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1. Introduction

The class of spatial autoregressive (SAR) models is introduced
to model cross sectional dependence of different economic
individuals at different locations (Cliff and Ord, 1973). More recent
developments extend SAR models to spatial dynamic panel data
(SDPD) models, i.e. adding time lagged terms to account for serial
correlations across different locations. See, e.g. Lee and Yu (2010).
Baltagi et al. (2003) consider a static spatial panel model where
the error term is a SAR model. Lin and Lee (2010) show that in the
presence of heteroskedastic disturbances, the maximum likelihood
estimator for the SAR models without taking into account the
heteroskedasticity is generally inconsistent and proposes an
alternative GMM estimation method. Computationally the GMM
methods are more efficient than the QML estimation (Lee, 2001).
Lee and Yu (2010) classify SDPD models into three categories:
stable, spatial cointegration and explosive cases. As pointed out by
Bai and Shi (2011), the cases with a large number of cross sectional
units and a long history are rare. Hence it is pertinent to consider
the setting with short time spans in order to include as many
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locations as possible. Both estimation method and asymptotic
analysis need to be adapted under this new setting. Yu et al.
(2008, 2012) investigate the asymptotic properties when both the
number of locations and the length of time series tend to infinity
for both the stable case and spatial cointegration case, and show
that QMLE is consistent.

Motivated by the evidence in some practical examples, we
extend the model in Yu et al. (2008, 2012) by allowing the
scalar coefficients for each location (or panel) different from each
other. This increase in model capacity comes with the cost of
estimating substantially more parameters. In fact that the number
of the parameters in this new setting is in the order of the
number of locations. The model considered in this paper has
four additive components: a pure spatial effect, a pure dynamic
effect, a time-lagged spatial effect and a white noise. Due to
the innate endogeneity, the conventional regression estimation
methods such as the least squares method directly based on the
model lead to inconsistent estimators. To overcome the difficulties
caused by the endogeneity, we propose a generalized Yule-Walker
type estimator for estimating the parameters in the model, which
applies the least squares estimation to a Yule-Walker equation.
The asymptotic normality of the proposed estimators is established
under the setting that both the sample size n and the number
of locations (or panels) p tend to infinity. Therefore the number
of parameters to be estimated also diverges to infinity, which is

0304-4076/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Plots of the monthly change rates y; ; of CPI against the spatial regressor w;y, (on the top) and the dynamic regressor y; . (on the bottom) for four EU member
states in 2003-2010. The superimposed straight lines were estimated by the newly proposed method in Section 2.2.

a marked difference from, e.g., Yu et al. (2012). We develop the
asymptotic properties under a general setting for stationary and «-
mixing processes, which includes the spatial autoregressive panel
data models driven by i.i.d. innovations as special cases.

The rest of the paper is organized as follows. Section 2 in-
troduces the new model, its motivation and the generalized
Yule-Walker estimation method. The asymptotic theory for the
proposed estimation method is presented in Section 3. Simulation
results and real data analysis are reported, respectively, in Sec-
tions 4 and 5. All the technical proofs are relegated to an Appendix.

2. Model and estimation method
2.1. Models

The model considered in this paper is of the following form:
y: = D(Ao)Wy; + D(A1)¥i—1 + D(A2)Wy; 1 + &, (M

whereyr = i, --- ,yp,t)T represents the observations from
p locations at time t, D(Ay) = diag(Ak1, ..., Ap) and Ay; is the
unknown coefficient parameter for the jth location, and W is the
px p spatial weight matrix which measures the dependence among
different locations. All the main diagonal elements of W are zero. It
is a common practice in spatial econometrics to assume W known.
For example, we may let w;; = 1/(1+4dj;), fori # j,whered; > Ois
an appropriate distance between the ith and the jth location. It can
simply be the geographical distance between the two locations or
the distance reflecting the correlation or association between the
variables at the two locations. In the above model, D(A¢) captures
the pure spatial effect, D(A;) captures the pure dynamic effect,
and D(X;) captures the time-lagged spatial effect. We also assume
that the error term &; = (&1, €24, - .-, sp,t)T in (1) satisfies the
condition Cov (y;—1,&;) = 0. When A4y = -+ = Ay fork =
0, 1, 2, (1) reduces to the model of Yu et al. (2008), in which there
are only 3 unknown regressive coefficient parameters. In general
the regression function in (1) contains 3p unknown parameters.
The extension to use different scalar coefficients for different
locations is motivated by practical needs. For example, we analyze
the monthly change rates of the consumer price index (CPI) for the
EU member states over the years 2003-2010. The detailed analysis
for this data set will be presented in Section 5. Fig. 1 presents the
scatter-plots of the observed data y; ; versus the spatial regressor
wiTyt and y; ; 1, for some of the EU member states, where wiT is the

ith row vector of the weight matrix W which is taken as the sample
correlation matrix with all the elements on the main diagonal set
to be 0. The superimposed straight lines are the simple regression
lines estimated using the newly proposed method in Section 2.2. It
is clear from Fig. 1 that at least Greece and Belgium should have a
different slope from those of France or Iceland.

