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A stress function-based approach is proposed to analyze the free-edge interlaminar stresses of piezo-
bonded symmetric laminates. The proposed method satisfies the traction free boundary conditions, as
well as surface free conditions. The symmetric laminated structure was excited under electric fields that
can generate induced strain, resulting in pure extension in the laminated plate. The governing equations
were obtained by taking the principle of complementary virtual work. To verify the proposed method,
cross-ply, angle-ply and quasi-isotropic laminates were analyzed. The stress concentrations predicted
by the present method were compared with those analyzed by the finite element method. The results
show that the stress function-based analysis of piezo-bonded laminated composite structures is an effi-
cient and accurate method for the initial design stage of piezo-bonded composite structures.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, piezoelectric actuators and sensors are most com-
monly used in smart structures, modern control engineering and
energy harvesting industries, because of their large electrome-
chanical coupling effect, wide bandwidth and quick response (Kap-
uria et al., 2010; Kim et al., 2011). Fiber reinforced laminated
composite materials have many advantages, compared with other
metal and nonmetal materials in physics (Herakovich, 2012). These
composite materials could be good candidates for enhancement, to
replace the substrate materials of smart structures. The develop-
ment of piezo-bonded composite laminates with their mathemat-
ical modeling provides many engineering applications (Chopra,
2002). These smart structures could be applied in many advanced
engineering fields, such as aircraft structures, satellites, large space
structures, and auto-motives. However, delamination is one of the
major failure mechanisms in piezo-bonded composite laminates,
due to interlaminar stresses at layer interfaces.

Since the last several decades, three-dimensional interlaminar
stress and stress singularity study of these structures have received
considerable attention (Pipes and Pagano, 1970; Rhee et al., 2006;
Kim et al., 2008, 2010; Izadi and Tahani, 2010; Lee et al., 2011;
Kassapoglou and Lagace, 1986). A large volume of literature
achievements has been established from experimental, as well as
theoretical investigations. The presence of material and geometric
discontinuities resulted in stress concentrations at the free edges,
which is also referred to as free edge effects or boundary layer ef-
fects (Wang and Choi, 1982a,b). Free-edge effects are critical to
interlaminar failure or delamination of piezo and composite layers.
Due to the piezoelectric coupling effects in piezo-bonded compos-
ite laminates, the free edge effects become more complicated.
Analysis of these localized interlaminar stresses at the free edge
is of great importance in the initial design of piezoelectric compos-
ite laminates.

There are various theories (Ghugal and Shimpi, 2002), based on
displacement fields or stress fields, for predicting the flexural re-
sponse of laminated plates with surface-bonded or embedded in-
duced strain actuators. Among the displacement fields-based
theories, classical lamination theory (CLT) (Lee, 1990; Konieczny
and Woźniak, 1994; Wang et al., 1997), three equivalent single-
layer shear deformation theories (ESLSDT) (Kabir, 1996; Reddy,
1999), layerwise shear deformation theory (LWSDT) Robbins and
Reddy, 1993; Zhu and Lam, 1998; Kim et al., 2002a,b; Kim et al.,
2006) and finite element methods (Chandrashekhara and Agarwal,
1993; Detwiler et al., 1995) are the most popularly used theories.
However, CLT shows great inadequacy for the stress analysis of
piezo-bonded composite laminates, as CLT assumes a linear dis-
placement distribution across the thickness of entire laminates,
and neglects the transverse shear deformation, which is necessary
for moderately thick and thick laminates. ESLSDT cannot recover
transverse shear stress continuity in the thickness direction by
using the constitutive relations, which are discontinuous at inter-
faces between layers, and are against equilibrium conditions.
LWSDT are the most accurate in displacement fields-based
theories, but they are more computationally inefficient than
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ESLSDT, due to their demand for a large number of unknown
variables.

