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Abstract

The use of distributions (generalized functions) is a powerful tool to treat singularities in structural mechanics and,
besides providing a mathematical modelling, their capability of leading to closed form exact solutions is shown in this
paper. In particular, the problem of stability of the uniform Euler–Bernoulli column in presence of multiple concentrated
cracks, subjected to an axial compression load, under general boundary conditions is tackled. Concentrated cracks are
modelled by means of Dirac’s delta distributions. An integration procedure of the fourth order differential governing equa-
tion, which is not allowed by the classical distribution theory, is proposed. The exact buckling mode solution of the col-
umn, as functions of four integration constants, and the corresponding exact buckling load equation for any number,
position and intensity of the cracks are presented. As an example a parametric study of the multi-cracked simply supported
and clamped–clamped Euler–Bernoulli columns is presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In many engineering problems, involving beam-like structures, continuity of the physical and geomet-
rical properties can be interrupted by singularities due to the presence of concentrated cracks. The effect
of concentrated cracks has been widely studied in the literature and models aiming at describing the var-
iation of the flexural stiffness of the beam in the vicinity of the crack have been proposed. Without the
claim of being exhaustive, some examples are recalled in what follows. In particular, a stiffness reduction
due to the presence of a crack with an exponential variation law, that is not restricted to a local influ-
ence, has been proposed by Christides and Barr (1984). On the contrary, a stiffness reduction with a local
effect governed by a triangular variation has been proposed by Sinha et al. (2002). Furthermore, Cerri
and Vestroni (2003) proposed a constant stiffness reduction, due to a concentrated crack, limited to
an effective length around the crack. Bilello (2001) modelled locally the effect of a concentrated crack
by means of an ineffective area delimited by a linear reduction of its height starting from the cracked
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section. Chondros et al. (1998) modelled the crack as a continuous flexibility by using the displacement
field in the vicinity of the crack, found with fracture mechanics methods. The consistent continuous
model proposed by Chondros et al. (1998) is a generalization of the Christides and Barr (1984) cracked
beam theory that is based on experimental determination of the exponent of the stress field. Other
authors presented models of beams with transverse cracks showing that cracked structural members
can be represented by a consistent static flexibility matrix (Gudmundson, 1984) and evaluating alternative
expressions by including coupling terms of the flexibility influence coefficients (Okamura et al., 1969; Rice
and Levy, 1972; Dimarogonas and Massouros, 1981). Papadoupolos and Dimarogonas (1987) introduced
a full matrix for an arbitrary loading of a cracked beam computed by means of fracture mechanics
method.

The effect of concentrated damages on the flexural stiffness in the vicinity of the crack was also treated
in the literature in a macroscopic way by means of the idea of an equivalent rotational spring connecting
two adjacent segments of the beam (Irwin, 1957a,b; Freund and Hermann, 1976; Gounaris and Dima-
rogonas, 1988; Rizos et al., 1990; Ostachowicz and Krawczuk, 1991; Paipetis and Dimarogonas, 1986).
This model, based on fracture mechanics concepts, is able to capture the slope discontinuity at the
cross-sections where the cracks occur. A review can be found in (Dimarogonas, 1996) with particular ref-
erence to dynamics, where a distinction between the behaviour of a notch and a crack is evidenced. In
particular, a thin cut, although used to model cracks, leads to a local flexibility less than that associated
to a crack.

According to the approach based on an equivalent rotational spring, the cracked beam models with con-
tinuous flexibility in the vicinity of the crack can be approximated as models with lumped flexibility by impos-
ing that the rotation discontinuity due to the concentrated flexibility reproduces the relative rotation of the
cross-sections affected by the crack.

Whatever model is adopted to describe the influence of concentrated cracks, the effects of the reduced stiff-
ness on the deflection, on the dynamic characteristics, on the load carrying capacity, etc. should be evaluated
by means of procedures able to provide accurate results with low computational effort. In particular contri-
butions orientated towards explicit solutions are desirable for the engineering practice.

The classical method for solving problems in presence of singularities, such as concentrated cracks,
relies on integration of the governing equations between singularities and on enforcement of the continuity
conditions at those sections where singularities occur. Studies aiming at providing integration procedures
able to treat singularities more efficiently than classical methods have been proposed in the literature to
solve both static (Yavari et al., 2000, 2001a,b; Falsone, 2002) and dynamic (Dimarogonas, 1996; Gounaris
and Dimarogonas, 1988; Quian et al., 1990; Morassi, 1993; Shifrin and Ruotolo, 1999) governing
equations.

In particular, the study conducted in Yavari et al. (2000, 2001a,b) is very appealing since use of the distri-
bution theory is made in the integration procedure; it provides a formulation of the governing equations over
a unique integration domain however requiring, to be solved, the enforcement of a single continuity condition
at each singularity.

The effects of concentrated cracks on the stability characteristics of beam structures have been also
investigated in the literature by making use of the local flexibility formulation (Liebowitz et al., 1967;
Liebowitz and Claus, 1968; Okamura et al., 1969; Anifantis and Dimarogonas, 1983; Takahashi, 1999;
Yavari and Sarkani, 2001; Li, 2002; Fan and Zheng, 2003). Single and multiple cracks have been con-
sidered on uniform and non-uniform beams, both for Euler–Bernoulli and Timoshenko beams. Among
them, procedures providing exact solutions either require enforcement of continuity conditions at each
singularity or, if continuity conditions are avoided, are not able to treat all the boundary conditions.
Otherwise approximate solutions able to approach functions with internal discontinuities, have been
proposed.

The adoption of the distribution theory seems to be an interesting approach for problems with singularities.
More precisely, besides the use of the distribution rules in the integration procedure, modelling cracks directly
through distributions, such as the Dirac’s delta, could lead to a robust approach.

Recently the model of flexural stiffness with singularities, represented by Dirac’s deltas, has been shown
to be equivalent to an internal hinge endowed with a rotational spring (Biondi and Caddemi, 2005, 2007),
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hence it can be adopted to model concentrated cracks (Buda and Caddemi, 2007). According to the latter
approach, modelling cracks by means of Dirac’s deltas in the flexural stiffness seems to be a promising
approach since exact closed form solutions can be formulated for the static governing equations. Non-triv-
ial extension to more complex contexts such as stability and dynamics are not straightforward and should
be studied.

