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We consider a class of spatio-temporal models which extend popular econometric spatial autoregressive
panel datamodels by allowing the scalar coefficients for each location (or panel) different fromeach other.
To overcome the innate endogeneity, we propose a generalized Yule–Walker estimation method which
applies the least squares estimation to a Yule–Walker equation. The asymptotic theory is developed under
the setting that both the sample size and the number of locations (or panels) tend to infinity under a
general setting for stationary and α-mixing processes, which includes spatial autoregressive panel data
models driven by i.i.d. innovations as special cases. The proposed methods are illustrated using both
simulated and real data.
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1. Introduction

The class of spatial autoregressive (SAR) models is introduced
to model cross sectional dependence of different economic
individuals at different locations (Cliff and Ord, 1973). More recent
developments extend SAR models to spatial dynamic panel data
(SDPD) models, i.e. adding time lagged terms to account for serial
correlations across different locations. See, e.g. Lee and Yu (2010).
Baltagi et al. (2003) consider a static spatial panel model where
the error term is a SAR model. Lin and Lee (2010) show that in the
presence of heteroskedastic disturbances, themaximum likelihood
estimator for the SAR models without taking into account the
heteroskedasticity is generally inconsistent and proposes an
alternative GMM estimation method. Computationally the GMM
methods are more efficient than the QML estimation (Lee, 2001).
Lee and Yu (2010) classify SDPD models into three categories:
stable, spatial cointegration and explosive cases. As pointed out by
Bai and Shi (2011), the cases with a large number of cross sectional
units and a long history are rare. Hence it is pertinent to consider
the setting with short time spans in order to include as many
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locations as possible. Both estimation method and asymptotic
analysis need to be adapted under this new setting. Yu et al.
(2008, 2012) investigate the asymptotic properties when both the
number of locations and the length of time series tend to infinity
for both the stable case and spatial cointegration case, and show
that QMLE is consistent.

Motivated by the evidence in some practical examples, we
extend the model in Yu et al. (2008, 2012) by allowing the
scalar coefficients for each location (or panel) different from each
other. This increase in model capacity comes with the cost of
estimating substantially more parameters. In fact that the number
of the parameters in this new setting is in the order of the
number of locations. The model considered in this paper has
four additive components: a pure spatial effect, a pure dynamic
effect, a time-lagged spatial effect and a white noise. Due to
the innate endogeneity, the conventional regression estimation
methods such as the least squares method directly based on the
model lead to inconsistent estimators. To overcome the difficulties
caused by the endogeneity, we propose a generalized Yule–Walker
type estimator for estimating the parameters in the model, which
applies the least squares estimation to a Yule–Walker equation.
The asymptotic normality of the proposed estimators is established
under the setting that both the sample size n and the number
of locations (or panels) p tend to infinity. Therefore the number
of parameters to be estimated also diverges to infinity, which is
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Fig. 1. Plots of the monthly change rates yi,t of CPI against the spatial regressor wT
i yt (on the top) and the dynamic regressor yi,t−1 (on the bottom) for four EU member

states in 2003–2010. The superimposed straight lines were estimated by the newly proposed method in Section 2.2.
a marked difference from, e.g., Yu et al. (2012). We develop the
asymptotic properties under a general setting for stationary andα-
mixing processes, which includes the spatial autoregressive panel
data models driven by i.i.d. innovations as special cases.

The rest of the paper is organized as follows. Section 2 in-
troduces the new model, its motivation and the generalized
Yule–Walker estimation method. The asymptotic theory for the
proposed estimation method is presented in Section 3. Simulation
results and real data analysis are reported, respectively, in Sec-
tions 4 and 5. All the technical proofs are relegated to an Appendix.

2. Model and estimation method

2.1. Models

The model considered in this paper is of the following form:

yt = D(λ0)Wyt + D(λ1)yt−1 + D(λ2)Wyt−1 + εt , (1)

where yt = (y1,t , . . . , yp,t)T represents the observations from
p locations at time t , D(λk) = diag(λk1, . . . , λkp) and λkj is the
unknown coefficient parameter for the jth location, and W is the
p×p spatialweightmatrixwhichmeasures the dependence among
different locations. All themain diagonal elements ofW are zero. It
is a common practice in spatial econometrics to assumeW known.
For example, wemay letwij = 1/(1+dij), for i ≠ j, where dij ≥ 0 is
an appropriate distance between the ith and the jth location. It can
simply be the geographical distance between the two locations or
the distance reflecting the correlation or association between the
variables at the two locations. In the above model, D(λ0) captures
the pure spatial effect, D(λ1) captures the pure dynamic effect,
and D(λ2) captures the time-lagged spatial effect. We also assume
that the error term εt = (ε1,t , ε2,t , . . . , εp,t)

T in (1) satisfies the
condition Cov (yt−1, εt) = 0. When λk1 = · · · = λkp for k =

0, 1, 2, (1) reduces to the model of Yu et al. (2008), in which there
are only 3 unknown regressive coefficient parameters. In general
the regression function in (1) contains 3p unknown parameters.

The extension to use different scalar coefficients for different
locations is motivated by practical needs. For example, we analyze
the monthly change rates of the consumer price index (CPI) for the
EUmember states over the years 2003–2010. The detailed analysis
for this data set will be presented in Section 5. Fig. 1 presents the
scatter-plots of the observed data yi,t versus the spatial regressor
wT

i yt and yi,t−1, for some of the EUmember states, wherewT
i is the
ith row vector of theweightmatrixWwhich is taken as the sample
correlation matrix with all the elements on the main diagonal set
to be 0. The superimposed straight lines are the simple regression
lines estimated using the newly proposedmethod in Section 2.2. It
is clear from Fig. 1 that at least Greece and Belgium should have a
different slope from those of France or Iceland.

2.2. Generalized Yule–Walker estimation

As yt occurs on both sides of (1), Wyt and εt are correlated
with each other. Applying least squares method directly based
on regressing yt on (Wyt , yt−1,Wyt−1) leads to inconsistent
estimators. On the other hand, applying the maximum likelihood
estimation requires to profile a p × p nuisance parameter matrix
6ε = Var(εt), which leads to a complex nonlinear optimization
problem. Furthermore when p is large in relation to n, the
numerical stability is of concern.

We propose below a new estimation method which applies
the least squares method to each individual row of a Yule–Walker
equation. To this end, let 6k = Cov(yt+k, yt) for any k ≥ 0.
Note that we always assume that yt is stationary, see condition A2
and Remark 1 in Section 3. Then the Yule–Walker equation below
follows from (1) directly.

(I − D(λ0)W)61 = (D(λ1) + D(λ2)W)60,

where I is a p×p identitymatrix. The ith row of the above equation
is

(eTi − λ0iwT
i )61 = (λ1ieTi + λ2iwT

i )60, i = 1, . . . , p, (2)

where wi is the ith row vector of W, and ei is the unit vector with
the ith element equal to 1. Note that (2) is a system of p linear
equations with three unknown parameters λ0i, λ1i and λ2i. Since
Eyt = 0, we replace 61 and 60 by the sample (auto)covariance
matrices

61 =
1
n

n
t=1

ytyTt−1 and 60 =
1
n

n
t=1

ytyTt .