Another approach to analyze laminated composite structure is
stress function-based theory, which can fully satisfy not only stress
continuity, but also traction free boundary conditions. These theo-
ries have great potential in the future study of interlaminar stress
analysis of piezo-bonded composite laminates. After Spilker and
Chou (1980) demonstrated the importance of satisfying the trac-
tion free boundary conditions at the free edges, Yin (1994a,b)
proposed a variational method, using piecewise polynomial
approximations based on stress-based layerwise theory (SBLWT).
The stress functions involved in his approach not only satisfy
pointwise equilibrium equation, but also continuity of interlami-
nar stress over each layer, and at the layer interfaces. Flanagan
(1994) proposed a solution method based on a series expansion
of mode shapes of a clamped–clamped beam, for determining the
free-edge stresses in composite laminates. His approach can be
concluded in stress-based equivalent single-layer theory (SBESLT)
that is computationally more efficient than Yin’s work. While Flan-
agan’s method can well predict the interlaminar stresses along the
in-plane direction, the interlaminar stresses along the thickness
direction show oscillations. Flanagan’s work was improved by
Cho and Kim (2000) and Kim et al. (2000), by using an extended
Kantorovich method. In their works, converged stress distributions
obtained under extension, bending, twisting and thermal loading
are independent of the number of initially assumed stress func-
tions, and the oscillations appearing in the thickness direction
can be reduced, or even eliminated.

Actuating force of piezoelectric layer causes stress concentra-
tion at the free edge of smart composite laminates. The concen-
trated stress could initiate debonding of the actuator and lead
failure of the smart composite laminates. However, most re-
searches have been focused on global responses of the smart com-
posite laminates such as vibration control, energy harvesting and
structural health monitoring and so on (Chopra, 2002; Kim et al.,
2011). Kapuria and Kumari focused on stress concentration of
piezolaminated panels under electromechanical coupling load
(Kapuria and Kumari, 2013). They provided accurate three dimen-
sional piezoelasticity solutions using extended Reissner-type vari-
ational principle and extended Kantorovich method. In this work,
we will investigate stress concentration of piezo-bonded smart
composite laminates under piezoelectric excitation using stress
variables only. The principle of complementary virtual work is
adopted to derive governing equations. Various layup configura-
tions are studied, to verify the proposed approach. The proposed
method is also evaluated by comparing finite element analysis
results, using the commercially available package ANSYS.
Fig. 1. Geometry of piezo-bon
2. Formulations

Fig 1 shows a symmetric configuration of piezo-bonded com-
posite laminates with free edges. Two piezoelectric actuators are
bonded on the top and bottom surfaces of the laminated compos-
ites. The composite laminates consist of orthotropic materials, and
have arbitrary fiber angles with respect to the x axis. The thick-
nesses of piezoelectric actuators and composite laminates are con-
sidered the same in each layer, for convenience. This structure can
be extended, bended, and twisted under electric excitation, due to
the electro-mechanical coupling of the piezoelectric actuators.

Based on the linear elasticity, the general form of the constitu-
tive equations can be expressed for each layer in Eq. (1). Induced
strains ð½d�½E�Þ only exist in piezoelectric layers. A piezoelectric
strain matrix ½d� is defined at each layer, and it has zero values
for composite layers. Pure extension by the piezoelectric excitation
is considered in the present study. Therefore, electric fields fEg are
applied through the thickness direction only, and E1 and E2 are
zero.
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The first row of Eq. (1) can be rewritten into the following form.

r1 ¼
e1 � S1jrj � d31E3

S11
; ðj ¼ 2;3; . . . ;6Þ ð2Þ

Substituting Eq. (2) into Eq. (1), all other strains can then be ex-
pressed as follows.

ei ¼ Ŝijrj þ
Si1

S11
e1 þ d̂3iE3; ði; j ¼ 2;3; . . . ;6Þ ð3Þ

where,

Ŝij ¼ Sij �
Si1S1j

S11
; d̂3i ¼ d3i �

Si1

S11
d31 ð4Þ

The boundary conditions for the given geometric configuration
at the free edges, and at the top and bottom surfaces, are given in
the following equations.

r2 ¼ r4 ¼ r6 ¼ 0 at y ¼ 0; b
r3 ¼ r4 ¼ r5 ¼ 0 at z ¼ �H=2

ð5Þ
ded composite laminate.
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The smart composite laminate is considered long enough. Then,
generalized plane strain states could be assumed, and the stress
fields are independent of the x-axis. The non-dimensional coordi-
nates are introduced as follows.

g ¼ z=h

n ¼ y=h
ð6Þ

Lekhnitskii stress functions (Lekhnitskii, 1963) are introduced
to satisfy the pointwise equilibrium equations automatically.
These stress functions can be divided into in-plane, and out-
of-plane functions.

