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1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

Let X and Y be two nonempty sets and let T : X --* 2 Y and S : Y --* 2 X be two set-valued 
mappings,  where 2 X denotes the family of all subsets of X. Following Browder [1], a point 

(x0, Y0) E X × Y is said to be a coincidence point if Y0 E T(xo) and x0 E S(yo). 
Let An be the s tandard n-dimensional simplex with vertices e0, e l , . . . ,  e~. If J is a nonempty 

subset of {0, 1 , . . . ,  n}, we denote by A j  the convex hull of the vertices (ej  : j E J}.  A topological 
space X is said to be contractible if the identity mapping I x  of X is homotopic to a constant 
function. A topological space X is said to be an acyclic space if all of its reduced Cech homology 
groups over the rationals vanish. In particular, any contractible space is acyclic, and hence any 

convex or star-shaped set in a topological vector space is acyclic. For a topological space X,  we 
shall denote by ka (X)  the family of all compact acyclic subsets of X.  

Let X and Y be two topological spaces. For a given class L of set-valued mappings,  define 

L(X,  Y )  = { T :  X ~ 2 r [ T E L } ,  Lc = {T  = T m T m - l " "  T1 I Ti E L } .  

Using the above notation, we have the following definitions. 

(1) T is an acyclic mapping, writ ten F E V(X,  Y), if F : X ~ ka(Y)  is upper-semicontinuous. 
(2) T E V + ( X ,  Y) if for any a-compact  subset K of X there exists a T* E V ( K ,  Y) such tha t  

T*(x)  C T(x )  for all x E K.  
(3) T E V + ( X , Y )  if for any a-compact  subset K of X there exists a T* E V c ( K , Y )  such 

tha t  T*(x) C T(x)  for all x E K.  

In 1986, by using Browder's fixed point theorem [1] for the set-valued mapping with open 
inverse values, Komiya [2] proved the following coincidence theorem. 

THEOREM A. (See [2].) Let X be a nonempty convex subset of a Hausdorff topological vector 
space E,  and let Y be a nonempty compact convex subset of  a Hausdorff topological vector 
space W.  Suppose A : X --~ 2 Y is upper-semicontinuous with dosed and convex values and 
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B : Y --* 2 x has convex values such that B - l ( x )  is open in Y for each x 6 X.  Then there ex/sts 
(Xo, Yo) 6 X x Y such that xo 6 B(yo) and Y0 6 A(xo). 

Ding and Tarafdar [3] generalized Komiya's theorem to H-space (see [4]) and to the mapping 
with compact acyclic values. Tarafdar and Yuan [5] and Yuan [6] generalized Komiya's theorem 
to contractible space and to the mapping with compact contractible values. By using the gen- 
eralization of the classic Knaster-Kuratowski-Mazurkiewicz theorem, Horvath [7] gave a number 
of coincidence theorems in which both mappings involve the property of open inverse values (or 
open-image values), for example, see Theorem 3 and Corollaries 3-6 in [7]. In Theorem A and 
Theorem 1 of [5], one of two mappings still involve the property of open inverse values. Re- 
cently Ding [8] generalized the results in [2,5] and obtained some new coincidence theorems for 
set-valued mappings, both without convex values and open inverse values in contractible spaces. 

In this note, we shall establish some new coincidence theorems involving a new class of map- 
pings containing compact composites of acyclic mappings defined in contractible spaces and the 
mappings do not have convex values and open inverse values. These theorems further generalize 
the corresponding results in [1,2,5,6,8,9]. 

Let X and Y be two topological spaces and T : X --+ 2 v a set-valued mapping. T is said to 
have local intersection property (see [10]) if for each x E X with T(x) ~ 0, there exists an open 
neighborhood N(x) of x such that  ~zeg(z) T(z) ~ 0. The example in [10, p. 63] shows that  a 
set-valued mapping with local intersection property may not have the property of open inverse 
values. 

LEMMA 1. Let X and Y be topological spaces and T : X --+ 2 Y a set-valued mapping. Then the 
following conditions are equivalent. 

(i) For each x E X,  T(x) # 0 and T has the local intersection property. 
(ii) For each y E Y, T- I (y)  contains a open set 0 r C X (which may be empty) such that 

X = U~eY Oz,. 
(iii) There exists a set-valued mapping F : X --, 2 Y such that F(x) C T(x) for each x E X; 

F - l ( y )  is open in X for each y e Y and X -- U~eY F-I(Y) • 
(iv) For each x e X,  there exists y e Y such that x e in t (T- l (y)) .  