In this paper the problem of stability for the uniform Euler–Bernoulli column in presence of multiple con-
centrated cracks under general boundary conditions is tackled by making use of the macroscopic approach
that models cracks as equivalent rotational springs. Aim of the work is showing that the model of cracks
by means of Dirac’s deltas can be successfully employed to obtain exact closed form solutions in a context
broader than the linear static problem. In particular, an integration procedure of the fourth order governing
differential equation is proposed by making use of a new definition of the product of Dirac’s deltas (Bagarello,
1995, 2002) which is not allowed by the classical distribution theory (Bremermann and Durand, 1961; Colom-
beau, 1984). The exact explicit expressions of the eigenfunctions (buckling modes) of the column, as functions
of four integration constants, are presented, from which the exact buckling load equation for any number,
position and intensity of the cracks can be easily derived. A parametric study of multi-cracked simply sup-
ported and clamped–clamped Euler–Bernoulli columns, for different numbers, positions and damage intensi-
ties, is developed and discussed. It is shown that unpredictable results are encountered particularly for the
clamped–clamped boundary conditions.

2. The Euler–Bernoulli column with multiple singularities

In this section the fourth order governing differential equation of the uniform Euler–Bernoulli columns,
subjected to an axial compression load, in presence of multiple concentrated cracks is presented. In particular,
concentrated cracks are modelled as Dirac’s delta singularities superimposed to an uniform flexural stiffness.
The fourth order governing differential equation is reduced to a second order differential equation, by making
use of a new definition of the product of two Dirac’s deltas, under a form suitable to be integrated in closed
form.

The following model of uniform flexural stiffness with Dirac’s delta singularities is adopted in this study:
EðxÞIðxÞ ¼ E0I0 1�
Xn

i¼1
cidðx� x0iÞ

h i
ð1Þ
where n singularities, given by Dirac’s deltas centred at abscissae x0i; i ¼ 1; . . . ; n, represent n concentrated
cracks. The parameters ci; i ¼ 1; . . . ; n introduced in Eq. (1) multiplying the Dirac’s deltas are related to
the depth of the cracks as shown later.

The fourth order governing differential equation for buckling of the Euler–Bernoulli column with multiple
singularities, under an axial compression load N, may be written as follows:
d2

dx2
E0I0 1�

Xn

i¼1

cidðx� x0iÞ
 !

d2uðxÞ
dx2

" #
þ N

d2uðxÞ
dx2

¼ 0 ð2Þ
where uðxÞ is the transversal displacement function and x is the axial coordinate spanning from 0 to the length
L of the column.

For simplicity, by considering the dimensionless coordinate n ¼ x=L, and indicating with the apex the dif-
ferentiation with respect to n, the differential equation (2) takes the following form:
1�
Xn

i¼1

ci

L
dðn� n0iÞ

 !
u00ðnÞ

" #00
þ NL2

E0I0

u00ðnÞ ¼ 0: ð3Þ
In Eq. (3) the property dðx� x0iÞ ¼ d½Lðn� n0iÞ� ¼ ð1=LÞdðn� n0iÞ of the Dirac’s delta distribution has been
exploited (Guelfand and Chilov, 1972; Hoskins, 1979; Lighthill, 1958; Zemanian, 1965). Furthermore, by
introducing the dimensionless parameters ĉi ¼ ci=L and the axial load parameter r2 ¼ NL2=E0I0, Eq. (3)
may be written as follows:
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1�
Xn

i¼1

ĉidðn� n0iÞ
 !

u00ðnÞ
" #00

þ r2u00ðnÞ ¼ 0: ð4Þ
Double integration of Eq. (4) leads to:
1�
Xn

i¼1

ĉidðn� n0iÞ
" #

u00ðnÞ þ r2uðnÞ ¼ b1 þ b2n ð5Þ
where b1 and b2 are integration constants. Eq. (5) can also be written as follows:
u00ðnÞ ¼ b1 þ b2n� r2uðnÞ þ
Xn

i¼1

ĉiu00ðnÞdðn� n0iÞ: ð6Þ
Eq. (6) cannot be solved explicitly, under this form, with respect to u00ðnÞ. However, by multiplying both
sides of Eq. (6) by dðn� n0jÞ, the following expression is obtained:
u00ðnÞdðn� n0jÞ ¼ b1 þ b2n� r2uðnÞ
� �

dðn� n0jÞ þ
Xn

i¼1

ĉidðn� n0iÞdðn� n0jÞu00ðnÞ: ð7Þ
The product of two Dirac’s delta distributions appearing in the last term of Eq. (7) can be treated by
exploiting the following definition proposed by Bagarello (1995, 2002):
dðn� n0iÞdðn� n0jÞ ¼
Adðn� n0iÞ i ¼ j

0 i 6¼ j

�
ð8Þ
according to which the product of two Dirac’s deltas, both centred at n0i, can be reduced to a single
Dirac’s delta multiplied by a constant A. It is worth noticing that the value of the constant A is irrel-
evant in this study since the solution, here proposed, will be shown in the sequel to be independent of
the constant A.

Eq. (7), in view of Eq. (8) and accounting for the standard properties of the Dirac’s delta, after some alge-
braic manipulations, leads to the following expression:
u00ðnÞdðn� n0jÞ ¼
1

1� ĉjA
ðb1 þ b2n� r2uðnÞÞdðn� n0jÞ ¼

1

1� ĉjA
ðb1 þ b2n0j � r2uðn0jÞÞdðn� n0jÞ: ð9Þ
Substitution of Eq. (9) into Eq. (6) leads to:
u00ðnÞ þ r2uðnÞ ¼ b1 þ b2nþ
Xn

i¼1

Biðuðn0iÞÞdðn� n0iÞ ð10Þ
where, for simplicity, the following positions have been introduced:
Bðuðn0iÞÞ ¼ ki½b1 þ b2n0i � r2uðn0iÞ� ð11aÞ

ki ¼
ĉi

1� ĉiA
: ð11bÞ
In particular, the dimensionless parameters ki; i ¼ 1; . . . n, defined by Eq. (11b), will be considered in the
sequel as ‘‘damage parameters’’ and adopted in the applications in order to represent the concentrated dam-
ages. The choice of the parameters ki; i ¼ 1; . . . n, as representative of concentrated damages, rather than the
parameters ĉi ¼ ci=L multiplying the Dirac’s deltas in the governing Eq. (4), avoids the adoption of a specific
value for the constant A, in fact the closed form solution reported in the following section is independent of
the constant A.