r2 ¼
@2F
@g2 ; r3 ¼

@2F

@n2 ; r4 ¼ �
@2F
@n@g

r5 ¼ �
@w
@n

; r6 ¼
@w
@g

ð7Þ

where,

F ¼
Xn

i¼1

fiðnÞgiðgÞ; w ¼
Xn

i¼1

piðnÞgI
iðgÞ ð8Þ

The superscript I in Eq. (8) denotes differentiation of the func-
tion with respect to g. The out-of-plane functions giðgÞmust satisfy
the traction free boundary conditions at the top and bottom sur-
faces (i.e. the stress functions and their first derivatives should
be zero in those places). The out-of plane functions are assumed
to be the mode shape functions of a clamped–clamped beam. Since
solutions are sensitive to initially assumed stress functions and
odd function set causes singularity in the eigenvalue solution pro-
cedure for the given symmetric configuration, an even function set
of a clamped–clamped beam is used for the extension problem. The
out-of-plane stress functions giðgÞ are given as follows, and are
presented in Fig. 2.

giðgÞ ¼ cosðbi gÞ þ ki cos hðbi gÞ ð9Þ

where,

ki ¼ cosðbi=2Þ sec hðbi=2Þ ð10Þ

The coefficients bi are the solutions of the following character-
istic equation.

cos hðb=2Þ sinðb=2Þ þ cosðb=2Þ sin hðb=2Þ ¼ 0 ð11Þ

The governing equations are obtained by taking the principle of
complementary virtual work. The complementary strain energy is
calculated by

@U ¼
Z Z

eiridydz ¼ 0 ð12Þ
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Fig. 2. Initially assumed out-of-plane stress functions giðgÞ.
Substituting Eqs. (3) and (7) into Eq. (12), the complementary
strain energy can be rewritten as follows.

@U ¼
Z Z

rjŜijri þ
Si1

S11
e1 þ d̂3iE3

� �
ri

� �
dndg ¼ 0

ði; j ¼ 2;3; . . . ;6Þ ð13Þ

Eq. (13) is reduced to the following form after integration by
parts, and applying the boundary conditions at the free edge.Z

að4Þij fj;nnnn þ að2Þij fj;nn þ að0Þij fj þ bð2Þij pj;nn þ bð0Þij pj þ ri

h i
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þ
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dpidn ¼ 0; ði; j ¼ 1;2; . . . ;nÞ

ð14Þ

where,
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Ŝ33gigjdg

að2Þij ¼
Z
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In Eq. (14), the governing equations reduce to the 2nd and 4th
order ordinary differential equations, where fiðnÞ and piðnÞ are cou-
pled. The homogeneous solutions of fi and pi are assumed to be of
the following form.

f ðHÞi ¼ v f
i ekn; pðHÞi ¼ vp

i ekn ð16Þ

Substituting Eq. (16) into Eq. (14), the 2nd and 4th order cou-
pled ordinary differential equations are reduced to the following
eigenvalue problem.

að0Þij v f
j þ ða

ð2Þ
ij þ k2að4Þij Þk

2v f
j þ ðk

2bð2Þij þ bð0Þij Þv
p
j ¼ 0

dð0Þij v f
j þ dð2Þij k2v f

j þ ðc
ð0Þ
ij þ k2cð2Þij Þv

p
j ¼ 0; ði; j ¼ 1;2;3; . . . ;nÞ

k2v f
j � v f II

j ¼ 0; ði; j ¼ 1;2; . . . ;6Þ
ð17Þ

The 3rd equation of Eq. (17) is an auxiliary equation for conver-
sion to a standard form of a generalized eigenvalue problem, as
follows.

að0Þij að2Þij bð0Þij

dð0Þij dð2Þij bð0Þij
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2
664

3
775;

ði; j ¼ 1;2; . . . ;nÞ ð18Þ

Since the interlaminar stresses decay in the interior region of
the laminates, only negative roots of k2 are selected in Eq. (18).
From the eigenvalue problem, 3n eigenvalues are obtained, and
the homogeneous solutions are obtained by a 3n-terms linear
combination.

f ðHÞi ¼ tjv f
ije
�kjn

pðHÞi ¼ tjvp
ije
�kjn; ði ¼ 1;2; . . . ;nÞ; ðj ¼ 1;2; . . . ;3nÞ

ð19Þ
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where tj are constants to be determined from the boundary
conditions.

