prime DNFs of f,
f, and ¢ can be computed in O(n® max(|¢|, n)) time.

Proof. (i) The following algorithm computes C*(7(f)) and C*(F(f)).
Initialize T* = ¢f and F* = (J. Then, for each vector v such that |OFF(v)| <1, test
whether ¢(v)=1; if so, then add v to T*, otherwise to F*. If either T*[1] or
F*[1] is empty, then output 7* and F* and halt. Otherwise set Vj.=
Uper+ OFF(v) and Vg«=J, cp+ OFF(w). Then check for each vector v with
OFF(v)={i, j}, where i€ V. and j€ V., whether ¢(v)=1; if so, then add v to
T*, otherwise add v to F*. Output T* and F*.

The correctness of this algorithm follows from Theorem 5.1. Deciding whether
¢@(v)=1 for a given vector v can be done, in time O(|¢|) for any formula ¢, and
furthermore, this algorithm computes ¢(v) for at most n? vectors. Thus it takes
O(n?|p|) time.

(i1) First compute C*(F(f)) (resp., C*(T(f))) from C*(T(f)) (resp.,
C*(F(f))). By Lemma 5.2, this can be done in O(»*) time. Then compute an exten-
sion of pdBf (T*, F*), where T*=C*(T(f)) and F* =C*(F(f)). As we have see
in Subsection 4.1, it can be computed in O(n*) time. This extension is equal to f
in this case, and its read-once formula is output. As noted in Corollary 3.2, such a
formula can be transformed to the unique prime DNF of f in O(n?) time, which
can then be transformed to the unique prime DNFs of f and /¢ in O(n?) time,
respectively.

184 EITER, IBARAKI, AND MAKINO

(iii) First compute the characteristic sets 7* = C*(T(f)) and F* = C*(F(f))
in O(n?|¢|) time by applying the result of (i). Then, proceed to the procedure of (ii)
to compute the prime DNFs in O(n®) time. In total, this computation takes
O(n?|p| +n*) = O(n* max(|¢|, n)) time. |

In passing, we remark that the complexity of (iii) can be improved to
O(max(|¢|, n?)) time if the original ¢ is a Horn DNF.

COROLLARY 5.2. Let ¢ be a Horn DNF representing a double Horn function f of
n variables. Let @, ¢,, and @5, respectively, be the unique prime DNFs of f, f, and
f% Then @, can be computed in O(|p|) time, and @, and @5 can be computed in
O(max(|¢|, n?)) time.

Proof. First apply the faster algorithm for checking if a Horn DNF ¢ represents
a double Horn function, which was described before Theorem 3.3 in Subsection 3.3.
This returns the read-once formula /, of (3.3) in O(|¢|) time. Then, by Corollary 3.2
in Subsection 3.2, the prime DNFs of £, f, and f¢ can be computed from ¢, in
O(|¢11), O(l@,|), and O(|@s|) time, respectively. The total time required for com-
puting ¢, is O(max(|¢|, |@;|)). Since |¢;| <|@|, ¢, can be computed in O(|¢p|)
time, and since |@,|, |@3| <n% @, and @, can be computed in O(max(|g|, n*))
time.]

5.3. Counting Double Horn Functions

Let €pp(n) denote the class of double Horn functions of n variables, and let
%@pu(n) denote the class of double Horn functions which depend on exactly n
variables. Then clearly ép;=),%pr(n) and %DH(n)zu;’n:O‘éDH(m). Further-

—~

more, let #DH(n)=|6py(n)| and #DH(n)=|%py(n)|. R

In this subsection, we give simple closed expressions for # DH(n) and # DH(n).
Any double Horn function f can be defined by T=C*(7(f)) and F=C*(F(f)),
which satisfy the conditions in Theorem 5.1 (see Subsection 5.1). Hence we have
the following observation for %,4(n), where n>2. For vector 1, there are two
possibilities, either 1€ T or 1€ F. Furthermore, assume that m vectors v with
|OFF(v)| =1 satisty f(v) =1 (i.e., m=|V4|). If m #0, n, then, since T, and F, define
a complete acyclic digraph G, there are CF,, ,_,, possibilities, where CF; ; for
i, j>0 denotes the number of orientations of the complete bipartite graph K, ;
which have no directed cycle. Adding the cases of m =0 and m =n, we derive the
next proposition.

ProrosiTION 5.1.

2 (n
=2 CF 5.10
3 (1) CPan (5.10)

where CF, ;= CF, = 1.