We estimate (λ0i, λ1i, λ2i)
T by the least squares method, i.e. to

solve the minimization problem

min
λ0i,λ1i,λ2i

∥6T
1(ei − λ0iwi) −60(λ1iei + λ2iwi)∥

2
2.
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The resulting estimators are called generalized Yule–Walker
estimators which admit the explicit expression:

(λ0i,λ1i,λ2i)
T

= (XT
i
Xi)

−1XT
i
Yi, (3)

whereXi = (6T
1wi,60ei,60wi) and Yi = 6T

1ei.

More explicitly,

Xi =


1
n

n
t=1

yt−1(wT
i yt),

1
n

n
t=1

yt−1yi,t−1,
1
n

n
t=1

yt−1(wT
i yt−1)


,

Yi =
1
n

n
t=1

yt−1yi,t .

Then it holds that for i = 1, . . . , p,λ0iλ1iλ2i

−


λ0i
λ1i
λ2i



= (XT
i
Xi)

−1



1
n

n
t=1

yTt−1(w
T
i yt) ×

1
n

n
t=1

εi,tyt−1

1
n

n
t=1

yTt−1yi,t−1 ×
1
n

n
t=1

εi,tyt−1

1
n

n
t=1

yTt−1(w
T
i yt−1) ×

1
n

n
t=1

εi,tyt−1


.

2.3. A root-n consistent estimator for large p

When p/
√
n → ∞, the estimator (3) admits non-standard con-

vergence rates (i.e. the rates different from
√
n); see Theorems 2

and 4 in Section 3. Note that there are p equations with only 3 pa-
rameters in (2). Hence (3) can be viewed as a GMME for an over-
determined scenario. The estimation may suffer when the number
of estimation equations increases. See, for example, a similar result
in Theorem1 of Chang et al. (in press, 2014b). A further compound-
ing factor is that the estimation for the covariancematrices60, 61
using their sample counterparts leads to non-negligible errors even
when n → ∞. Below we propose an alternative estimator which
restricts the number of the estimation equations to be used in or-
der to restore the

√
n-consistency and the asymptotic normality.

For i = 1, . . . , p, put Xi = (6T
1wi, 60ei, 60wi). Note that the

kth row of Xi is (eTk6
T
1wi, eTk60ei, eTk60wi) which is the covariance

between yk,t−1 and (wT
i yt , yi,t−1, wT

i yt−1). Let

ρ
(i)
k =

eTk6T
1wi

+ eTk60ei
+ eTk60wi

 , k = 1, . . . , p. (4)

Then ρ
(i)
k may be viewed as a measure for the correlation between

yk,t−1 and (wT
i yt , yi,t−1,wT

i yt−1)
T . When ρ

(i)
k is small, say, close to

0, the kth equation in (2) carries little information on (λ0i, λ1i, λ2i).
Therefore as far as the estimation for (λ0i, λ1i, λ2i) is concerned,we
only keep the kth equation in (2) for large ρ

(i)
k .

Let zit−1 be the di × 1 vector consisting of those yk,t−1 corre-
sponding to the di largestρ(i)

k (1 ≤ k ≤ p), whereρ(i)
k is defined as

in (4) but with (61, 60) replaced by (61, 60). The new estimator
is defined as

(λ0i, λ1i, λ2i)
T

= (ZT
i
Zi)

−1ZT
i
Yi, i = 1, . . . , p (5)

where

Zi =


1
n

n
t=1

zit−1(w
T
i yt),

1
n

n
t=1

zit−1yi,t−1,
1
n

n
t=1

zit−1(w
T
i yt−1)


, (6)
and

Yi =
1
n

n
t=1

zit−1yi,t .

Now it holds that

λ0iλ1iλ2i

−


λ0i
λ1i
λ2i


= (ZT

i
Zi)

−1ZT
i



1
n

n
t=1

εi,tzit−1

1
n

n
t=1

εi,tzit−1

1
n

n
t=1

εi,tzit−1


.

Theorem 3 in Section 3 shows the asymptotic normality of the
above estimator provided that the number of estimation equations
used satisfies condition di = o(

√
n).

3. Theoretical properties

We introduce some notations first. For a p × 1 vector v =

(v1, . . . , vp)
T , ∥v∥2 =

p
i=1 v2

i is the Euclidean norm, ∥v∥1 =p
i=1 |vi| is the L1 norm. For a matrix H = (hij), ∥H∥F =


tr(HTH)

is the Frobenius norm, ∥H∥2 =


λmax(HTH) is the operator norm,
where λmax(·) is the largest eigenvalue of a matrix. We denote by
|H| the matrix (

hij
) which is a matrix of the same size as H but

with the (i, j)th element hij replaced by |hij|. Note the determinant
of H is denoted by det(H). A strictly stationary process {yt} is
α-mixing if

α(k) ≡ sup
A∈F 0

−∞
,B∈F ∞

k

P(A)P(B) − P(AB)
 → 0, as k → ∞, (7)

where F
j
i denotes the σ -algebra generated by {yt , i ≤ t ≤ j}.

See, e.g., Section 2.6 of Fan and Yao (2003) for a compact review of
α-mixing processes.

Let S(λ0) ≡ I − D(λ0)W be invertible. It follows from (1) that

yt = Ayt−1 + S−1(λ0)εt ,

where A = S−1(λ0)(D(λ1)+D(λ2)W). Some regularity conditions
are now in order.

A1. The spatial weightmatrixW is knownwith zeromain diagonal
elements; S(λ0) is invertible.

A2. (a) The disturbance εt satisfies

Cov(yt−1, εt) = 0.

(b) The process {yt} in model (1) is strictly stationary and
α-mixing with α(k), defined in (7), satisfying
∞
k=1

α(k)
γ

4+γ < ∞,

for some constant γ > 0.
(c) For γ > 0 specified in (b) above,

sup
p

E
wT

i 60yt
4+γ

< ∞, sup
p

E
wT

i 61yt
4+γ

< ∞,

sup
p

E
eTi 60yt

4+γ
< ∞,

sup
p

E
wT

i yt
4+γ

< ∞, sup
p

E
eTi yt 4+γ

< ∞,

where wi denotes the ith row of W. The diagonal elements of
Vi defined in (8) are bounded uniformly in p.

A3. The rank of matrix (6T
1wi, 60ei, 60wi) is equal to 3.
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Remark 1. Condition A1 is standard for spatial econometric mod-
els. Condition A3 ensures that λ0i, λ1i and λ2i are identifiable in (2).
Condition A2(c) limits the dependence across different spatial lo-
cations. It is implied by, for example, the conditions imposed in Yu
et al. (2008). Lemma 1 in the Appendix shows that Condition A2
holdswith γ = 4 under conditions A1 and B1–B3. Note that condi-
tions B1–B3 are often directly imposed in the spatial econometrics
literature including, for example, Lee and Yu (2010), and Yu et al.
(2008).

B1. The errors εi,t are i.i.d across i and t with E(εi,t) = 0, Var(εi,t)
= σ 2

0 , and E
εi,t 4+γ

< ∞. The density function of εi,t exists.
B2. The row and column sums of |W| and

S−1(λ0)
 are bounded

uniformly in p.
B3. The row and column sums of


∞

j=0

Aj
 are bounded uniformly

in p.

Now we are ready to present the asymptotic properties for
(λ0i,λ1i,λ2i)

T , i = 1, . . . , p, with fixed p and n → ∞ first, and
then p → ∞ and n → ∞.