The particular solution can be obtained from the assumption
that fiðnÞ and piðnÞ are constants in Eq. (14), so that all their deriv-
atives are zero. The remaining parts of Eq. (14) reduce to the fol-
lowing equations.

að0Þij f ðPÞj þ bð0Þij pðPÞj ¼ �ri

bð0Þij f ðPÞj þ cð0Þij pðPÞj ¼ �si; ði; j ¼ 1;2; . . . ;nÞ
ð20Þ

After solving the particular solutions, the in-plane stress func-
tions can be obtained, and expressed as the summation of the
homogeneous solution and particular solution.

fi ¼ f ðHÞi þ f ðPÞi

pi ¼ pðHÞi þ pðPÞi ; ði ¼ 1;2; . . . ; nÞ
ð21Þ

Finally, the constants tj are determined from the traction free
boundary conditions of r2;r4 and r6 at the free edge, as shown
in Eq. (5).

tjv f
ij þ f ðPÞi ¼ 0

tjv f
ij ¼ 0

tjvp
ij þ pðPÞi ¼ 0; ði ¼ 1;2; . . . ;nÞ; ðj ¼ 1;2; . . . ;3nÞ

ð22Þ

Substituting the calculated in-plane stress function into Eq. (7),
the interlaminar stresses can be obtained as follows.

r2 ¼ tjv f
ije
�kjn þ f ðPÞi

� �
gII

i

r3 ¼ k2
i tjv f

ije
�kjngi

r4 ¼ kjtjv f
ije
�kjngI

i

r5 ¼ kjtjvp
ije
�kjngI

i

r6 ¼ tjvp
ije
�kjn þ pðPÞi

� �
gII

i ; ði ¼ 1;2; . . . ;nÞ; ðj ¼ 1;2; . . . ;3nÞ ð23Þ

The classical lamination theory, which is based on the plane
stress assumption, is also investigated for piezo-bonded composite
laminates, in order to compare with the proposed stress function
based approach. The reduced constitutive relationships for each
ply are shown in the following form (Chattopadhyay and Seeley,
1997).
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2
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¼
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k

e0
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e0
6

2
64

3
75

k

ð24Þ

where, K1 and K2 represent the induced strain by piezoelectric
actuators, and e0

i represents the mid plane strain. Although the
strains are continuous throughout the thickness, in-plane stresses
are not necessarily continuous, due to different elastic properties
for each ply.
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Fig. 3. Interlaminar normal stress (r3) distribution at the free edge of [PZT/0/90]s
laminate under electric excitation.
3. Numerical results

To verify the proposed approach, cross-ply, angle-ply and
quasi-isotropic laminates are considered in the present study.
The material properties of composite laminates are given as fol-
lows (Tahani and Nosier, 2003)

E1 ¼ 138 Gpa; E2 ¼ E3 ¼ 14:5 Gpa
G12 ¼ G13 ¼ G23 ¼ 5:9 Gpa
m12 ¼ m31 ¼ m23 ¼ 0:21 ð25Þ

The PZT-5H is used as a piezoelectric actuator, and its material
properties are given as follows (Chopra, 2002)
E1 ¼ E2 ¼ 61 Gpa; E3 ¼ 48 Gpa
G12 ¼ 23:5 Gpa; G13 ¼ G23 ¼ 5:9 Gpa
m12 ¼ m31 ¼ m23 ¼ 0:29

d13 ¼ d23 ¼ �274� 10�12 m=N; d33 ¼ 593� 10�12 m=N ð26Þ

The in-plane length ‘b’ is assumed to be ‘4H’, where H is the to-
tal thickness of the structure. The lamina thickness is 0.125 mm,
which is almost one fourth of the PZT’s thickness (0.5 mm). For
convenience, 4 laminae, which have the same fiber orientations,
are considered as one lamina, so that each lamina thickness is then
the same as the PZT’s thickness. The in-plane and out-of-plane
stress distributions are obtained, and they are compared with
three-dimensional finite element analysis results. The three-
dimensional finite element analysis results are obtained by the
commercial finite element package ANSYS. The Solid 64 element
is used for composite laminates, and Solid 5 for PZTs, with a total
of 640,281 degrees of freedom. The three-dimensional solid lami-
nate has a relatively long length, compared with the width and
height, where the length L = 40H = 10b, to express the generalized
plane strain state effectively. The clamped-free boundary condition
is applied to the x-plane of the laminate. The results are extracted
at the inner part of the laminate, where all the boundary layer ef-
fects occurring along the x-axis have decayed.
3.1. Convergence study