Furthermore, the choice of the damage parameters ki is justified in Appendix where physical evidence is
provided and its relationship with the crack depth is obtained by making use of the models available in the
literature.
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The fourth order governing differential equation of the Euler–Bernoulli column given by Eq. (2) containing
singularities in the flexural stiffness has been reduced to the second order differential equation (10) under a
form which is suitable for closed form integration as shown in the next section.
3. Integration procedure

The general solution of Eq. (10) is given by the solution of the corresponding homogeneous equation, uhðnÞ
and a particular integral upðnÞ as follows:
uðnÞ ¼ uhðnÞ þ upðnÞ ¼ bC3 sin rnþ bC4 cos rnþ upðnÞ ð12Þ
where bC3; bC4 are integration constants. We seek a particular integral upðnÞ under the following form:
upðnÞ ¼ d1ðnÞ sin rnþ d2ðnÞ cos rnþ C1 þ C2n ð13Þ
C1; C2 being integration constants, and d1ðnÞ; d2ðnÞ unknown functions, of the normalized variable n, to be
determined such that Eq. (10) is verified. The first derivative of upðnÞ given by Eq. (13) is:
u0pðnÞ ¼ d1ðnÞr cos rn� d2ðnÞr sin rnþ d 01ðnÞr sin rnþ d 02ðnÞr cos rnþ C2: ð14Þ
The search of the particular solution, besides enforcement of the second order governing equation (10), will
be performed under the following additional condition:
d 01ðnÞr sin rnþ d 02ðnÞr cos rn ¼ 0 ð15Þ
involving the first derivatives of the functions d1ðnÞ; d2ðnÞ. Accounting for Eq. (15) leads to the following con-
strained form for the first derivative u0pðnÞ of the particular integral:
u0pðnÞ ¼ d1ðnÞr cos rn� d2ðnÞr sin rnþ C2 s:t: d 01ðnÞr sin rnþ d 02ðnÞr cos rn ¼ 0 ð16Þ
in which the derivatives of the unknown functions d1ðnÞ and d2ðnÞ are not involved. In view of Eq. (16) the
second derivative u00pðnÞ of the particular integral may be written as:
u00pðnÞ ¼ �d1ðnÞr2 sin rn� d2ðnÞr2 cos rnþ d 01ðnÞr cos rn� d 02ðnÞr sin rn: ð17Þ
Eq. (17), in view of Eq. (13), may be written as follows:
u00pðnÞ ¼ �r2½upðnÞ � C1 � C2n� þ d 01ðnÞr cos rn� d 02ðnÞr sin rn: ð18Þ
By means of substitution of Eq. (18) into the equilibrium equation (10), the following expression is obtained
�r2upðnÞ þ r2C1 þ r2C2nþ d 01ðnÞr cos rn� d 02ðnÞr sin rnþ r2upðnÞ

¼ b1 þ b2nþ
Xn

i¼1

Biðuðn0iÞÞdðn� n0iÞ: ð19Þ
Since upðnÞ must satisfy Eq. (19) the following further conditions on constants b1 and b2 must be imposed
b1 ¼ r2C1; b2 ¼ r2C2: ð20Þ
Eqs. (15) and (19) represent a linear first order differential system of equations with unknowns functions
d1ðnÞ; d2ðnÞ written as follows:
d 01ðnÞr sin rnþ d 02ðnÞr cos rn ¼ 0

d 01ðnÞr cos rn� d 02ðnÞr sin rn ¼
Pn
i¼1

Biðuðn0iÞÞdðn� n0iÞ

8<: ð21Þ
where Eq. (20) has been accounted for. Solution of the differential system given by Eq. (21) leads to the fol-
lowing expressions for d1ðnÞ; d2ðnÞ:
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d1ðnÞ ¼
1

r

Xn

i¼1

Biðuðn0iÞÞ cos rn0iUðn� n0iÞ þ c1

d2ðnÞ ¼ �
1

r

Xn

i¼1

Biðuðn0iÞÞ sin rn0iUðn� n0iÞ þ c2

8>>>><>>>>: ð22Þ
c1; c2 being integration constants. In view of expressions (22) the particular solution expressed by Eq. (13) can
be written as follows:
upðnÞ ¼
1

r

Xn

i¼1

Biðuðn0iÞÞ sin rn cos rn0i � cos rn sin rn0i½ �Uðn� n0iÞ þ c1 sin rnþ c2 cos rnþ C1 þ C2n

¼ 1

r

Xn

i¼1

Biðuðn0iÞÞ sin rðn� n0iÞUðn� n0iÞ þ c1 sin rnþ c2 cos rnþ C1 þ C2n: ð23Þ
Therefore it easy to verify that the general solution of the equilibrium equation (10) can be written as:
uðnÞ ¼ 1

r

Xn

i¼1

Biðuðn0iÞÞ sin rðn� n0iÞUðn� n0iÞ þ C1 þ C2nþ C3 sin rnþ C4 cos rn ð24Þ
where the positions C3 ¼ c1 þ bC3; C4 ¼ c2 þ bC4 have been considered. It has to be remarked that, being
Biðuðn0iÞÞ, given by expression (11a), a function of uðn0iÞ, the transversal displacement function uðnÞ depends
on its values uðn0iÞ; i ¼ 1; . . . ; n, at abscissae n0i; i ¼ 1; . . . ; n, which are evaluated by Eq. (24), in view of the
properties of the unit step distribution, as follows:
uðn0iÞ ¼
1

r

Xi�1

j¼1

Bðuðn0jÞÞ sin rðn0i � n0jÞ þ C1 þ C2n0i þ C3 sin rn0i þ C4 cos rn0i: ð25Þ
Therefore the expression of Bðuðn0iÞÞ, given by Eq. (11a), can be written, in view of Eq. (25), as follows:
Bðuðn0iÞÞ ¼ ki b1 þ b2n0i � r
Xi�1