2.2. Generalized Yule-Walker estimation

As y; occurs on both sides of (1), Wy, and &; are correlated
with each other. Applying least squares method directly based
on regressing y; on (Wy;,y; 1, Wy;_1) leads to inconsistent
estimators. On the other hand, applying the maximum likelihood
estimation requires to profile a p x p nuisance parameter matrix
Y. = Var(e;), which leads to a complex nonlinear optimization
problem. Furthermore when p is large in relation to n, the
numerical stability is of concern.

We propose below a new estimation method which applies
the least squares method to each individual row of a Yule-Walker
equation. To this end, let ¥, = Cov(y¢ik,y:) for any k > 0.
Note that we always assume that y; is stationary, see condition A2
and Remark 1 in Section 3. Then the Yule-Walker equation below
follows from (1) directly.

(I=DA)W)Xq = (D(X1) + D(A2)W)Zo,

where I is a p x p identity matrix. The ith row of the above equation
is

i=1,...,p, (2)

where w; is the ith row vector of W, and e; is the unit vector with
the ith element equal to 1. Note that (2) is a system of p linear
equations with three unknown parameters Ag;, Aq; and A;. Since
Ey; = 0, we replace ¥ and X, by the sample (auto)covariance
matrices

~ 1< - 1<
Ti=-> wy, and Zp=-) wy.
n t=1 n t=1

(& — AoW,)Z1 = (hyi€] + AW, )Xo,

We estimate (Lo;, Aqj, A2i)T by the least squares method, i.e. to
solve the minimization problem

: aT -
min ||, (e; — Aoiw;) — Zo(hi€; + Azwy) |13
A0isMisA2i
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The resulting estimators are called generalized Yule-Walker
estimators which admit the explicit expression:

(Chois 2o1is 22" = XX ~'XTY;, 3)
where

5(\,' = (E?Wi, foei, fow,-) and ’Y\,‘ = f?e,-.

More explicitly,

~ 1< 1< 1<
Xi = ( Zerl(WirYr% - ZthlJ’i,rfh - Zle(WiTYtl)> ,
= 4 n4

~ 1 <&
Yi= - ZYt—l}’i,t~
ni=

Then it holds that fori =1, ..., p,

Aoi Aoi
A | = | A
Aoi Agi
1< 1\
T T
0 ZYH(W,- Vi) X 0 Z Ei,tYr—1
t=1 t=1
TR IS 1y
=X X)™! o ;Yr,l)’i,r—l X n ;amyf-l

1< 1<
T T
H ;:] Vi_(w; Vi-1) X E ;:1 Eit¥Yi—1

2.3. Aroot-n consistent estimator for large p

When p/+/n — oo, the estimator (3) admits non-standard con-
vergence rates (i.e. the rates different from /n); see Theorems 2
and 4 in Section 3. Note that there are p equations with only 3 pa-
rameters in (2). Hence (3) can be viewed as a GMME for an over-
determined scenario. The estimation may suffer when the number
of estimation equations increases. See, for example, a similar result
in Theorem 1 of Chang et al. (in press, 2014b). A further compound-
ing factor is that the estimation for the covariance matrices Xg, X
using their sample counterparts leads to non-negligible errors even
when n — oo. Below we propose an alternative estimator which
restricts the number of the estimation equations to be used in or-
der to restore the /n-consistency and the asymptotic normality.

Fori = 1,...,p, putX; = (XTw;, Zoe;, Zow;). Note that the
kth row of X; is (e} XTw;, el Zoe;, e} Zow;) which is the covariance
between yy 1 and (Wy;, Yi—1, W yi—1). Let

0 = et + el Soe + [e] Sow

. k=1,....p. (4)

Then p,ﬁi) may be viewed as a measure for the correlation between
Yir—1and W'y, yir 1, W'y:_1)". When p.” is small, say, close to
0, the kth equation in (2) carries little information on (Ag;, Aqj, Azi).
Therefore as far as the estimation for (Ag;, A1i, A2) is concerned, we
only keep the kth equation in (2) for large p,?) .