In the proposed stress function-based approach, the number of
initially assumed out-of-plane functions influences the final stress
distributions. The stresses are going to converge as the number of
initially assumed functions increases. The number of initially as-
sumed functions is defined as a term, and a proper choice of the
term is the main task for the convergence problem.

Interlaminar normal stress (r3) distribution at the free edge of
[PZT/0/90]s laminate under electric excitation is shown in Fig. 3,
by using a different number of terms. Because of the assumption
of using harmonic functions as out-of-plane stress functions, the
present results show some oscillations for out-of-plane stresses.
The 8-terms’ result shows large oscillation; and with the increase
of term number, the oscillations can be reduced dramatically, but
small oscillation still exists. The proposed method can also predict
the position of maximum stress concentration accurately, which is
the interface of the PZT and 0 degree layers. From the figure, the
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concentrated maximum stress approaches the interface of the PZT
and 0 degree layers, as the number of terms increases.

The relative errors of peak values for r3 are calculated by using
the following equation, and are presented in Fig. 4.

errorðkÞ ¼ peakðr3ðkÞÞ � peakðr3ð30ÞÞ
peakðr3ð4ÞÞ � peakðr3ð30ÞÞ � 100 ð27Þ

where k ¼ 4;5; . . . ;29;30, represents term numbers. The relative er-
rors are less than 2%, when using 26 terms for r3.

Since the 26-term result converges well, numerical results are
analyzed by using the 26 initially assumed stress functions. These
numerical results can be obtained under the process of MATLAB
within 2–3 s, by using a normal dual-core desktop computer.

3.2. Piezoelectric excitation

Numerical results of interlaminar stresses are obtained under
piezoelectric excitation, and only the pure extension case is consid-
ered in this paper. An electric field of 2� 105 V=m is applied to
both PZTs on the top and bottom surfaces, which can result in pure
extension of the whole structure. Results are obtained at the free
edge of the laminates, and also at the interface of layers.

Fig 5 shows the interlaminar normal stress (r3) and interlami-
nar shear stress (r4) distributions at the PZT/0 interface of [PZT/
0/90]s laminate. Interlaminar normal stress is concentrated at
the free edge, which may lead to delamination of the PZT layer,
and converges to zero in the interior area. The result of three-
dimensional finite element method (FEM) also shows the same
tendency and magnitude. Interlaminar shear stress satisfies the
traction free boundary condition at the free edge, and presents
large stress concentration near the free edge. However, FEM result
shows a nonzero stress state at the free edge, since the displace-
ment-based theories cannot fully satisfy the traction free boundary
condition at the free edge. So, the stress function-based approach
shows more accurate results than displacement-based approaches
at the free edge. Fig. 6 shows the interlaminar normal and shear
stresses distributions at the 0/90 interface of [PZT/0/90]s laminate.
The interlaminar normal stress shows a large negative stress con-
centration at the free edge, which increases the peeling strength
at the interface of the 0 and 90 degree layers. The interlaminar nor-
mal stress also converges to zero in the interior area. The interlam-
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interface of [PZT/0/90]s laminate under electric excitation (at z/h = 1/6).
inar shear stress well matches with the FEM result, and also
satisfies the traction free boundary condition exactly.

Fig 7 shows the interlaminar normal and shear stresses (r3, r4,
r5) distributions at the PZT/45 interface of the [PZT/45/�45]s lam-
inate. Since the material properties of composite are mainly deter-
mined by the fiber orientations, an angle ply ([45/�45]s) generates
all interlaminar shear stresses (r4, r5) near the free edge. Unlike
r4, r5 is concentrated at the free edge, and converges to zero in
the interior area. Fig. 8 shows the interlaminar normal and shear
stress distributions at the 45/�45 interface of [PZT/45/�45]s lam-
inate. r3 and r4 have similar stress distributions to [PZT/0/90]s
laminate, while this laminate has positive r5 across the width
direction.