j¼1

Bðuðn0jÞÞ sin rðn0i � n0jÞ þ C1 þ C2n0i þ C3 sin rn0i þ C4 cos rn0i

" #
: ð26Þ
It is worth noticing that the expression of Bðuðn0iÞÞ involves the values Bðuðn0jÞÞ; j ¼ 1; . . . ; i� 1, hence for
all the abscissae n0j with j < i; i ¼ 1; . . . ; n. Eq. (26) can be given the following extended form:
Bðuðn0iÞÞ ¼ ki b1 þ b2n0i � r
Xi�1

j¼1

kj

"
b1 þ b2n0j � r

Xj�1

k¼1

BðuðnokÞÞ sin rðn0j � nokÞ þ C1 þ C2n0j þ C3 sin rn0j

(

þC4 cos rn0j

#
sin rðn0i � n0jÞ þ C1 þ C2n0i þ C3 sin rn0i þ C4 cos rn0i

)
: ð27Þ
In view of expressions (24) and (26), the general solution of the equilibrium equation (10) takes the follow-
ing form:
uðnÞ ¼ 1

r

Xn

i¼1

ki b1 þ b2n0i � r
Xi�1

j¼1

Bðuðn0jÞÞ sin rðn0i � n0jÞ þ C1 þ C2n0i þ C3 sin rn0i þ C4 cos rn0i

" #
sin rðn� n0iÞUðn� n0iÞ þ C1 þ C2nþ C3 sin rnþ C4 cos rn ð28Þ
The explicit expression of the transversal displacement function uðnÞ is obtained by Eq. (28) as follows
uðnÞ ¼ C1 þ C2nþ C3

Xn

i¼1

liðn1; . . . ; niÞ sin rðn� n0iÞUðn� n0iÞ þ sin rn

" #

þ C4

Xn

i¼1

miðn1; . . . ; niÞ sin rðn� n0iÞUðn� n0iÞ þ cos rn

" #
ð29Þ
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where
liðn1; . . . ; niÞ ¼ �rki

Xi�1

j¼1

lj sin r n0i � n0j

� �
þ sin rn0i

" #
ð30Þ

miðn1; . . . ; niÞ ¼ �rki

Xi�1

j¼1

mj sin rðn0i � n0jÞ þ cos rn0i

" #
: ð31Þ
Eq. (29), together with the positions given by Eqs. (30) and (31), is the sought exact closed form solution of
the fourth order differential buckling equation (10). The transversal displacement function uðnÞ, provided by
Eq. (29), represents the exact buckling mode correspondent to the buckling load expressed by means of the
load parameter r ¼ ðNL2=E0I0Þ1=2. The integration constants C1; C2; C3; C4 in Eq. (29) have to satisfy the
boundary conditions. The exact buckling load equation can be obtained from the fourth order determinant
of boundary condition system of equations.

The derivatives of the exact closed form solution (29) can be written as
u0ðnÞ ¼ C2 þ C3 þr cos rnþ
Xn

i¼1

liðn1; . . . ; niÞr cos rðn� n0iÞUðn� n0iÞ
" #

þ C4 �r sin rnþ
Xn

i¼1

miðn1; . . . ; niÞr cos rðn� n0iÞUðn� n0iÞ
" #

ð32Þ

u00ðnÞ ¼ C3 �r2 sin rn� r
Xn

i¼1

liðn1; . . . ; niÞ r sin rðn� n0iÞUðn� n0iÞ � dðn� n0iÞ½ �
( )

þ C4 �r2 cos rn� r
Xn

i¼1

miðn1; . . . ; niÞ r sin rðn� n0iÞUðn� n0iÞ � dðn� n0iÞ½ �
( )

ð33Þ

u000ðnÞ ¼ C3 �r3 cos rn� r
Xn

i¼1

liðn1; . . . ; niÞ r2 cos rðn� n0iÞUðn� n0iÞ � d0ðn� n0iÞ
� �( )

þ C4 þr3 sin rn� r
Xn

i¼1

miðn1; . . . ; niÞ r2 cos rðn� n0iÞUðn� n0iÞ � d0ðn� n0iÞ
� �( )

: ð34Þ
Eqs. (32)–(34) are those to be adopted to impose the boundary conditions and derive the correspondent
buckling load equation as shown in the next section.

The crack model, adopted in this study, making use of Dirac’s deltas, allowed the above described integra-
tion procedure; however this model can be related to the classical crack models provided in the literature as
shown in Appendix.
4. The buckling load equation of multi-cracked columns

The buckling load equation can be derived for any multi-cracked column by simply imposing the standard
boundary conditions, including the general case of rotational and translational spring supports. In this section,
the closed form solution presented in Eqs. (29)–(34) are adopted to treat the case of simply supported and
clamped–clamped Euler–Bernoulli columns. The buckling load equations are derived and numerically solved
in order to obtain the critical loads of the considered multi-cracked columns and the corresponding modes. Fur-
thermore a parametric study for different numbers, positions and values of the damage parameters is presented.

In particular, it has to be noted that, since the damage parameters ki have been chosen as representative of
the damage intensities, the correspondent crack depth can be easily inferred by the graph reported in Fig. A1
in Appendix, where the relationships with some of the existing damage models have been plotted according to
Eq. (A17).
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4.1. Simply supported column

The boundary conditions of the simply supported column are
uð0Þ ¼ 0; u00ð0Þ ¼ 0; uð1Þ ¼ 0; u00ð1Þ ¼ 0: ð35Þ

In view of Eqs. (29) and (33) the following conditions for the integration constants C1, C2, C3, C4, can be

written
C1 ¼ C4 ¼ 0 ð36Þ

C2 þ
Xn

i¼1

liðn1; . . . ; niÞ sin rð1� n0iÞ þ sin r

" #
C3 ¼ 0 ð37Þ

C3

Xn

i¼1

liðn1; . . . ; niÞ sin rð1� n0iÞ þ sin r

( )
¼ 0 ð38Þ
from which the buckling load equation is obtained
Xn

i¼1

liðn1; . . . ; niÞ sin rð1� n0iÞ þ sin r ¼ 0 ð39Þ
whose zeros provide the values of the critical load parameters rcrk . Eq. (39) is the generalization to the multi-
cracked column of the buckling load equation presented by Yavari and Sarkani (2001) for the column with a
single internal hinge. If all the damage parameters ki are zero, i.e. no crack occurs, Eq. (39) reduces to the
buckling load equation of the undamaged simply supported column.