PROOF. 

(i) =~ (ii). Since for each x E X,  T(x) ~ 0, by (i), there exists an open neighborhood N(x) of x 
such that  

M(x) = N T(z) # O. 
zEN(z) 

It follows that  there exists y • M(z)  C Y such that  N(z)  C T- l (y ) ,  and hence, we have 

X = U N(x) C U T - I ( Y ) =  X. 
xEX yEY 

For each y • Y, if y • M(x)  for some x • X,  let O r = N(x)  and if y ~ M(x)  for all x • X,  let 
O r = ~. Then the family {O~}~ev of open sets satisfies Condition (ii). 
(ii)=~ (iii). Suppose Condition (ii) holds. Define a mapping F : X --+ 2 Y by 

F(x) = {y • Y : x  • Orb 

For each y • Y, we have 

f - l ( y )  = {x • X :  y • F(x)} = {x • X :  x • Or} = O~ C T-I(y) .  

It follows that  for each y • Y,  F - l ( y )  is open in X and for each x • X ,  F(x) C T(x) and 

x = U o,, = U 
yEY yEY 

This proves Condition (iii) holds. 
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(iii)=~ (iv). Suppose Condition (iii) holds. Then, we have F- l ( y )  C int (T- l (y) )  C T - l ( y )  for 
each y • Y and 

X = U F-I (Y)  C U int (T-I(Y)) C U T-I(Y)  C X. 
yEY yEY yEY 

Therefore, for each x • X,  there exists y • Y such that  x • int (T-l(y)) .  
( i v ) ~  (i). Suppose Condition (iv) holds. For each x • X, there exists a y • Y such that  
x • int (T- l (y)) ,  and hence, there exists an open neighborhood N(x) of x such that  N(x) c 
int (T- l (y) )  C T- l (y ) .  It follows that  

Y • N T(z), 
zeN(x) 

tha t  is, T has the local intersection property. 

The following lemma, the proof of which is contained in the proof of Theorem 1 of [11], will be 
a basic tool for our purpose (see also [12l). 

LEMMA 2. Let Y be a topological space. For any nonempty subset g of {0, 1 . . . .  , n}, let F j be 
a nonempty contractible subset of Y. /E q} ~ J C J '  C {0,1 . . . .  , n} implies r J  C F j , ,  then there 
exists a continuous mapping f : An --+ Y such that f ( A g ) C F J for each nonempty subset J of 
{0,1, . . . ,  n}. 

The following result is quite well known in the Lefschetz fixed point theory. For details, we 
refer the reader to [13,14]. 

LEMMA 3. Let An be an n-dimensional simplex with the Euclidean topology. H F  • Vc(An,  An) 
then F has a fixed point. 

2. C O I N C I D E N C E  T H E O R E M  

THEOREM 1. Let X be a Hausdorfftopological space and D a contractible subset of a topological 
space Y. Let S : D ---* 2 x and T : X --* 2 D be two set-valued mappings such that 

(i) S • V + ( D , X )  is a compact mapping, 
(ii) t:or each x • X,  T(x) ~ 0 and T has local intersection property, 

(iii) t:or each open set U C X,  the set Nxev T(x) is empty or contractible. 

Then there exist xo • X and Yo • D such that xo • S(yo) and Y0 • T(xo). 

PROOF. By (ii) and Lemma 1, for each y • D, there exists an open set Oy C X (which may 
be empty) such that  Oy c T - l ( y )  and X -- UyeY oy  = Uuev T-I(Y) • Since S is a compact 

mapping, S(D) is a compact subset of X,  there exists a finite set {Y0, Yl , . . . ,  Yn} C D such that  
S(D) -- Ui~=0 oy, .  Now for each nonempty subset J of N = {0, 1 . . . .  , n}, define 

,[ N { T ( x ) : x • N j e g O v ~ } ,  if N j e j o y j  # 0 ,  
Fj [ D, otherwise. 

Note that  O r C T - I ( y )  for e a c h y  • D, i f x  • N j e j o u j ,  then {yj : j • J} c T(x). By (iii), 
each F j  is nonempty contractible and it is clear that  •g c rg , ,  whenever 0 ¢ J C J '  C N. By 
Lemma 2, there exists a continuous mapping f : An --* D such that  

f ( A j )  C F j ,  for all 0 ¢ J C N. 