3.1. Asymptotics for fixed p

For i = 1, . . . , p, let

6y,εi(j) = Cov(yt−1+jεi,t+j, yt−1εi,t), j = 0, 1, 2, . . . ,

6y,εi = 6y,εi(0) +

∞
j=1


6y,εi(j) + 6T

y,εi(j)

,

Vi =

wT
i 616

T
1wi wT

i 6160ei wT
i 6160wi

wT
i 6160ei eTi 6060ei eTi 6060wi

wT
i 6160wi eTi 6060wi wT

i 6060wi

 , (8)

and

Ui =

wT
i 616y,εi6

T
1wi wT

i 616y,εi60ei wT
i 616y,εi60wi

wT
i 616y,εi60ei eTi 606y,εi60ei eTi 606y,εi60wi

wT
i 616y,εi60wi eTi 606y,εi60wi wT

i 606y,εi60wi

 . (9)

Theorem 1. Let conditions A1–A3 hold and p ≥ 1 be fixed. Then as
n → ∞, it holds that

√
n

λ0iλ1iλ2i

−


λ0i
λ1i
λ2i

 d
−→ N(0,V−1

i UiV−1
i ), i = 1, . . . , p,

where Vi and Ui are given in (8) and (9).

3.2. Asymptotics with diverging p

When p diverges together with n, Ui,Vi in (9) and (8) are no

longer constant matrices. Let U
−

1
2

i be a matrix such that (U
−

1
2

i )2

= U−1
i .

Theorem 2. Let conditions A1–A3 hold.

(i) As n → ∞, p → ∞ and p = o(
√
n),

√
nU

−
1
2

i Vi

λ0iλ1iλ2i

−


λ0i
λ1i
λ2i

 d
−→ N(0, I3), i = 1, . . . , p.

(ii) As n → ∞, p → ∞,
√
n = O(p) and p = o(n),

λ0iλ1iλ2i

−


λ0i
λ1i
λ2i


2

= Op

p
n


, i = 1, . . . , p.
Theorem 2 indicates that the standard root-n convergence rate
prevails as long as p = o(

√
n). However the convergence rate may

be slower when p is of higher orders than
√
n. Theorem 2 presents

the convergence rates for the L2 norm of the estimation errors. The
rates also hold for the L1 norm of the errors as well. Corollary 1
consider the estimation errors over p locations together, for which
we have established the result for L1 norm only.

Corollary 1. Let conditionA1 hold, and conditionsA2 andA3 hold for
all i = 1, . . . , p. Then as n → ∞ and p → ∞, it holds that

1
p

p
i=1


λ0iλ1iλ2i

−


λ0i
λ1i
λ2i


1

=


Op


1

√
n


if

p
√
n

= O(1),

Op

p
n


if

p
√
n

→ ∞ and
p
n

= o(1).

To derive the asymptotic properties of the estimators defined in
(5), we introduce some new notation. For i = 1, . . . , p, let

6i
0 = Cov(yt , zit), 6i

1 = Cov(yt , zit−1),

6zi,εi(j) = Cov(zit−1+jεi,t+j, zit−1εi,t), j = 0, 1, 2, . . . ,

and

6zi,εi = 6zi,εi(0) +

∞
j=1


6zi,εi(j) + 6T

zi,εi
(j)

.

Let

V∗

i =

wT
i 6

i
1(6

i
1)

Twi wT
i 6

i
1(6

i
0)

Tei wT
i 6

i
1(6

i
0)

Twi

wT
i 6

i
1(6

i
0)

Tei eTi 6
i
0(6

i
0)

Tei eTi 6
i
0(6

i
0)

Twi

wT
i 6

i
1(6

i
0)

Twi eTi 6
i
0(6

i
0)

Twi wT
i 6

i
0(6

i
0)

Twi

 , (10)

and the equation given in Box I.
Theorem 3 indicates that the estimators defined in (5) are

asymptotically normal with the standard
√
n-rate as long as di =

o(
√
n). Note that it does not impose any conditions directly on the

size of p.

A4. (a) For γ > 0 specified in A2(b),

sup
p

E
wT

i 6
i
0z

i
t

4+γ
< ∞, sup

p
E
wT

i 6
i
1z

i
t

4+γ
< ∞,

sup
p

E
eTi 6i

0z
i
t

4+γ
< ∞,

sup
p

E
wT

i yt
4+γ

< ∞, sup
p

E
eTi yt 4+γ

< ∞

and the diagonal elements of V∗

i defined in (10) are bounded
uniformly in p.

(b) The rank of matrix E{Zi} is equal to 3, whereZi is defined
in (6).

Theorem 3. Let conditions A1, A2(a, b) and A4 hold. As n → ∞,
p → ∞ and di = o(

√
n), it holds that

√
n(U∗

i )
−

1
2 V∗

i

λ0iλ1iλ2i

−


λ0i
λ1i
λ2i

 d
−→ N(0, I3), i = 1, . . . , p,

where V∗

i and U∗

i are given in (10) and (11).
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Twi

 . (1

Box I.
The key assumption of Theorem 2 is A2(c), which decides the
fact that the effect of the dimensionality p only comes from E1 in
Eq. (13) in the Appendix.We can relax this assumption by allowing
E2 to be affected by p as well. Under the new relaxed assumption,
wemay obtain a better convergent rate of estimator (3) by making
use of the fact that (3) is invariant if we divide both the numerator
and denominator by the same number, for example, a number
relating to p. This will be presented in Theorem 4. We propose the
new relaxed assumption:

A5. For γ > 0 specified in A2(b),

max

sup
p

E
wT

i 60yt
4+γ

, sup
p

E
wT

i 61yt
4+γ

,

sup
p

E
eTi 60yt

4+γ


= O(s0(p)).

max

sup
p

E
wT

i yt
4+γ

, sup
p

E
eTi yt 4+γ


= O(s1(p))

and the diagonal elements of Vi defined in (8) is in the order of
s2(p), where s0(p), s1(p) and s2(p) are numbers relating to p.

Denote C as a constant. When the number of nonzero elements
(or elements bounded away from zero) in wi increases with p but
is o(p), we may have s1(p) = o(min{s0(p), s2(p)}). Simulation
scenario 2 is under this case. When there are only finite number
of nonzero elements (or elements bounded away from zero) in
wi, we might have s1(p) ≍ C , which is the case of simulation
scenario 1. The reason we assume the diagonal elements of Vi
defined in (8) are in the order of s2(p) is because we can treat
wT

i 616
T
1wi, eTi 6060ei,wT

i 6060wi as the secondmoments of three
random variables wT

i 61x, eTi 60x and wT
i 60x respectively, where

the p × 1 random vector x has mean 0 and covariance matrix Ip.

Theorem 4. Let conditions A1, A2(a, b), A3 and A5 hold. As n → ∞,
p → ∞, if ps1(p)

s2(p)
= o(n) and s1/20 (p) = O(ps1/21 (p)s2(p)), it holds

that
λ0iλ1iλ2i

−


λ0i
λ1i
λ2i


2

= Op


max


ps3/41 (p)
ns2(p)

,
s1/40 (p)

√
ns2(p)


.