In view of Eq. (39) solutions of the system of linear Eqs. (36)–(38) is
C1 ¼ C2 ¼ C4 ¼ 0; C3 6¼ 0: ð40Þ

Hence the buckling modes of a simply supported multi-cracked column are given by
/kðnÞ ¼ C3

Xn

i¼1

liðn1; . . . ; niÞ sin rcrk ðn� n0iÞUðn� n0iÞ þ sin rcrk n

" #
for k ¼ 1; 2 . . .1: ð41Þ
In Fig. 1 the buckling behaviour of a multi-cracked simply supported column is investigated. Namely,
Fig. 1a report, in sequence, the critical loads as functions of the damage parameter for different numbers
of equally spaced concentrated damages with the same intensity ki ¼ k; i ¼ 1; . . . ; n; while in Fig. 1b the cor-
responding buckling modes, for all the concentrated cracks, are represented.

In Fig. 2 the first critical load and the corresponding mode shapes reported in Fig. 1 are reported simulta-
neously for comparison.

The effect of the position of a single crack in the simply supported column is investigated in Fig. 3a where
the critical load parameter is reported as function of the crack position for two values of the damage param-
eter k = 0.5, 1. It can be observed that the critical load decreases when the crack moves from the ends to the
middle section of the column. With reference to the same damage parameters, in Fig. 3b the influence of the
position of two cracks symmetrically collocated in the column is reported. Also in this case, it can be observed
as the critical load decreases as the cracks move towards the middle section of the column.

In Fig. 4 the critical load parameter of the multi-cracked simply supported column is represented as func-
tion of the number of equally spaced cracks, variable from 0 to 50, and of the relative damage parameters ki.

4.2. Clamped–clamped column

For a clamped–clamped column, the boundary conditions at the left and right ends are
uð0Þ ¼ 0; u0ð0Þ ¼ 0; uð1Þ ¼ 0; u0ð1Þ ¼ 0; ð42Þ

by expressing the conditions (42) through the Eqs. (29) and (32), the following homogeneous linear system for
the unknown integration constants can be derived



Fig. 1. Buckling behaviour of a multi-cracked simply supported column for different numbers n of equally spaced concentrated damages.
(a) First critical load parameter r2 versus the damage parameter ki ¼ k; i ¼ 1; . . . ; n; (b) first buckling mode / for k ¼ 1.
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C1 ¼�C4 ð43Þ
C2 ¼�rC3 ð44Þ

C1

Xn

i¼1

miðn1; . . . ;niÞ sinrð1� n0iÞ þ cosr� 1

" #
�C3

Xn

i¼1

liðn1; . . . ;niÞ sinr 1� n0ið Þ þ sinr� r

" #
¼ 0 ð45Þ

C1

Xn

i¼1

miðn1; . . . ;niÞ cosrð1� n0iÞ � sinr

" #
�C3

Xn

i¼1

liðn1; . . . ;niÞ cosrð1� n0iÞ þ cosr� 1

" #
¼ 0: ð46Þ
By setting equal to zero the corresponding system matrix determinant, the following expression of the exact
buckling load equation is obtained



Fig. 2. Buckling behaviour of a multi-cracked simply supported column for different numbers n of equally spaced concentrated damages.
(a) First critical load parameter r2 versus the damage parameter ki ¼ k; i ¼ 1; . . . ; n; (b) first buckling mode / for k ¼ 1.

Fig. 3. Simply supported column. First critical load parameter r2 versus the crack positions for two values of the damage parameter
ki ¼ 0:5; 1. (a) Single-cracked column; (b) double-cracked column.

Fig. 4. Multi-cracked simply supported column. First critical load parameter r2 versus the number n of equally spaced cracks and the
damage parameter ki ¼ k; i ¼ 1; . . . ; n.

S. Caddemi, I. Caliò’ / International Journal of Solids and Structures 45 (2008) 1332–1351 1341
ð1� cos rÞ
Xn

i¼1

ti sin rð1� n0iÞ þ
Xn

i¼1

li cos rð1� n0iÞ � 2

" #
þ ðsin r� rÞ

Xn

i¼1

ti cos rð1� n0iÞ

þ sin r r�
Xn

i¼1

li sin rð1� n0iÞ
" #

þ
Xn

i¼1

ti cos rð1� n0iÞ
Xn

j¼1

lj sin rð1� n0jÞ

�
Xn

i¼1

ti sin rð1� n0iÞ
Xn

j¼1

lj cos rð1� n0jÞ ¼ 0 ð47Þ
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whose zeros provide the values of the critical load parameters rcrk of the multi-cracked clamped–clamped
column.

By substituting the critical load parameter in the boundary condition system of Eqs. (43)–(46), the value of
the integration constants that provide the buckling mode of the clamped–clamped multi-cracked column can
be obtained as follows
Fig. 5.
buckli
C1 ¼
1�

Pn
j¼1

lj cos rcrK 1� n0j

� �
� cos rcrK

sin rcrK

C3; C2 ¼ �rcrK C3; C4 ¼ C1: ð48Þ
By replacing into Eq. (29) the values of the integration constants given by Eqs. (48), the closed form expres-
sions of the buckling modes of a clamped–clamped multi-cracked column can be written as follows
/kðnÞ¼C3

1�
Pn
j¼1

lj cosrcrK 1�n0j

� �
� cosrcrK

sinrcrK

1þ
Xn

i¼1

miðn1; . . . ;niÞsinrcrK ðn�n0iÞUðn�n0iÞþ cosrcrK n

" #

þC3

Xn

i¼1

liðn1; . . . ;niÞsinrcrK ðn�n0iÞUðn�n0iÞþ sinrcrK n�rcrK n

" #
: ð49Þ
Eqs. (47) and (49) allow a study of the clamped–clamped multi-cracked column which is conducted in what
follows for varying number, position and intensity of the cracks.