DOUBLE HORN FUNCTIONS 185

Proof. The above observation tells that (5.10) holds for n>2. For n=0 and
n=1, the right-hand sides of (5.10) are 2 and 4, respectively. For n=0, 1, it is
obvious that |€,,(0)] =2 (T and L are double Horn) and |%,,(1)|=4 (T, L, x;
and x,) hold. |

The number #D/;-I(n) can be derived from the read-once formulas (3.3). Let
P, denote the number of all ordered partitions of n labeled elements into labeled
nonempty sets S;, S,..., Sy, d>0, where P, is defined to be 1. (Precisely, P, is the
number of all surjections from {1, 2, ..., n} onto any initial segment 1, 2, ..., d of the
natural numbers.) Then,

ProPOSITION 5.2.

n

#DHN=2 Y d! {d

d=0

}:213", n>0.7> (5.11)

Proof. Clearly, (5.11) holds for n=0. For n> 0, we consider formula (3.3), in
which groups of literals with the same polarity alternate and form at most n levels,
each of which contains at least one literal. The polarity of all groups is determined
by the polarity of the deepest nested level, for which there are two possibilities.
Forming this and other levels amounts to partitioning the variables into nonempty
sets (since literals within the same level commute in the formula). Thus the number
of all formulas (3.3) on n variables is given by (5.11). ||

Notice that P, is a well-known combinatorial entity [28, Exercise 4, p. 195]. It
obeys the recurrence

Pn:<’11> Pn—1+<;> P, o+ - +<Z> Py=) <’:> P,_; n>0. (5.12)

i=1

Thus, Po=1, P,=1, P,=3, and so on. A table of P, for n <14 can be found in
[13]. Using known relations among P, [13, 28], it is not difficult to derive the
following results.

THEOREM 5.3.

#DH(n)= Y <I’;> #DH(m), n=0
m=0
:4pn, n>0

=2n!(In2) 7"~ +4n! Ty o R((In 2+ 27k) "), n>0

~2n!(In2)~"" 1 n— oo,
where R(z) is the real part of the complex number z. ||

#DH(n) and P, are listed in Table 1 for n < 7.

2 Here {!} are the Stirling numbers of the second kind, i.e., the number of ways to partition a set with
n elements into m nonempty subsets; by definition, {§} = 1.

186 EITER, IBARAKI, AND MAKINO

TABLE I
Values of #DH(n) for n<7

N

#DH(n) P,

2

4

12

52

300
2164
18732
189172

)13=75

)13 4(3)75 =541

V134 (§)75 + (8)541 = 4683

)13+ ()75 + (1)541 + (1) 4683 = 47293

NN N kW= O
P
ONOOAOUVOROWONO —~
SEE PP ITE
——-—=Z===
A+t
A
T N R TR
SITBTICBTUTE
—Z=Z===
A+t

Remark 5.1. We obtain an interesting side result, namely the identity

n—1 n
Y <”>CF,,,,,,_,,,= y (”)Pm—2 =2pP,—2, for n>0,
m

m=1 m=0 m

where CF; ; for i, j> 0 denotes the number of orientations of the complete bipartite
graph K, ; which have no directed cycle. Consequently, the number of cycle-free
orientations on complete bipartite graphs on n vertices, given by the left-hand side,
is 2P, —2.

Let us next consider the number of nonisomorphic double Horn functions
DH = (n) of n variables, where f'and g are isomorphic if and only if they become
identical after a permutation of the arguments. Similarly, # DH = (n) denotes such
numbers when the functions depend on exactly n variables.

THEOREM 5.4.

~~ 2 for n=0
DH*= =
() {2" for n>0,

#DH=(n)=2"*' for n>=0.

Proof. Let us first consider ; #D/;{ = (n). For n=0, we have two nonisomorphic
functions T and L. Thus # DH = (n)=2 holds. For n> 0, consider the read-once
formula of (3.3). If the number of levels d is fixed in the form (3.3), the number of
nonisomorphic classes of double Horn functions is the number of all partitions of
n nonlabeled elements into labeled sets S, S,..., S;, where |S;| >0 and |S;| > 1 for
i=2. Obviously, the functions with different d are nonisomorphic. Thus

SR AVRIEAVE)

d=2

=2 (5.13)

DOUBLE HORN FUNCTIONS 187

where the first and second terms in (5.13) are the cases of |S;|>1 and |S,| =0,
respectively.
Concerning # DH = (n), we have

#DF

0

#DH= (n) = 2m=2n+l | (5.14)

e

R
32
Il
o
J’_

3

I DM =

6. CONCLUSION AND FUTURE WORK

In this paper, we have introduced double Horn functions, which are Boolean
functions f such that both f and its complement f are Horn. We have studied their
properties and computational aspects, focusing (i) on the recognition problem, i.c.,
deciding whether a given (possibly restricted) formula ¢ represents such a function,
(i1) on their characteristic sets, and transformations between characteristic sets and
formulas, and (iii) on the extension problem; i.e., given a partially defined Boolean
function (pdBf) (7, F), decide whether it has a double Horn extension and output
a formula representing it.