Let us consider some examples. (1) When s0(p) ≍ p, s1(p) ≍

C and s2(p) ≍ p, the convergence rate is max


1
n ,

1
√
np3/4


. (2)

When s0(p) ≍ p, s1(p) ≍
√
p and s2(p) ≍ p, if p = o(n2),

the convergence rate is max


p3/8

n , 1
√
np3/4


. (3) When s0(p) ≍ C ,

s1(p) ≍ C and s2(p) ≍ C , if p = o(n), the convergence rate
is max


p
n ,

1
√
n


, which corresponds with Theorem 2. Theorem 4

indicates that under different situations of s0(p), s1(p) and s2(p),
wemay obtain different convergence rates. These observations are
illustrated by simulation examples in Section 4.

4. Simulation study

To examine the finite sample performance of the proposed
estimation methods, we conduct some simulation under different
scenarios.
Fig. 2. Boxplots of MAE for estimator (2.3) (left panels) and estimator (2.5) (right
panels) with p = 25 (top panels) and 100 (bottom panels), n = 100, 250, 500,
750, 1000 for scenario 1.

4.1. Scenario 1

λ0i, λ1i and λ2i are generated from U(−0.6, 0.6). The spatial
weight matrix W used is a block diagonal matrix formed by a
√
p ×

√
p row-normalized matrix W∗. We construct W∗ such

that the first four sub-diagonal elements are all 1 and the rest
elements are all 0 before normalizing. This kind of W corresponds
to the pooling of

√
p separate districts with similar neighboring

structures in each district, see Lee and Yu (2013). The error εi,t are
independently generated from N(0, σ 2

i ), where we generate each
σi from U(0.5, 1.5).

For all scenarios, we generate data from (2.1) with different
settings for n and p. We apply the proposed estimation method
(2.3) and (2.5) (with di = min(p, n10/21)) and report the mean
absolute errors:

MAE(i) =
1
3

2
j=0

|λji − λji|, MAE =
1
p

p
i=1

MAE(i).

We replicate each setting 500 times.
Fig. 2 depicts two boxplots of MAEwith p equal to, respectively,

25 and 100. As the sample size n increases from 100, 250, 500, 750
to 1000, MAE decreases for both methods.

Fig. 3 depicts the boxplots of the MAE for the original estimator
(2.3), the root n consistent estimator (2.5), and the estimator
(2.5) with the ridge penalty, where we choose the ridge tuning
parameter to be C ×

p
n in order to avoid the nearly singularity

problemofZT
i
Zi, and C is chosen via cross validation.With n = 500,

the dimension p is set at 25, 49, 64, 81, 100, 169, 324 and 529
respectively. The MAE for (2.3) remains about the same level as
p increases; see the panel on the left in Fig. 3. This is in line with
the asymptotic result of Theorem 4 when, for example, s1(p) ≍ C ,
s0(p) ≍ p and s2(p) ≍ p. In contrast, the MAE for estimator (2.5)
increases sharply when p increases; see the panel in the middle.
This is due to the fact thatZT

i
Zi is nearly singular for large p. Adding

a ridge in the estimator certainly mitigates the deterioration when
p increases; see the panel on the right in Fig. 3.
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Fig. 3. Boxplots of MAE of the original estimator (2.3) (the left panel), the root n consistent estimator (2.5) (the middle panel), and the estimator (2.5) after adding ridge
penalty (the right panel) with n = 500 and p = 25, 49, 64, 81, 100, 169, 324, 529 for scenario 1.
Fig. 4. Boxplots of MAE for estimator (2.3) (left panels) and estimator (2.5) (right
panels) with p = 25 (top panels) and 100 (bottom panels), n = 100, 250, 500,
750, 1000 for scenario 2.

4.2. Scenario 2

λ0i, λ1i and λ2i are generated from U(−0.6, 0.6). The spatial
weight matrix W is constructed as follows. First, we construct a
√
p×

√
p row-normalizedmatrixW∗, whereW∗ is chosen such that

the first two sub-diagonal elements are all 1 and the rest elements
are all 0 before normalizing. Then we treat W as a

√
p ×

√
p

block matrix and put W∗ into the main diagonal, 2nd, 4th, 6th
and etc. sub-diagonal block positions. This kind of W corresponds
to the pooling of

√
p districts (each district has

√
p locations)

which the evenly numbered districts are connected and the oddly
numbered districts are connected but evenly numbered districts
and oddly number districts are separated. Each district has similar
neighboring structures. As p increases, the number of the locations
influencing one specific location increases in the order of

√
p. The

error εi,t are independently generated from N(0, σ 2
i ), where we

generate each σi from U(0.5, 1.5).
Fig. 4 depicts two boxplots of MAEwith p equal to, respectively,

25 and 100. As the sample size n increases from 100, 250, 500, 750
to 1000, MAE decreases for both methods.

Fig. 5 depicts three boxplots as Fig. 3. TheMAE for (2.3) increases
steadily as p increases, which matches the result of Theorem 4
when, for instance, s1(p) ≍
√
p, s0(p) ≍ p and s2(p) ≍ p. The

MAE for (2.5) after adding ridge penalty is slowly increasing aswell.
This might be caused by the fact that, similar to A2(c), quantities
in condition A4(a) are also influenced by p since the number of
nonzero elements inwi is in the order of

√
p.

5. Real data analysis

5.1. European consumer price indices

We analyze the monthly change rates of the consumer price
index (CPI) for the EU member states, over the years 2003–2010.
We use the national harmonized index of consumer prices
calculated by Eurostat, the statistical office of the European Union.
For this data set, n = 96 and p = 31.

Fig. 6 presents the time series plots of the monthly change
rates of CPI for the 31 states. To line up the curves together, each
series is centered at its mean value in Fig. 6. There exist clearly
synchronizes on the fluctuations across different states, indicating
the spatial (i.e. cross-state) correlations among different states.
Also noticeable is the varying degrees of the fluctuation over the
different states.

Let yt consist of the monthly change rates of CPI for the 31
states. We fit the proposed spatial–temporal model (1) to this data
set with the parameters estimated by (3). We take a normalized
sample correlation matrix of yt as the spatial weight matrix W =

(wij), i.e. we let wij be the absolute value of the sample correlation
between the ith and jth states for i ≠ j, and wii = 0, and then
replace wij by wij/


k wkj.

Fig. 7 presents the scatter plots of yi,t against, respectively, the 3
regressors in model (1), i.e. wT

i yt , yi,t−1, wT
i yt−1, for four selected

states Belgium, Greece, France and Iceland. We superimpose the
straight line y = λji x in each of those 3 scatter plots with,
respectively, j = 0, 1, 2. It is clear that the estimated slopes are
very different for those 4 states. Fig. 8 plots the true monthly
change rates of the CPI for those 4 states together with the fitted
valuesyi,t =λ0iwT

i yt +λ1iyi,t−1 +λ2iwT
i yt−1. (12)

Overallyi,t tracks its truth value reasonably well. Fig. 9 shows
the out-of-sample forecasting performance of our model. For
the sake of comparison, predictions are made using our model
and the proposed generalized Yule–Walker estimator, and using
the (constant) SDPD model of Yu et al. (2008) and their Quasi-
Maximum Likelihood estimator. In particular, for each location,
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Fig. 5. Boxplots of MAE of the original estimator (2.3) (the left panel), the root n consistent estimator (2.5) (the middle panel), and the estimator (2.5) after adding ridge
penalty (the right panel) with n = 500 and p = 25, 49, 64, 81, 100, 169, 324, 529 for scenario 2.
Fig. 6. Time series plots of the monthly change rates of CPI for the 31 EU member states. Each series is subtracted by its mean value.
Fig. 7. The scatter plots of yi,t againstwT
i yt (panels on the top), yi,t−1 (panels in the middle), andwT

i yt−1 (panels on the bottom) for four selected countries Belgium, Greece,
France and Iceland. The straight lines y =λjix are superimposed in the panels on the top with j = 0, those in the middle with j = 1, and those on the bottom with j = 2.