Since f(A,~) is compact in D and S • V + ( D , X ) ,  there is an S* • Vc(f (A,~) ,X)  such that  
S*(y) C S(y) for each y • f (An).  By Proposition 3.1.11 of [15], S*(f(An)) is a compact subset 
of S(D). Hence we have 

n 

s*(f(An)) = U [o,, n s*(f(An))]. 
i = 0  
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Let {¢i}ieN be a continuous partition of unity subordinated to the open covering {Or, M 
S*(f(An))}~eN, i.e., for each i E N, ¢~ : 8 * ( f ( A n ) )  ~ [0, 1] is continuous, 

{x e S*(f(An)) : ¢i(x) ~ 0} COy,  n S*(f(An) ) c Oy, c T - l ( y i )  

such that  ~n__0 ¢i(x ) = 1 for all x E S*( f (An)) .  Define ¢ :  S*(f(An)) ~ An by 

¢(x) = (¢0(x), ¢1(z) . . . .  , Cn(x)), for all x E S*(f(An)).  

Then ¢(z)  C Aj(~) for all x e S*(f(An)),  where J(x)  = {j  e N :  Cj(x) ~ 0}. Therefore, we 
have 

/ (¢ (x) )  • / ( A j ( x )  ) C Fj(~) C T(x) ,  for all x • S*(/(An)).  (2.1) 

It is easy to see ¢ o S* o f • Vc(An, An), by Lemma 3, there exists z E An such that  z • 
CoS*of (z ) .  Let Yo = f ( z ) ,  then Y0 • f (An)  and ¢- l ( z )AS*(yo)  # 0. Take xo • ¢ - l ( z )nS*(yo ) ,  
then we have z = ¢(x0) and x0 • S*(y0) C S(yo). It follows from (2.1) that  

Yo = f ( z )  = f o ¢(x0) C T(xo). 

This completes the proof. 

REMARK 1. Theorem 1 generalizes Theorem 1 of [8] and Theorem 1 of [5] in the following aspects: 

(1) X may not be compact space, 
(2) S is a mapping in the new class of mappings containing the composites of acyclic mappings, 
(3) T may not have the property of open inverse values. 

If for each y • D, T - l ( y )  is open in X, then for each x • X with T(x)  ~ 9, we take y • T(x)  and 
let N(x )  = T - l ( y ) .  Then N(x )  is a open neighborhood of x and y • Nzeg(x) T(z).  Hence, T has 
the local intersection property. Theorem 1, in turn, generalizes Theorem 2.3 of [9], Theorem 1 
of [2], Theorem 4.5 of [6], and Theorem 1 of [1]. 

THEOREM 2. Let X be a compact topological space and Y a contractible space. Let S : Y --* 2 x 
and T : X ~ 2 Y be such that 

(i) S • V+~ (Y ,X) ,  
(ii) for each x ~ X ,  T(x)  ~t ~ and T has the local intersection property, 

(iii) for each open set U C X ,  the set n z e v  T(x)  is empty or contractible. 

Then there exist xo • X and Yo • Y such that xo • S(yo) and Yo • T(xo). 

PROOF. From the compactness of X, it follows that  S is a compact mapping. The conclusion 
follows from Theorem 1. 

REMARK 2. Theorem 2 generalizes Theorem 1 of [8] from S • V(Y,X) to S • V + ( Y , X )  and 
the corresponding results in [2,4-6,9]. 

COROLLARY 1. Let X be a Hausdorff topological space and Y a contractible space. Suppose 
T : X -* 2 Y is such that 

(i) for each x • X ,  T(x)  # 0 and T has the local intersection property, 
(ii) for each open set U • X ,  the set n~eu T(x)  is empty or contractible. 

Then for any continuous single-valued mapping g : Y --. X ,  there exists Yo • Y such that 

y0 • T(g(y0)).  
PROOF. Define a mapping S : Y ~ 2 x by 

S(y) = {g(y)}, for all y • Y. 

It is easy to see that  S • V(Y,X) C V+(Y,X).  By Theorem 1, there exist xo • X and Yo • Y 
such that  xo = S(yo) = {g(Yo)} and Yo • T(xo). Hence we must have Yo • T(g(yo)). 

REMARK 3. Corollary 1 generalizes Corollary 1 in [8]. 
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