In the course of this investigation, we have presented a syntactic characterization
of double Horn functions. It turned out that the class %, of double Horn functions
constitutes a fragment of the class %, of read-once functions and that each double
Horn function has a small and unique prime DNF. Based on this result, we derived
the count of this class; there are approximately 2n!(In2) ~"~! double Horn func-
tions on 7 variables and exactly 2" ! nonisomorphic ones. This shows that the class
@py is quite small (recall that there are 2" Boolean functions on 7 variables).
Furthermore, we have presented a semantic characterization of double Horn func-
tions in terms of their characteristic sets. This semantic characterization can be
naturally stated as a graph property, and we obtain a 1-1 correspondence between
double Horn functions and oriented complete bipartite graphs. This, combined with
the above result, gives us an interesting relation between the number of ordered
partitions of a set and the number of cycle-free complete bipartite digraphs.

On the computational side, we have shown that double Horn functions can be
recognized efficiently from Horn formulas, that the dualizing a double Horn func-
tion f (e.g., computing a DNF and/or characteristic sets of the dual function /¢ of
f from an arbitrary representation of /) can be done in polynomial time. However,
finding a shortest double Horn extension is proved to be NP-hard. Furthermore,
we have presented an algorithm that finds a double Horn extension of a pdBf
(T, F) in polynomial time and an algorithm that enumerates all double Horn exten-
sions of (7, F) with polynomial time delay. Utilizing this algorithm, the existence
of the unique double Horn extension can also be decided in polynomial time.

Further properties of double Horn functions have been investigated in [9]. In
particular, the effect of renamings (i.e., a change of polarity in part of the variables)
on double Horn functions is considered there. Both the recognition problem and
the existence problem for the closure of %, under renamings, %, and further-
more the enumeration problem, are solvable in polynomial time. This is of par-
ticular significance, since %X, is a fragment of several well-known classes of

188 EITER, IBARAKI, AND MAKINO

Boolean functions, namely the read-once functions, the threshold functions, the
2-monotonic functions, the renamable Horn functions, and the unate (renamable
positive) functions; for all these classes except the class of threshold functions, the
extension problem is known to be NP-complete [5, 3].

Some problems remain to be addressed in further work. One issue is the search
for faster or simpler algorithms, for example, whether all double Horn extensions
of a pdBf can be enumerated with linear time delay. Furthermore, variants of the
enumeration problem (e.g., output only nonisomorphic extensions, or in a par-
ticular order) are of interest. Another issue is approximation of shortest double
Horn extensions.

ACKNOWLEDGMENTS

The authors thank 1. Gessel, Ch. Krattentaler, and R. Stanley for bibliographic hints on preferential
arrangements, and A. Gartus for comments on the algorithms. Moreover, they are grateful to the
anonymous referees for their helpful and constructive comments which improved the presentation of this
paper. In particular, they suggested a discussion on PAC learnability of double Horn functions and
pointed out Refs. [2, 19] to us.

The authors gratefully acknowledge the support of the Scientific Grant in Aid by the Ministry of
Education, Science, and Culture of Japan, which made the visit of the first author to Kyoto University
possible. Moreover, T. Eiter acknowledges support by the Christian Doppler Laboratory for Expert
Systems, TU Vienna, Austria, in the context of this work. K. Makino has been supported by research
fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Received January 31, 1997; final manuscript received December 18, 1997

REFERENCES

1. Angluin, D., Frazier, M., and Pitt, L. (1990), Learning conjunctions of Horn clauses, in “31st Annual
Symposium on Foundations of Computer Science,” pp. 186-192.

2. Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. (1987), Occam’s razor, Inform.
Process. Lett. 24, 377-380.

3. Boros, E., Ibaraki, T., and Makino, K. (1998), Error-free and best-fit extensions of partially defined
Boolean functions, Inform. and Comput. 140, 254-283.

4. Ceri, S., Gottlob, G., and Tanca, L. (1990), “Logic Programming and Databases,” Springer-Verlag,
Berlin/New York.

S. Crama, Y., Hammer, P. L., and Ibaraki, T. (1988), Cause-effect relationships and partially defined
Boolean functions, Ann. Oper. Res. 16, 299-326.

6. Dowling, D. W., and Gallier, J. H. (1984), Linear-time algorithms for testing the satisfiability of
propositional Horn formulae, J. Logic Program. 3, 267-284.

7. Dechter, R., and Pearl, J. (1992), Structure identification in relational data, Artificial Intelligence 58,
237-270.

8. Eiter, T. (1995), Generating boolean u-expressions, Acta Inform. 32, 171-187.

11.

12.
13.
14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

DOUBLE HORN FUNCTIONS 189

. Eiter, T., Ibaraki, T., and Makino, K. (1996), Multi-Face Horn Functions, Technical Report

CD-TR 96/95, Information Systems Department, Technical University of Vienna.