376 B. Dou et al. / Journal of Econometrics 194 (2016) 369–382
Fig. 8. The monthly change rates of CPI (thin lines) of Belgium, Greece, France and
Iceland, and their estimated values (thick lines) by model (1).

Fig. 9. Prediction errors generated in the out-of-sample forecasting, leaving out 6
observations from the sample, using our model with the Generalized Yule–Walker
estimator and using the constant SDPD model of Yu et al. (2008) with the Quasi-
Maximum Likelihood estimator.

we leave out from the sample the last six observations and we
compute the (out-of-sample) forecasts with 1, 2, . . . , 6 step ahead
forecasting horizon; then, we compute the average prediction
error over time (i.e. themean of the 6 prediction errors). On the left
panel of Fig. 9, the twobox-plots summarize the average prediction
error for the 31 locations obtained with our YW estimator and the
QML estimator of Yu et al. (2008), respectively. It is evident that our
estimator produces unbiased predictions while the QML estimator
appears to be biased. This advantage also reflects on the forecasting
average square errors, reported on the right panel of Fig. 9. In
conclusion, the SDPD model of Yu et al. (2008) has a satisfying
forecasting performance because several locations have similar
spatial structure and for those locations a model with constant
parameters is sufficient. Anyway, a marginal improvement is
observed for our estimator because several locations have quite
different structures andourmodel is able to capture this difference.
Finally, it is worthwhile to notice that the variability of the two
predictors appears to be the same.

To further vindicate the necessity to use different coefficients
for different states, we consider a statistical test for hypothesis

H0 : λj1 = · · · = λjp, j = 0, 1, 2

for model (1). Then the residuals resulting from the fitted model
under H0 will be greater than the residuals without H0. However
if H0 is true, the difference between the two sets of residuals
should not be significant. We apply a bootstrap method to test this
significance. Letλ0,λ1,λ2 be the estimates under hypothesis H0.
Define the test statistic

U =
1
n

n
t=1

∥yt −yt∥1, yt =λ0Wyt +λ1yt−1 +λ2Wyt−1.

We reject H0 for large values of U . To assess how large is large, we
generate a bootstrap data from

y∗

t =λ0Wyt +λ1yt−1 +λ2Wyt−1 + ε∗

t ,

where {ε∗
t } are drawn independently from the residualsεt = yt −yt , t = 1, . . . , n,

and yt consists of the components defined in (12). Now the
bootstrap statistic is defined as

U∗
=

1
n

n
t=1

∥y∗

t − (λ∗

0Wyt + λ∗

1yt−1 + λ∗

2Wyt−1)∥1,

where (λ∗

0, λ
∗

1, λ
∗

2) are the estimated coefficients for the regression
model

y∗

t = λ0Wyt + λ1yt−1 + λ2Wyt−1 + εt , t = 1, . . . , n.

The P-value for testing hypothesis H0 is defined as

P(U∗ > U|y1, . . . , yn),
which is approximated by the relative frequency of the event
(U∗ > U) in a repeated bootstrap sampling with a large number of
replications. By repeating bootstrap sampling 1000 times, the esti-
mated P-value is 0, exhibiting strong evidence against the null hy-
pothesis H0. Therefore the model with the equal slope parameters
across different locations is inadequate for this particular data set.

5.2. Modeling mortality rates

Now we analyze the annual Italian male and female mortal-
ity rates for different ages (between 0 and 104) in the period
of 1950–2009 based on the proposed model (1). The data were
downloaded from the Human Mortality Database (see the web-
site http://www.mortality.org/). Let mi,t be the log mortality rate
of female or male at age i and in Year t . Those data are plotted in
Fig. 10. Two panels on the left plot are the female and male mor-
tality against different age in each year. More precisely the curves
{mi,t , i = 1, . . . , 21} for t < 1970 are plotted in red, those for
t > 1990 are in blue, those with 1970 ≤ t ≤ 1989 are in gray.
Those curves show clearly that the mortality rate decreases over
the years for almost all age groups (except a few outliers at the
top end). Two panels in the middle of Fig. 10 plot the log mortal-
ity for each age group against time with the following color code:
black for ages not great than 10, gray for ages between 11 and 100,
and green for ages greater than 100. They indicate that the mor-
tality for all age groups decreases over time, the most significant
decreases occur at the young age groups. Furthermore, the fluc-
tuation of the mortality rates for the top age groups reduces sig-
nificantly over the years, while the mean mortality rates for those
groups remain about the same. This can be seen more clearly in
the two panels on the right which plot differenced log mortality
rates {yi,t , t = 1951, . . . , 2009}, using the same color code, where
yi,t = mi,t − mi,t−1.

We fit the differenced log mortality data with model (1) with
the parameters estimated by (5) and di = 20. Note that now
p = 104 and n = 59. Let the off-diagonal elements of the spatial
weight matrixW be

wij =
1

1 + |i − j|
, 1 ≤ i < j ≤ 104.

We then replace wij by wij/


i wij. Moreover, we can also fix a
threshold τ and set to zero all the elements of matrix W such that
|x − w| > τ (for simplicity, we fix τ = 5 in this application, but
the results are substantially invariant for different values of τ ).

http://www.mortality.org/
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Fig. 10. Log mortality rates of Italian female (3 top panels) and male (3 bottom panels) are plotted against age from each year in 1950–2009 (2 left panels), against year for
each age group between 0 and 104 (2 middle panels). Differenced log mortality rates are plotted against year for each age in 2 right panels.
Table 1
Estimated coefficients for a selection of cohorts of different ages. The left column
is the estimated pure spatial coefficientsλ0i; The middle column is the estimated
pure dynamic coefficientλ1i; The right column is the estimated spatial-dynamic
coefficientsλ2i .

Age λ0i λ1i λ2i Age λ0i λ1i λ2i

5 0.41 −0.52 0.06 55 0.19 −0.88 0.28
10 0.20 −0.42 0.05 60 −0.09 −0.72 0.01
15 0.44 −0.65 0.18 65 0.22 −0.63 0.21
20 0.64 −0.78 0.40 70 0.21 −0.69 0.08
25 −0.04 −0.43 0.03 75 0.33 −0.59 0.22
30 0.78 −0.80 0.55 80 0.33 −0.89 0.27
35 0.11 −0.55 0.29 85 0.37 −0.76 0.18
40 −0.04 −0.66 −0.01 90 0.29 −0.62 0.16
45 0.29 −0.46 0.12 95 0.27 −0.77 0.26
50 −0.10 −0.45 −0.05 100 0.44 −0.69 −0.03

Fig. 11. Observed time series (thin line) and fitted time series (bold line), for female
mortality rate for ages i = 60, 80, 100.