In Figs. 5 and 6 the case of a single crack located at the middle cross-section is treated. In particular, Fig. 5a
reports the first critical load as function of the damage parameter, while in Fig. 5b the correspondent buckling
mode is represented. The effect of the position of a single crack is investigated in Fig. 6 where the critical load
parameter is reported as function of the crack position for two values of the damage parameter k ¼ 0:5; 1. It
can be observed that the critical load increases when the crack moves from the clamped ends towards the
cross-section where the inflection point of the undamaged column buckling mode is encountered, reaching
the buckling load of the undamaged column. Then, the buckling load decreases when the crack moves towards
the middle cross-section.
Single-cracked clamped–clamped column. (a) First critical load parameter r2 versus the damage intensity parameter k; (b) first
ng mode.



Fig. 6. Single-cracked clamped–clamped column. First critical load parameter r2 versus the crack positions for two values of the damage
parameter ki ¼ 0:5; 1.
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In Figs. 7 and 8 the case of two cracks, equally spaced along the beam span and with the same damage
parameters k1 ¼ k2 ¼ k, is treated. In particular, Fig. 7a reports the first critical load as function of the damage
parameter k. The inspection of Fig. 7a reveals that the critical load curve, for the case of the double-cracked
column, exhibits a corner point for the value of the damage parameter k ¼ 0:38. This interesting and appar-
ently unusual behaviour can be justified by observing the stability mode shapes of the double-cracked column
plotted in Fig. 7b and c. Fig. 7b shows the buckling mode concerning damage parameter values k < 0:38,
Fig. 7. Double-cracked clamped–clamped column. (a) First critical load parameter r2 versus the damage intensity parameter k1 ¼ k2 ¼ k;
(b) first symmetric buckling mode; (c) first anti-symmetric buckling mode.



Fig. 8. Double-cracked clamped–clamped column. (a) First critical load parameter r2 versus the crack position for different values of the
damage parameter ki; (b) first critical load parameter r2 versus the crack position n and the damage parameter k.

1344 S. Caddemi, I. Caliò’ / International Journal of Solids and Structures 45 (2008) 1332–1351
while Fig. 7c shows the buckling mode concerning damage parameter values k > 0:38. It can be observed that
the buckling mode of the double-cracked clamped–clamped column can be symmetric or anti-symmetric and
the value of k ¼ klim ¼ 0:38, corresponding to the corner point in Fig. 7a, represents the value which separates
the two different behaviours. Specifically for k 6 klim the double-cracked clamped–clamped column exhibits a
symmetric mode shape while for values of k > klim the column shows an anti-symmetric buckling mode. To the
authors’ knowledge, this unexpected behaviour has not been evidenced previously in the literature.

The effect of the position of two cracks equidistant n from the clamped ends is investigated in Fig. 8a. Pre-
cisely, in Fig. 8a the critical load parameter is reported as function of the crack positions n with respect to the
clamped ends, when the two cracks move simultaneously towards the middle cross-section, for some values of
the damage parameter k ¼ 0; 0:2; 0:4; 0:6; 0:8; 1. It can be observed that the critical load increases accord-
ing to the symmetric buckling mode reported in Fig. 7b, when the crack moves from the clamped ends towards
the cross-section where the inflection point of the buckling mode is encountered, reaching the buckling load of
the undamaged column. Then, the buckling load of the column decreases, switching to the anti-symmetric
buckling mode depicted in Fig. 7c, when the crack moves towards the middle cross-section; finally a corner
point, whose position depends on the value of the damage parameter, indicating that the symmetric buckling
mode is again recovered, is encountered.

The simultaneous effect of the intensity and the position of two cracks is investigated in Fig. 8b where the
surface representing the critical load values as function of the position of two cracks, equidistant n with respect
to the clamped ends, and of the damage parameter k1 ¼ k2 ¼ k is reported. The inspection of Fig. 8b shows
that a smooth region of the buckling load surface, coupled with the symmetric buckling mode, can be recog-
nized and provides the first buckling load value for a wide range of intensity and position damage parameters.
However, a local valley of the buckling surface, coupled with the anti-symmetric mode, is evident and provides
an abrupt decrement of the buckling load value with respect to the expected one concerning the symmetric
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mode. Hence, some care must be considered for the evaluation of the first buckling load value of clamped–
clamped double-cracked columns with respect to the specific values of intensity and position of the damages.

The effect of three cracks, located at cross-sections n1 ¼ 1=3, n2 ¼ 1=2, n1 ¼ 2=3, on a clamped–clamped
column is investigated in Fig. 9. Precisely, in Fig. 9a the critical load parameter is reported as function of
the damage intensity parameter k, where two different cases have been treated: (i) the three cracks maintain
the same intensity k1 ¼ k2 ¼ k3 ¼ k; (ii) the two external cracks have been assumed with constant damage
intensity k1 ¼ k3 ¼ 2, and the central crack possesses a variable intensity k. For case (i) a regular decrement
of the buckling load can be observed, coupled with the symmetric buckling mode reported in Fig. 9b. For case
(ii), for the value k2 ¼ k ¼ 0 (i.e. no central crack) the buckling load value r2 ¼ 3:725 of the column with two
equally spaced cracks (reported in Fig. 7a for k ¼ 2Þ, correspondent to the anti-symmetric mode reported in
Fig. 7b, is recovered. Furthermore, when k2 ¼ k increases, it is worth noticing that the buckling mode main-
tains the anti-symmetric character, peculiar of the double-cracked column, also reported in Fig. 9c. Until the
buckling mode maintains the anti-symmetric character, regardless of the presence of the central crack with
k2 ¼ k, the buckling load keeps the double-cracked column value r2 ¼ 3:725. For the value k ¼ 0:922 the
curve shows a corner point and the buckling load starts to decrease coupled with the symmetric mode.

Further investigation concerning the multi-cracked clamped–clamped column has been conducted for an
increasing number of cracks, but the results are not reported in this study for brevity. However, it has to
be noted that the anti-symmetric mode of the double-cracked beam is encountered for all those cases where
the external cracks possess damage intensities higher than the internal ones. While, for multi-cracks with equal
Fig. 9. Triple-cracked clamped–clamped column. (a) First critical load parameter r2 versus the damage intensity parameter k; (b) first
symmetric buckling mode; (c) first anti-symmetric buckling mode.



Fig. 10. Multi-cracked clamped–clamped column. First critical load parameter r2 versus the number n of equally spaced cracks and the
damage parameter ki ¼ k; i ¼ 1; . . . ; n.
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intensity, a regular behaviour (except for the case of two cracks) can be observed, as it is shown in Fig. 10
where the buckling load surface, as function of the number n of equally spaced cracks and of their intensity
k, is reported.