. Ekin, O., Hammer, P. L., and Peled, U. N. (1997), Horn functions and submodular Boolean func-

tions, Theoret. Comput. Sci. 175, 257-270.

Golumbic, M., Hammer, P. L., Hansen, P., and Ibaraki, T. (Eds.) (1990), Horn logic, search and
satisfiability, Ann. Math. Artificial Intelligence 1.

Garey, M. R., and Johnson, D. S. (1979), “Computers and Intractability,” Freeman, New York.
Gross, O., (1962), Preferential arrangements, Amer. Math. Monthly 69, 4-8.

Gurvich, V. A, (1991), On repetition-free boolean functions, Uspekhi Math. Nauk 32,
183-184. [Russian |

Gurvich, V. A., (1991), Criteria for repetition-freeness of functions in the algebra of logic, Soviet
Math. Dokl. 43, 721-726. [English translation of Dokl. Akad. Nauk SSSR, 318 (1991).]

Hammer, P. L., and Kogan, A. (1993), Optimal compression of propositional Horn knowledge
bases: Complexity and approximation, Artificial Intelligence 64, 131-145.

Hammer, P. L., and Kogan, A. (1992), Horn functions and their DNFs, Inform. Process. Lett. 44,
23-29.

Hammer, P. L., and Kogan, A. (1995), Quasi-acyclic propositional Horn knowledge bases: Optimal
compression, I[EEE Trans. Knowledge Data Engrg. 7, 751-762.

Helmbold, D., Sloan, R., and Warmuth, M. (1990), Learning nested differences of intersection-closed
concept classes, Mach. Learning 5, 165-190.

Horn, A. (1951), On sentences which are true of direct unions of algebras, J. Symbolic Logic 16, 14-21.
Hunt III, H., and Stearns, R. (1990), The complexity of very simple Boolean formulas with applica-
tions, SIAM J. Comput. 19, 44-70.

Johnson, D. S., Yannakakis, M., and Papadimitriou, C. H. (1988), On generating all maximal inde-
pendent sets, Inform. Process. Lett. 27, 119-123.

Karchmer, M., Linial, N., Newman, L., Saks, M., and Wigderson, A. (1993), Combinatorial charac-
terizaltion of read-once formulae, Discrete Math. 114, 275-282.

Kautz, H.. A., Kearns, M. J., and Selman, B. (1993), Reasoning with characteristic models, in “Proc.
Eleventh National Conference on Artificial Intelligence,” pp. 34-39.

Kautz, H..A., Kearns, M. J., and Selman, B. (1995), Horn approximations of empirical data, Artifi-
cial Intelligence 74, 129-145.

Kavvadias, D., Papadimitriou, C. H., and Sideri, M. (1996), On Horn envelopes and hypergraph
transversals, in “ISAAC’93, Algorithms and Computation” (K. W. Ng et al., Eds.), Lecture Notes in
Computer Science, Vol. 762, pp. 399-405, Springer-Verlag, Berlin/New York.

Khardon, R., (1995), Translating between Horn representations and their characteristic models,
J. Artificial Intelligence Res. 3, 349-372.

Knuth, D. E. (1973), Sorting and Searching, The Art of Computer Programming, Vol. 3, Addison—
Wesley, Reading, MA.

Makino, K., Hatanaka, K., and Ibaraki, T. (1995), Horn extensions of a partially defined Boolean
function, RUTCOR Research Report RRR 27-95, Rutgers University.

Makowsky, J. (1987), Why Horn formulas matter for computer science: initial structures and generic
examples, J. Comput. System Sci. 34, 266-292.

McKinsey, J. C. C. (1943), The decision problem for some classes of sentences without quantifiers,
J. Symbolic Logic 8, 61-76.

Mundici, D. (1989), Functions computed by monotone boolean formulas with no repeated variables,
Theoret. Comput. Sci. 66, 113-114.

Pitt, L., and Valiant, L. (1988), Computational limitations on learning from examples, Assoc.
Comput. Mach. 35, 965-984.

Quine, W. (1955), A way to simplify truth functions, Amer. Math. Monthly 62, 627-631.

190 EITER, IBARAKI, AND MAKINO

35. Selman, B., and Kautz, H. (1991), Knowledge compilation using Horn approximation, in “Proc.
Ninth National Conference on Artificial Intelligence,” 904-9009.

36. Trakhtenbrot, B. A. (1958), On the theory of repetition-free contact schemes, Trudy Mat. Inst.
Steklov. 51, 226-269. [in Russian]

37. Valiant, J. G. (1984), A theory of the learnable, Comm. ACM 27, 1134-1142.

38. Wegener, 1. (1987), “The Complexity of Boolean Functions,” Wiley and Teubner, New York.