The results of the estimation are shown in Table 1, for a selection
of cohorts of different ages. Fig. 11 shows the fitted series for ages
i = 60, 80, 100.
6. Final remark

Wepropose in this paper a generalized Yule–Walker estimation
method for spatio-temporal models with diagonal coefficients.
The setting enlarges the capacity of the popular spatial dynamic
panel data models. Both the asymptotic results and numerical
illustration show that the proposed estimationmethodworkswell,
although the number of the estimation equations utilized should
be of the order o(

√
n).
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Appendix. Proofs

Wepresent the proofs for Theorem2, Corollary 1 and Theorem4
in this appendix. The proofs for Theorems 1 and 3 are similar and
simpler than that of Theorem2, and they are therefore omitted.We
also present a lemma (i.e. Lemma 1) at the end of this appendix,
which shows that condition A2 is implied by conditions A1 and
B1–B3; see Remark 1. We use C to denote a generic positive
constant, which may be different at different places.

Proof of Theorem 2. We first prove (i) of Theorem 2. We only
need to prove the assertions (1) and (2) below, as then the required
conclusion follows from (1) and (2) immediately.
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To prove (1), it suffices to show that for any nonzero vector
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For term E1 and k = 1, 2, . . . , p, by Proposition 2.5 of Fan and Yao
(2003), we have
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where C is independent of p. Then it holds that
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p
n


.

Since E1 ≤
 1

n

n
t=1 yt−1wT

i yt − 6T
1wi


2

 1
n

n
t=1 εi,tyt−1


2, it

holds that E1 = Op(
p
n ). Similar to (14), we have Var(

√
nE2) = O(1).

Given p
√
n = o(1), it holds that

√
nE1 = op(1). Hence if p = o(

√
n),

√
n ×

1
n

n
t=1

yTt−1(w
T
i yt)

1
n

n
t=1

εi,tyt−1

=
1

√
n

n
t=1

wT
i 61yt−1εi,t + op(1).

Similarly, given p = o(
√
n), we have

√
n ×

1
n

n
t=1

yTt−1yi,t−1
1
n

n
t=1

εi,tyt−1

=
1

√
n

n
t=1

eTi 60yt−1εi,t + op(1),

√
n ×

1
n

n
t=1

yTt−1(w
T
i yt−1)

1
n

n
t=1

εi,tyt−1

=
1

√
n

n
t=1

wT
i 60yt−1εi,t + op(1).

Now it suffices to prove

Sn,p ≡ a1
1

√
n

n
t=1

wT
i 61yt−1εi,t + a2

1
√
n

n
t=1

eTi 60yt−1εi,t

+ a3
1

√
n

n
t=1

wT
i 60yt−1εi,t

is asymptotic normal.
Note that it holds that

E|wT
i 61yt−1εi,t |

2+ γ
2 ≤ [E|wT

i 61yt−1|
4+γ

]
1
2 [E|εi,t |4+γ

]
1
2 < ∞.

Now we calculate the variance of Sn,p. It holds that

Var


1

√
n

n
t=1

wT
i 61yt−1εi,t



= wT
i 616y,εi(0)6

T
1wi +

n−1
j=1


1 −

j
n


wT

i 61

×

6y,εi(j) + 6T

y,εi(j)

6T

1wi, (15)
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and it follows from
n

j=1 α(j)
γ

4+γ < ∞ that

sup
p

∞
j=1

|wT
i 61


6y,εi(j) + 6T

y,εi(j)

6T

1wi|

≤ C sup
p

∞
j=1

α(j)
γ

4+γ

E|wT

i 61yt−1|
4+γ

 2
4+γ

×

E|εi,t |4+γ

 2
4+γ < ∞.

Similarly,

Cov


1

√
n

n
t=1

wT
i 61yt−1εi,t ,

1
√
n

n
t=1

eTi 60yt−1εi,t



= wT
i 616y,εi(0)60ei +

n−1
j=1


1 −

j
n


wT

i 61

×

6y,εi(j) + 6T

y,εi(j)

60ei,

and supp


∞

j=1 |wT
i 616y,εi(j)60ei| < ∞. Calculating all the vari-

ance and covariance and summing up them, it follows from domi-
nate convergence theorem that

Var


Sn,p
aTUia


→ 1.

To prove the asymptotic normality of Sn,p, we employ the small-
block and large-block arguments.Wepartition the set {1, 2, . . . , n}
into 2kn +1 subsets with large blocks of size ln, small blocks of size
sn and the last remaining set of size n − kn(ln + sn). Put

ln = [
√
n/ log n], sn = [

√
n log n]x, kn = [n/(ln + sn)],

where γ

4+γ
≤ x < 1. Hence

ln/
√
n → 0, sn/ln → 0, kn = O(

√
n log n).

Note that ln/
√
n → 0 is important when we derive the Lindeberg

condition of the truncated partial sum T L
n,p defined in (16).

Since


∞

j=1 α(j)
γ

4+γ < ∞, we have α(sn) = o(s
−

4+γ
γ

n ). It then
holds that

knα(sn) = o

kn/s

4+γ
γ

n


= o

√
n log n/[

√
n log n]x

4+γ
γ


= o(1).

Then we can partition Sn,p in the following way

Sn,p = a1
1

√
n

kn
j=1

ξ
(1)
j + a2

1
√
n

kn
j=1

ξ
(2)
j + a3

1
√
n

kn
j=1

ξ
(3)
j

+ a1
1

√
n

kn
j=1

η
(1)
j + a2

1
√
n

kn
j=1

η
(2)
j + a3

1
√
n

kn
j=1

η
(3)
j

+ a1
1

√
n
ζ (1)

+ a2
1

√
n
ζ (2)

+ a3
1

√
n
ζ (3),

where

ξ
(1)
j =

jln+(j−1)sn
t=(j−1)(ln+sn)+1

wT
i 61yt−1εi,t ,

η
(1)
j =

j(ln+sn)
t=jln+(j−1)sn+1

wT
i 61yt−1εi,t ,

ξ
(2)
j =

jln+(j−1)sn
t=(j−1)(ln+sn)+1

eTi 60yt−1εi,t ,
η
(2)
j =

j(ln+sn)
t=jln+(j−1)sn+1

eTi 60yt−1εi,t ,

ξ
(3)
j =

jln+(j−1)sn
t=(j−1)(ln+sn)+1

wT
i 60yt−1εi,t ,

η
(3)
j =

j(ln+sn)
t=jln+(j−1)sn+1

wT
i 60yt−1εi,t ,

ζ (1)
=

n
kn(ln+sn)+1

wT
i 61yt−1εi,t ,

ζ (2)
=

n
kn(ln+sn)+1

eTi 60yt−1εi,t ,

ζ (3)
=

n
kn(ln+sn)+1

wT
i 60yt−1εi,t .

Note thatα(n) = o(n−
(2+γ /2)2

2(2+γ /2−2) ) and knsn/n → 0, (ln+sn)/n → 0,
by applying Proposition 2.7 of Fan and Yao (2003), it holds that

1
√
n

kn
j=1

η
(l)
j = op(1), and

1
√
n
ζ (l)

= op(1), l = 1, 2, 3.

Therefore

Sn,p = a1
1

√
n

kn
j=1

ξ
(1)
j + a2

1
√
n

kn
j=1

ξ
(2)
j + a3

1
√
n

kn
j=1

ξ
(3)
j + op(1)

≡ Tn,p + op(1).