5. Conclusions

In this paper the exact solution of the uniform Euler–Bernoulli column in presence of multiple concentrated
cracks, modelled by means of Dirac’s deltas, has been derived. The exact explicit expressions of the stability
mode shapes as functions of four integration constants only have been obtained by means of an original inte-
gration procedure based on a new definition of the product of Dirac’s deltas, which is not allowed by the clas-
sical distribution theory.

The buckling load equation for any number, position and intensity of the cracks can be derived for any
column by simply enforcing the boundary conditions at the ends of the column and without any additional
continuity condition. As an example, a parametric study of the multi-cracked simply supported and
clamped–clamped Euler–Bernoulli columns, for different numbers, positions and damage intensities, has been
developed and discussed. While the case of multi-cracked simply supported beam shows expected regular
results, on the contrary the clamped–clamped column presents some unexpected behaviour whose evidence
has been possible in view of the presented exact closed form solution.

Appendix. Relationship between damage parameters and crack depth parameters

In this appendix the damage parameters ki, adopted in this study to represent concentrated damages and
related to the singularity parameters ci, appearing in Eq. (1), are shown to be related to the depth of concen-
trated cracks by making use of the classical crack models provided in the literature.

The slope function uðxÞ ¼ � du
dx, written as function of the dimensionless coordinate n as uðnÞ ¼ �u0ðnÞ=L,

and directly obtained by Eq. (32), shows jump discontinuities Duðn0kÞ at abscissae n0k; k ¼ 1; . . . ; n; that are
explicitly evaluated as follows:
Duðn0kÞ ¼ uðnþ0kÞ � uðnþ0kÞ ¼ �
C3

L
rlkðn1; . . . ; nkÞ �

C4

L
mkðn1; . . . ; nkÞ; k ¼ 1; . . . ; n ðA1Þ
where nþ0k and n�0k are the abscissae at the right and at the left of n0k, respectively. The discontinuities Duðn0kÞ
provided by Eq. (A1) represent the relative rotations between the cross-sections at nþ0k and n�0k, consequence of
the adopted flexural stiffness model.
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On the other hand, the bending moment MðnÞ ¼ �EIðnÞu00ðnÞ=L2, can be obtained by means of Eq. (33),
after some algebraic manipulations and accounting for the product of two Dirac’s deltas, as follows:
MðnÞ ¼ E0I0

L2
r2 C3 sin rnþ

Xn

i¼1
liðn1; . . . ; niÞ sin rðn� n0iÞUðn� n0iÞ

h in
þC4 cos rnþ

Xn

i¼1
miðn1; . . . ; niÞ sin rðn� n0iÞUðn� n0iÞ

h io
: ðA2Þ
The values of the bending moment Mðn0kÞ at the cross-sections of abscissae n0k; k ¼ 1; . . . ; n; can be eval-
uated, according to Eq. (A2), as follows:
Mðn0kÞ ¼
E0I0

L2

r
kk
½C3lkðn1; . . . ; nkÞ þ C4mkðn1; . . . ; nkÞ�; k ¼ 1; . . . ; n: ðA3Þ
Comparison of the bending moments given by Eq. (A3) and the slope discontinuities given by Eq. (A1)
leads to
Duðn0kÞ ¼ kk
L

E0I0

Mðn0kÞ; k ¼ 1; . . . ; n: ðA4Þ
Eq. (A4) provides the relationship between the slope discontinuities Duðn0kÞ and the bending moments
Mðn0kÞ at n0k; k ¼ 1; . . . ; n; and suggests the interpretation of the adopted flexural stiffness model as internal
hinges at n0k endowed with rotational spring stiffnesses Ku

k given as:
Ku
k ¼

E0I0

kkL
; k ¼ 1; . . . ; n: ðA5Þ
Eq. (A5) represents the relationship between Ku
k and the dimensionless damage parameters kk. It has to be

noted that: for kk ¼ 0, correspondent to the presence of no crack, Eq. (A5) provides Ku
k ¼ 1; on the other

hand, for kk ¼ 1, correspondent to an entirely damaged cross-section, Eq. (A5) provides Ku
k ¼ 0.

In view of Eq. (A5) the damage parameters kk can be written as follows:
kk ¼
E0I0

L
1

Ku
k

; k ¼ 1; . . . ; n: ðA6Þ
Hence they represent the flexibilities, normalized with respect to L=ðE0I0Þ, of the rotational springs equiv-
alent to the flexural stiffness singularities introduced into the model adopted in Eq. (1).

Eq. (A4), together with Eq. (A5), shows that the Dirac’s delta distributions introduced in the flexural stiff-
ness model lead to closed form solutions correspondent to the presence of elastic rotational springs. However,
in order to represent cracks by means of the present Dirac’s delta distribution approach, a relationship
between the damage parameters kk and the crack depth has to be sought.

In the literature various models of concentrated open cracks leading to a continuous description of the
beam flexibility in the vicinity of the crack have been proposed. In what follows some of them are recalled
in order to show how they can be related to the distribution model presented in this work.

In particular, Christides and Barr (1984) considered the effect of a crack, located at n0, on a rectangular
cross-section beam and proposed the following stiffness reduction involving an exponential function:
EIðnÞ ¼ E0I0

gc

gc þ ð1� gcÞ exp �2 a
ĥ
jn� n0j

h i ðA7Þ
where ĥ ¼ h=L, for a rectangular cross-section, is defined as the ratio between the cross-section height h

and the length of the beam; gc ¼ Ic=I0 is the ratio between the moment of inertia of the damaged Ic

and the undamaged I0 cross-section; a is a constant, estimated from experimental tests to be 0.667,
accounting for the effective portion of the beam whose flexural stiffness is affected by the damage. The
stiffness reduction proposed by Christides and Barr is not local, hence, the integration required to evaluate
the stiffness matrix for the beam would have to be performed numerically for different crack positions.
However most of the flexibility is local to the crack, although small changes if flexibility are encountered
away from the crack.
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Sinha et al. (2002) proposed a simplified form of the stiffness reduction due to the concentrated crack
according to a triangular variation starting from an effective length Lc on either side of the crack location,
given as follows:
EIðnÞ ¼ E0I0 gc þ ð1� gcÞ
jn� n0jbLc

� �
for n0 � bLc 6 n 6 n0 þ bLc ðA8Þ
where bLc ¼ Lc=L is the effective length Lc normalized with respect to the length L of the beam. The effective
length Lc of the stiffness reduction due to the crack was determined to be Lc ¼ h=a ¼ 1:5h, obtained by making
equal the integral of the stiffness reduction proposed by Christides and Barr (1984) in Eq. (A7) and that pro-
posed in Eq. (A8). The effective length does not depend on the crack depth but depends on the beam height h.