Fig 9 shows the out-of-plane interlaminar normal distribution
at the free edge of [PZT/45/�45]s laminate. The proposed approach
predicts larger stress concentration at the PZT/45 interface, which
represents that finite element analysis, even using fine mesh, could
underestimate the stress states of piezo-bonded composite lami-
nates. Even though there is a small difference in the middle layers
between the two methods, the proposed result is acceptable, and
can be considered as an efficiently refereed result, when compared
with other displacement-based approaches. The out-of-plane



0 2 4 6 8 10 12
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y/h

M
Pa

 

 

Present - σ
3

FEM - σ
3

Present - σ
4

FEM - σ
4

Present - σ
5

FEM - σ
5

Fig. 7. Interlaminar normal and shear stresses (r3, r4 and r5) distributions at the
PZT/45 interface of [PZT/45/-45]s laminate under electric excitation (at z/h = 1/3).

0 2 4 6 8 10 12
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

y/h

M
Pa

 

 

Present - σ3

FEM - σ3

Present - σ4

FEM - σ4

Present - σ5

FEM - σ5

Fig. 8. Interlaminar normal and shear stresses (r3, r4 and r5) distributions at the
45/-45 interface of [PZT/45/-45]s laminate under electric excitation (at z/h = 1/6).

-1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

MPa

z/
h

 

 

Present - σ
3

FEM - σ
3

Fig. 9. Interlaminar normal stress (r3) distribution at the free edge of [PZT/45/-45]s
laminate under electric excitation.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

σ
5
 (MPa)

z/
h

 

 

[PZT/45/-45]s

[PZT/45/-45/0/90]s

Fig. 10. Interlaminar shear stress (r5) distributions at the free edge under electric
excitation.

-4 -3 -2 -1 0 1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

MPa

z/
h

CLT - σ2

Present - σ2

Fig. 11. In-plane normal stress (r2) distribution at the interior of [PZT/0/90]s
laminate under electric excitation.

B. Huang, H.S. Kim / International Journal of Solids and Structures 51 (2014) 1246–1252 1251
interlaminar shear stress (r5) distributions for both [PZT/45/-45]s
laminate and [PZT/45/-45/0/90]s laminate are shown in Fig. 10.
These shear stresses concentrate at PZT interfaces, and satisfy trac-
tion free boundary conditions. The magnitude of shear stresses af-
fects the strength of structure.

The CLT solution for in-plane normal stress (r2) is obtained in
the interior of the laminates, and is compared with the proposed
approach in Fig. 11. CLT provides only the interior solution of the
laminates, but the proposed method predicts the interior solution
accurately, as well as all three-dimensional interlaminar stresses.
4. Conclusions

The interlaminar stresses of piezo-bonded composite laminates
have been analyzed by using a stress function-based approach. The
proposed method automatically satisfied the pointwise equilib-
rium equation, as well as traction free boundary conditions. The
governing equation was obtained using the complementary virtual
work principle. The stress states are analyzed by general eigen-
value solution procedure. Even though small oscillations of inter-
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laminar stresses appeared along the thickness direction, they can
be reduced, by increasing the number of initially assumed stress
functions. The size of the problem depends on the number of ini-
tially assumed stress functions, and is independent of the number
of stacking layers, which represents that the proposed method is
much more efficient than the displacement-based approaches.
Large interlaminar stresses were generated and concentrated at
the PZT/lamina interface under piezoelectric excitation, which
could initiate delamination of the laminates. Delamination de-
creases the load carrying capability of the laminates. Therefore,
accurate stress prediction is an important issue in the design of
smart composite laminates. Finite element analysis, even using
very fine mesh, underestimated the stress concentration at the
PZT/lamina interface, compared to the present method. The pro-
posed method provides an accurate stress state of piezo bonded
smart composite laminates. The drawback of the proposed method
is that only simple geometry can be analyzed. Therefore, the pro-
posed method can be used as reference data for finite element
analysis, or an initial design tool for smart composite structure.
Acknowledgments

This research was supported by the Basic Science Research Pro-
gram, through the National Research Foundation of Korea (NRF),
funded by the Ministry of Education, Science and Technology
(NRF-2011-0021720).
References

Chandrashekhara, K., Agarwal, A.N., 1993. Active vibration control of laminated
composite plates using piezoelectric devices: a finite element approach. J. Intell.
Mater. Syst. Struct. 4 (4), 496–508.