We calculate the variance of Tn,p. Similar to (15), it holds that

Var


a1

1
√
n

kn
j=1

ξ
(1)
j


= a21

kn
n
Var


ξ

(1)
1


{1 + o(1)}

= a21
kn
n
Var


ln

t=1

wT
i 61yt−1εi,t


{1 + o(1)}

= a21
knln
n


wT

i 616y,εi(0)6
T
1wi +

ln−1
j=1


1 −

j
ln


wT

i 61

×

6y,εi(j) + 6T

y,εi(j)

6T

1wi


{1 + o(1)}.

Calculating all the variance and covariance and summing up them,
by dominated convergence theorem and kn ln

n → 1, it holds that

Var


Tn,p
aTUia


→ 1.

Now it suffices to prove the asymptotic normality of Tn,p. We par-
tition Tn,p into two parts via truncation. Specifically, we define

ξ
(1)L
j =

jln+(j−1)sn
t=(j−1)(ln+sn)+1

wT
i 61yt−1εi,t I{|wT

i 61yt−1εi,t |≤L},

and

ξ
(1)R
j =

jln+(j−1)sn
t=(j−1)(ln+sn)+1

wT
i 61yt−1εi,t I{|wT

i 61yt−1εi,t |>L}.
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Similarly, we have ξ
(2)L
j , ξ

(2)R
j and ξ

(3)L
j , ξ

(3)R
j . Then

Tn,p =


a1

1
√
n

kn
j=1

ξ
(1)L
j + a2

1
√
n

kn
j=1

ξ
(2)L
j + a3

1
√
n

kn
j=1

ξ
(3)L
j



+


a1

1
√
n

kn
j=1

ξ
(1)R
j + a2

1
√
n

kn
j=1

ξ
(2)R
j + a3

1
√
n

kn
j=1

ξ
(3)R
j


≡ T L

n,p + T R
n,p. (16)

Similar to computing the Var(Tn,p), it holds that

Var(T L
n,p) = a21Var


1

√
n

kn
j=1

ξ
(1)L
j


+ ΩL

= a21
kn
n
Var


ξ

(1)L
1


{1 + o(1)} + ΩL

= a21
kn
n
Var


ln

t=1

wT
i 61yt−1εi,t I{|wT

i 61yt−1εi,t |≤L}


× {1 + o(1)} + ΩL

= a21
knln
n


Var


wT

i 61yt−1εi,t I{|wT
i 61yt−1εi,t |≤L}


+ 2

ln−1
j=1


1 −

j
ln


Cov

wT
i 61yt−1+jεi,t+jI{|wT

i 61yt−1+jεi,t+j|≤L},

wT
i 61yt−1εi,t I{|wT

i 61yt−1εi,t |≤L}


{1 + o(1)} + ΩL,

where ΩL is the sum of all the rest variance and covariance except
Var


a1 1

√
n

kn
j=1 ξ

(1)L
j


. Therefore

Var


Var(T L

n,p)

σ 2
L


→ 1,

where we denote σ 2
L as the asymptotic variance of T L

n,p. Similarly,
we have

Var(T R
n,p)

= a21
knln
n


Var


wT

i 61yt−1εi,t I{|wT
i 61yt−1εi,t |>L}


+ 2

ln−1
j=1


1 −

j
ln


Cov


wT

i 61yt−1+jεi,t+jI{|wT
i 61yt−1+jεi,t+j|>L},

wT
i 61yt−1εi,t I{|wT

i 61yt−1εi,t |>L}


{1 + o(1)} + ΩR.

Define

Mn,p =

E exp


itTn,p
aTUia


− exp


−

t2

2

 ,
where i =

√
−1 now. We boundMn,p as follows

Mn,p ≤ E

exp


itT L
n,p

aTUia


exp


itT R

n,p
aTUia


− 1


+

E exp


itT L

n,p
aTUia


−

kn
j=1

E

exp

 it

a1 1

√
nξ

(1)L
j + a2 1

√
nξ

(2)L
j + a3 1

√
nξ

(3)L
j



aTUia


+


kn
j=1

E exp

 it

a1 1

√
nξ

(1)L
j + a2 1

√
nξ

(2)L
j + a3 1

√
nξ

(3)L
j



aTUia


− exp


−

t2

2
σ 2
L

aTUia

 
+

exp−
t2

2
σ 2
L

aTUia


− exp


−

t2

2

 .
Following the same arguments as part 2.7.7 of Fan and Yao (2003),
for any ϵ > 0, it holds thatMn,p < ϵ as n, p → ∞. Hence

√
n × aT



1
n

n
t=1

yTt−1(w
T
i yt)

1
n

n
t=1

εi,tyt−1

1
n

n
t=1

yTt−1yi,t−1
1
n

n
t=1

εi,tyt−1

1
n

n
t=1

yTt−1(w
T
i yt−1)

1
n

n
t=1

εi,tyt−1


/

aTUia

d
−→ N(0, 1).

Substituting a by (U
−

1
2

i )Ta, it holds that

aT


√
nU

−
1
2

i



1
n

n
t=1

yTt−1(w
T
i yt)

1
n

n
t=1

εi,tyt−1

1
n

n
t=1

yTt−1yi,t−1
1
n

n
t=1

εi,tyt−1

1
n

n
t=1

yTt−1(w
T
i yt−1)

1
n

n
t=1

εi,tyt−1




d
−→ aTN(0, I3),

which leads to the fact that

√
nU

−
1
2

i



1
n

n
t=1

yTt−1(w
T
i yt)

1
n

n
t=1

εi,tyt−1

1
n

n
t=1

yTt−1yi,t−1
1
n

n
t=1

εi,tyt−1

1
n

n
t=1

yTt−1(w
T
i yt−1)

1
n

n
t=1

εi,tyt−1


d
−→ N(0, I3).

To prove (2), let us look at the (1, 1)th element ofXT
i
Xi.Wehave

1
n

n
t=1

yTt−1(w
T
i yt)

1
n

n
t=1

yt−1(wT
i yt)

=


1
n

n
t=1

yTt−1(w
T
i yt) − wT

i 61


1
n

n
t=1

yt−1(wT
i yt) − 6T

1wi



+ 2wT
i 61


1
n

n
t=1

yt−1(wT
i yt) − 6T

1wi


+ wT

i 616
T
1wi. (17)
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Using the same arguments as (14), the first term is Op(
p
n ) and the

second term is Op(
1

√
n ). Hence given p = o(n), it holds that

1
n

n
t=1

yTt−1(w
T
i yt)

1
n

n
t=1

yt−1(wT
i yt)

wT
i 616

T
1wi

→ 1.

Applying the same arguments to the other elements of XT
i
Xi, it

holds that

Vi(XT
i
Xi)

−1 P
−→ I3.

To prove (ii) in Theorem 2, the required asymptotic result fol-
lows from (13) and (17) immediately when p = o(n) and

√
n =

O(p). The proof is completed. �

Proof of Corollary 1. By Theorem 2, it holds that
λ0iλ1iλ2i

−


λ0i
λ1i
λ2i


1

=


Op


1

√
n


if

p
√
n

= O(1),

Op

p
n


if

p
√
n

→ ∞ and
p
n

= o(1)

for all i. The required asymptotic result follows from the above
result directly. �

Proof of Theorem 4. Let us look at term E1 and E2 in (13) first
under the new condition (A5). Similar to the proof of (14), it holds
that

E1 = Op


ps3/41 (p)

n


, E2 = Op


s1/40 (p)
√
n


.