Cerri and Vestroni (2003) proposed a constant stiffness reduction, due to a concentrated crack, equal to the
flexural stiffness of the damaged cross-section, limited to an effective length Lc, as follows:
EIðnÞ ¼ E0I0gc for n0 � bLc 6 n 6 n0 þ bLc ðA9Þ
where the effective length Lc is the zone characterized by constant reduced stiffness and it has been evaluated
through an equivalence between this model and that proposed by Christides and Barr (1984).

Another model for the stiffness reduction has been proposed by Bilello (2001), for a rectangular cross-sec-
tion. Bilello followed the idea of the identification of an ineffective area around the crack that has approxi-
mately a triangular shape the height of which corresponds to the crack depth d, while the width 2Lc is
related to it by the relationship
d=Lc ¼ tan h ¼ 0:9: ðA10Þ
The expression concerning the effective length Lc reported in Eq. (A10) was obtained by numerical simula-
tions and confirmed by experimental tests.

The main disadvantage of the above-mentioned models is that experimental tests or numerical simulation
are required in order to estimate the parameters involved in the stiffness reduction. In Chondros et al. (1998)
this difficulty is overcome since they developed a continuous cracked beam theory extending the procedure
proposed by Christides and Barr (1984) but using the results from fracture mechanics theory to estimate
the crack disturbance function.

A different approach for modelling the effect of concentrated cracks on the flexural stiffness is based on
the introduction of an elastic hinge, a local compliance, which quantifies in a macroscopic way the rela-
tion between the applied load and the strain concentration surrounding the crack (Irwin, 1957a,b; Freund
and Hermann, 1976; Gounaris and Dimarogonas, 1988). By following the latter approach, direct expres-
sions of the elastic rotational spring stiffness equivalent to the crack have been provided in the literature
and some of them, dependent on the crack depth are recalled in the sequel for the case of a rectangular
cross-section.

For example, when a lateral crack of uniform depth d is present in a rectangular cross-section of width b
and height h, the following expression for the stiffness Keq, in order to unify the treatment of the models pro-
posed in the literature, is adopted:
Keq ¼ E0I0

h
1

CðbÞ ðA11Þ
where b ¼ d=h is defined as the ratio between the crack depth d and the cross-section height h, and CðbÞ is the
dimensionless local compliance.

According to Liebowitz et al. (1967), Liebowitz and Claus (1968), Okamura et al. (1969), Rizos et al.
(1990), the local compliance CðbÞ, computed from the strain energy density function, takes the following
form:
CðbÞ ¼ 5:346ð1:86b2� 3:95b3 þ 16:375b4� 37:226b5þ 76:81b6� 126:9b7 þ 172b8� 143:97b9þ 66:56b10Þ:
ðA12Þ
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Ostachowicz and Krawczuk (1991) instead proposed the following expression for the local compliance
CðbÞ:
CðbÞ ¼ 6pb2ð0:6384� 1:035bþ 3:7201b2 � 5:1773b3 þ 7:553b4 � 7:332b5 þ 2:4909b6Þ: ðA13Þ

Dimarogonas has noticed that the above expressions suggest that for small crack depth the local compli-

ance is proportional to b2.
It has to be noted that the crack models based on a continuous description of the beam stiffness reduction in

the vicinity of the crack can be approximated by means of the approach with lumped flexibility by imposing
that the rotation discontinuity due to the concentrated flexibility reproduces the relative rotation of the cross-
sections affected by the crack.

In fact, for example, for the model proposed by Bilello (2001) the following expression for the local com-
pliance CðbÞ is obtained:
CðbÞ ¼ bð2� bÞ
0:9ðb� 1Þ2

: ðA14Þ
Chondros et al. (1998) proposed a lumped cracked flexibility model equivalent to their continuous model by
means of the following expression for CðbÞ:
CðbÞ ¼ 6pð1� m2Þð0:6272b2 � 1:04533b3 þ 4:5948b4 � 9:9736b5 þ 20:2948b6 � 33:0351b7

þ 47:1063b8 � 40:7556b9 þ 19:6b10Þ: ðA15Þ
The relationship between the model with singularities, adopted in this work, and the classical crack models can
now be obtained by equating Ku

k , given by Eq. (A5), to the rotational spring stiffnesses Keq
k proposed by the

lumped flexibility approach, given by Eq. (A11) and written for the k-th crack, after simple algebra, as follows:
kk ¼
h
L

CðbkÞ; k ¼ 1; . . . ; n: ðA16Þ
Eq. (A16) provides the relationship between the damage parameters kk and the dimensionless local compli-
ance CðbkÞ, given by the models briefly recalled in this section. Furthermore, according to Eq. (A16) the phys-
ical meaning for the damage parameters kk as ‘‘dimensionless local compliance’’, due to the cracks, normalized
with respect to the ratio L=h of the beam can be inferred.

Finally, Eq. (A16) shows that the damage parameters kk are directly related to the crack depth bk; hence,
the flexural stiffness model with singularities, proposed in this study can effectively be adopted to model con-
centrated cracks.

In order to show how the damage parameters kk vary with the crack depth bk, Eq. (A16) is plotted in
Fig. A1 for some of the expressions of the local compliance CðbkÞ.

It can be concluded that, since the Dirac’s delta approach proposed in this study has been shown to be
equivalent to the presence of concentrated elastic springs, it can be adopted to treat concentrated cracks
according to the idea of the local compliance equivalent to the crack. The damage parameters kk, given by
Eq. (11b) have been directly related to the crack depth bk in order to make the present approach independent
of the value of the constant A introduced in Eq. (8).
Fig. A1. Damage parameter k versus the crack depth b, according to different models proposed in the literature.
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