Chattopadhyay, A., Seeley, C.E., 1997. A higher order theory for modeling composite
laminates with induced strain actuators. Composites Part B 28 (3), 243–252.

Cho, M., Kim, H.S., 2000. Iterative free-edge stress analysis of composite laminates
under extension, bending, twisting and thermal loadings. Int. J. Solids Struct. 37
(3), 435–459.

Chopra, I., 2002. Review of state of art of smart structures and integrated systems.
AIAA J. 40 (11), 2145–2187.

Detwiler, D.T., Shen, M.H., Venkayya, V.B., 1995. Finite element analysis of
laminated composite structures containing distributed piezoelectric actuators
and sensors. Finite Elem. Anal. Des. 20 (2), 87–100.

Flanagan, G., 1994. An efficient stress function approximation for the free-edge
stresses in laminates. Int. J. Solids Struct. 31 (7), 941–952.

Ghugal, Y.M., Shimpi, R.P., 2002. A review of refined shear deformation theories of
isotropic and anisotropic laminated plates. J. Reinf. Plast. Compos. 21 (9), 775–
813.

Herakovich, C.T., 2012. Mechanics of composites: a historical review. Mech. Res.
Commun. 41, 1–20.

Izadi, M., Tahani, M., 2010. Analysis of interlaminar stresses in general cross-ply
laminates with distributed piezoelectric actuators. Compos. Struct. 92 (3), 757–
768.

Kabir, H.R.H., 1996. A novel approach to the solution of shear flexible rectangular
plates with arbitrary laminations. Composites Part B 27 (1), 95–104.
Kapuria, S., Kumari, P., 2013. Extended Kantorovich method for coupled
piezoelasticity solution of piezolaminated plates showing edge effects. Proc.
R. Soc. A Math. Phys. Eng. Sci. 469 (2151).

Kapuria, S., Kumari, P., Nath, J.K., 2010. Efficient modeling of smart piezoelectric
composite laminates: a review. Acta Mech. 214 (1–2), 31–48.

Kassapoglou, C., Lagace, P.A., 1986. An efficient method for the calculation of
interlaminar stresses in composite materials. J. Appl. Mech. 53 (4), 744–750.

Kim, H.S., Cho, M., Kim, G.I., 2000b. Free-edge strength analysis in composite
laminates by the extended Kantorovich method. Compos. Struct. 49 (2), 229–
235.

Kim, H.S., Zhou, X., Chattopadhyay, A., 2002b. Interlaminar stress analysis of shell
structures with piezoelectric patch including thermal loading. AIAA J. 40 (12),
2517–2525.

Kim, H.S., Chattopadhyay, A., Nam, C., 2002a. Implementation of a coupled thermo-
piezoelectric-mechanical model in the LQG controller design for smart
composite shells. J. Intell. Mater. Syst. Struct. 13 (11), 713–724.

Kim, H.S., Ghoshal, A., Kim, J., Choi, S.B., 2006. Transient analysis of delaminated
smart composite structures by incorporating the Fermi–Dirac distribution
function. Smart Mater. Struct. 15 (2), 221.

Kim, H.S., Rhee, S.Y., Cho, M., 2008. Simple and efficient interlaminar stress analysis
of composite laminates with internal ply-drop. Compos. Struct. 84 (1), 73–86.

Kim, H.S., Cho, M., Lee, J., Deheeger, A., Grédiac, M., Mathias, J.D., 2010. Three
dimensional stress analysis of a composite patch using stress functions. Int. J.
Mech. Sci. 52 (12), 1646–1659.

Kim, H.S., Kim, J.H., Kim, J., 2011. A review of piezoelectric energy harvesting based
on vibration. Int. J. Precis. Eng. Manuf. 12 (6), 1129–1141.

Konieczny, S., Woźniak, C., 1994. Corrected 2D-theories for composite plates. Acta
Mech. 103 (1–4), 145–155.