Hence

1
n

n
t=1

yTt−1(w
T
i yt)

1
n

n
t=1

εi,tyt−1 = Op


ps3/41 (p)

n
+

s1/40 (p)
√
n


.

Similarly, we have

1
n

n
t=1

yTt−1yi,t−1
1
n

n
t=1

εi,tyt−1 = Op


ps3/41 (p)

n
+

s1/40 (p)
√
n


,

1
n

n
t=1

yTt−1(w
T
i yt−1)

1
n

n
t=1

εi,tyt−1 = Op


ps3/41 (p)

n
+

s1/40 (p)
√
n


.

For the first diagonal element ofXT
i
Xi, it follows from consider-

ing the three terms in (17) separately that

1
n

n
t=1

yTt−1(w
T
i yt)

1
n

n
t=1

yt−1(wT
i yt)

= Op


ps1(p)

n
+

s1/40 (p)s1/41 (p)
√
n


+ wT

i 616
T
1wi.

Similarly,

1
n

n
t=1

yTt−1yi,t−1
1
n

n
t=1

yt−1yi,t−1

= Op


ps1(p)

n
+

s1/40 (p)s1/41 (p)
√
n


+ eTi 6060ei,

1
n

n
t=1

yTt−1(w
T
i yt−1)

1
n

n
t=1

yt−1(wT
i yt−1)
= Op


ps1(p)

n
+

s1/40 (p)s1/41 (p)
√
n


+ wT

i 6060wi.

Given ps1(p)
s2(p)

= o(n) and s1/20 (p)

ps1/21 (p)s2(p)
= O(1), we have

ps1(p)
n

= o(s2(p)),
s1/40 (p)s1/41 (p)

√
n

= o(s2(p)).

Divide both the numerator and denominator of estimator (3) by
s2(p), it holds that
λ0iλ1iλ2i

−


λ0i
λ1i
λ2i


2

= Op


ps3/41 (p)
ns2(p)

+
s1/40 (p)

√
ns2(p)


.

The required result then follows directly. �

Lemma 1. Under conditions A1 and B1–B3, condition A2 holds with
γ = 4.

Proof. It is apparent that part (a) of A2 is satisfied under A1 and
B1–B3. yt is strictly stationary because εi,t are i.i.d across i and
t and condition B3. Since the density function of εi,t exists, α(n)
decays exponentially fast, see Pham and Tran (1985). Therefore

∞

j=1 α(j)
γ

4+γ < ∞. Now we prove A2(c) when γ = 4.
We present a more general result first: for any p × 1 vector a

satisfying supp ∥a∥1 < ∞, it holds that

sup
p

E
aTyt 8 < ∞.

Note that

yt =

∞
h=0

AhS−1(λ0)εt−h ≡

∞
h=0

Bhεt−h.

Then

E
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≡ E
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bT
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= E

 ∞
h1,h2,h3,h4,h5,h6,h7,h8=0

(εT
t−h1bh1b

T
h2εt−h2)

× (εT
t−h3bh3b

T
h4εt−h4)

× (εT
t−h5bh5b

T
h6εt−h6)(ε

T
t−h7bh7b

T
h8εt−h8)


= E

 ∞
h1,h2,h3,h4,h5,h6,h7,h8=0

 p
i1,j1=1

[bh1b
T
h2 ]i1j1εi1,t−h1εj1,t−h2


×

 p
i2,j2=1

[bh3b
T
h4 ]i2j2εi2,t−h3εj2,t−h4


×

 p
i3,j3=1

[bh5b
T
h6 ]i3j3εi3,t−h5εj3,t−h6


×

 p
i4,j4=1

[bh7b
T
h8 ]i4j4εi4,t−h7εj4,t−h8


= E

 ∞
h1,h2,h3,h4,h5,h6,h7,h8=0

p
i1,j1,i2,j2,i3,j3,i4,j4=1

[bh1b
T
h2 ]i1j1

× [bh3b
T
h4 ]i2j2 [bh5b

T
h6 ]i3j3 [bh7b

T
h8 ]i4j4

× εi1,t−h1εj1,t−h2εi2,t−h3εj2,t−h4εi3,t−h5
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× εj3,t−h6εi4,t−h7εj4,t−h8


≤

∞
h1,h2,h3,h4,h5,h6,h7,h8=0

p
i1,j1,i2,j2,i3,j3,i4,j4=1

[bh1b
T
h2 ]i1j1

× [bh3b
T
h4 ]i2j2

× [bh5b
T
h6 ]i3j3 [bh7b

T
h8 ]i4j4


× E|εi1,t−h1εj1,t−h2εi2,t−h3εj2,t−h4εi3,t−h5

× εj3,t−h6εi4,t−h7εj4,t−h8 |

≤ C
∞

h1,h2,h3,h4,h5,h6,h7,h8=0

p
i1,j1,i2,j2,i3,j3,i4,j4=1

|bh1b
T
h2 |i1j1

× |bh3b
T
h4 |i2j2 |bh5b

T
h6 |i3j3 |bh7b

T
h8 |i4j4

= C
 ∞

h=0

∞
g=0

p
i=1

p
j=1

|bhbT
g |ij

4
. (18)

And
∞
h=0

∞
g=0

p
i=1

p
j=1

|bhbT
g |ij ≤

∞
h=0

∞
g=0

p
i=1

p
j=1

(|bh||bT
g |)ij

=

p
i=1

p
j=1

 ∞
h=0

∞
g=0

|bh||bT
g |


ij

=

p
i=1

p
j=1

 ∞
h=0

|bh|

∞
g=0

|bT
g |


ij

=

p
i=1

p
j=1

 ∞
h=0

|bh|


i

 ∞
g=0

|bg |


j

=

p
i=1

 ∞
h=0

|bh|


i

p
j=1

 ∞
g=0

|bg |


j
, (19)

where


∞

h=0 |bh|


i
is the ith element of the column vector

∞

h=0 |bh|.
Since


∞

h=0 |Bh|

ij =


∞

h=0

AhS−1(λ0)


ij ≤ (


∞

h=0 |Ah
||S−1

(λ0)|)ij where the rowand column sumsof


∞

h=0

Ah
 S−1(λ0)

 are
bounded uniformly in p, it holds that the row and column sums of

∞

h=0 |Bh| are bounded uniformly in p. Note that ∞
h=0

|bh|


i
=

 ∞
h=0

|BT
ha|

i
≤

 ∞
h=0

|BT
h ||a|


i
,

where the row and column sums of


∞

h=0

BT
h

 and |a| are bounded
uniformly in p. Hence the rowand column sumsof


∞

h=0 |BT
h ||a| are

bounded uniformly in p. It follows from (18) and (19) that

sup
p

E
aTyt 8 ≤ C

 p
i=1

 ∞
h=0

|bh|


i

p
j=1

 ∞
g=0

|bg |


j

4
= O(1).

It is easy to prove that

sup
p

∥60wi∥1 < ∞, sup
p

∥6T
1wi∥1 < ∞,

sup
p

∥60ei∥1 < ∞.

Thus supp ∥wi60yt∥1 < ∞ and etc.
The row and column sums of 60 and 61 are bounded uniformly

in p. Then

sup
p

wT
i 616

T
1wi = O(1).

Similarly, we can prove the other diagonal elements of Vi and Ui
are bounded uniformly in p.

The proof is completed. �
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