Lee, C.K., 1990. Theory of laminated piezoelectric plates for the design of distributed
sensors/actuators: part I: governing equations and reciprocal relationship. J.
Acoust. Soc. Am. 87 (3), 1144–1158.

Lee, J., Cho, M., Kim, H.S., 2011. Bending analysis of a laminated composite patch
considering the free-edge effect using a stress-based equivalent single-layer
composite model. Int. J. Mech. Sci. 53 (8), 606–616.

Lekhnitskii, S.G., 1963. Theory of Elasticity of an Anisotropic Body. Holden-Day, San
Francisco.

Pipes, R.B., Pagano, N.J., 1970. Interlaminar stresses in composite laminates under
uniform axial extension. J. Compos. Mater. 4 (4), 538–548.

Reddy, J.N., 1999. On laminated composite plates with integrated sensors and
actuators. Eng. Struct. 21 (7), 568–593.

Rhee, S.Y., Cho, M., Kim, H.S., 2006. Layup optimization with GA for tapered
laminates with internal plydrops. Int. J. Solids Struct. 43 (16), 4757–4776.

Robbins, D.H., Reddy, J.N., 1993. Modelling of thick composites using a layerwise
laminate theory. Int. J. Numer. Methods Eng. 36 (4), 655–677.

Spilker, R.L., Chou, S.C., 1980. Edge effects in symmetric composite laminates:
importance of satisfying the traction-free-edge condition. J. Compos. Mater. 14,
2–20.

Tahani, M., Nosier, A., 2003. Three-dimensional interlaminar stress analysis at free
edges of general cross-ply composite laminates. Mater. Des. 24 (2), 121–130.

Wang, S.S., Choi, I., 1982a. Boundary-layer effects in composite laminates: part
1—free-edge stress singularities. J. Appl. Mech. 49 (3), 541–548.

Wang, S.S., Choi, I., 1982b. Boundary-layer effects in composite laminates: part
2—free-edge stress solutions and basic characteristics. J. Appl. Mech. 49 (3),
549–560.

Wang, Y.Y., Lam, K.Y., Liu, G.R., Reddy, J.N., Tani, J., 1997. A strip element method for
bending analysis of orthotropic plates. JSME Int. J. 40 (4), 398–406.

Yin, W.L., 1994a. Free-edge effects in anisotropic laminates under extension,
bending and twisting, part I: a stress-function-based variational approach. J.
Appl. Mech. 61 (2), 410–415.

Yin, W.L., 1994b. Free-edge effects in anisotropic laminates under extension,
bending, and twisting, part II: eigenfunction analysis and the results for
symmetric laminates. J. Appl. Mech. 61 (2), 416–421.

Zhu, C., Lam, Y.C., 1998. A Rayleigh-Ritz solution for local stresses in composite
laminates. Compos. Sci. Technol. 58 (3–4), 447–461.

http://refhub.elsevier.com/S0020-7683(13)00489-7/h0005
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0005
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0005
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0010
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0010
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0015
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0015
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0015
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0020
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0020
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0025
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0025
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0025
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0030
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0030
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0035
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0035
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0035
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0040
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0040
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0045
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0045
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0045
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0050
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0050
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0185
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0185
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0185
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0060
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0060
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0065
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0065
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0075
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0075
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0075
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0100
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0100
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0100
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0070
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0070
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0070
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0085
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0085
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0085
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0095
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0095
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0080
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0080
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0080
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0090
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0090
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0105
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0105
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0110
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0110
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0110
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0115
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0115
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0115
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0120
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0120
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0125
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0125
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0130
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0130
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0135
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0135
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0140
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0140
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0145
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0145
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0145
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0150
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0150
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0155
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0155
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0160
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0160
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0160
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0165
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0165
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0170
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0170
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0170
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0175
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0175
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0175
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0180
http://refhub.elsevier.com/S0020-7683(13)00489-7/h0180

	Free-edge interlaminar stress analysis of piezo-bonded composite 	laminates under symmetric electric excitation
	1 Introduction
	2 Formulations
	3 Numerical results
	3.1 Convergence study
	3.2 Piezoelectric excitation

	4 Conclusions
	Acknowledgments
	References