Let zi_l be the d; x 1 vgctor consisting of thosg Yk.t—1 corre-
sponding to the d; largest 5" (1 < k < p), where 5" is defined as
in (4) but with (X1, Xo) replaced by (X7, Xg). The new estimator
is defined as

(hois iy Aai)| = (’Z:lii)_lgyis i=1...,p (5)

where

~ 1< . 1N 1< .
R D ICRUONED SEINTRN SR AN NO
n t=1 n t=1 n t=1

and

~ 1N .
Yi = a ZZ}_M,:-
=1
Now it holds that
1< .
=D ez
=1
Aoi Aoi PUSQUESE I _
Mi | = (i) = @Z)7'Z - ZSi,rZItq
=1

)\2,' )\21‘
1 n
- & [Zi
Z : Lt%&t—1
n t=1

Theorem 3 in Section 3 shows the asymptotic normality of the
above estimator provided that the number of estimation equations
used satisfies condition d; = o(/n).

3. Theoretical properties

We introduce some notations first. For a p x 1 vector v =

(1, -, )", IVl = /D0, v? is the Euclidean norm, |v|; =

3P, lvil is the Ly norm. For a matrix H = (hy), [[H[|r = /tr (H"H)
is the Frobenius norm, ||H||2 = +/Amax(HTH) is the operator norm,
where Anax(+) is the largest eigenvalue of a matrix. We denote by
H| the matrix (|h;|) which is a matrix of the same size as H but
with the (i, j)th element h;; replaced by |h;;|. Note the determinant
of H is denoted by det(H). A strictly stationary process {y;} is
o-mixing if

a(k) = sup
AeF0 BeFX®

|P(AP(B) — P(AB)| — 0, ask— oo, (7)

where }"ij denotes the o-algebra generated by {y;,i < t < j}.
See, e.g., Section 2.6 of Fan and Yao (2003) for a compact review of
o-mixing processes.

Let S(Ag) = I — D(Ao)W be invertible. It follows from (1) that
Ve = Ayi_1 + S (Ao)er,
where A = S~1(Ao)(D(A1) + D(A,)W). Some regularity conditions
are now in order.

A1. The spatial weight matrix W is known with zero main diagonal
elements; S(Ao) is invertible.
A2. (a) The disturbance &, satisfies

Cov(yi—1, &) = 0.

(b) The process {y;} in model (1) is strictly stationary and
o-mixing with «(k), defined in (7), satisfying

20 Y
Za(k)m < 00,

k=1
for some constant y > 0.
(c) For y > 0 specified in (b) above,

supE ]wiT)Joyt|4+y < o0, supE ‘w,.T)letrHy < o0,
p p

supE ]eiT)Joyt|4+y < o0,
p

supE |wiTyt|4+y < 00, supE |eiTyt|4+V < 00,
P p

where w; denotes the ith row of W. The diagonal elements of
V; defined in (8) are bounded uniformly in p.
A3. The rank of matrix (EIW,; Yoe;, Xow;) is equal to 3.
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Remark 1. Condition A1 is standard for spatial econometric mod-
els. Condition A3 ensures that Aq;, Aq; and A,; are identifiable in (2).
Condition A2(c) limits the dependence across different spatial lo-
cations. It is implied by, for example, the conditions imposed in Yu
et al. (2008). Lemma 1 in the Appendix shows that Condition A2
holds with ¥ = 4 under conditions A1 and B1-B3. Note that condi-
tions B1-B3 are often directly imposed in the spatial econometrics
literature including, for example, Lee and Yu (2010), and Yu et al.
(2008).

B1. The errors ¢;; are i.i.d across i and t with E(e; ;) = 0, Var(ei )

44 . . .
= 002, and E |e,-,t| ¥ < c0. The density function of &j ¢ exists.

B2. The row and column sums of |W| and |S~"(A)| are bounded
uniformly in p.

B3. The row and column sums of Y~ |A/| are bounded uniformly
in p.

Now we are ready to present the asymptotic properties for
(Ao,,k1,,k2,) i =1,...,p, with fixed pand n — oo first, and
thenp — ocoand n — oo.

3.1. Asymptotics for fixed p

Fori=1,...,p,let

Ty () = Cov(¥e—14j€ic4y> Ye—18ir), j=0,1,2,...,

Ty = Zya(0) + Y [Tya ) + 2y, ()]

j=1

w i ZTw w T T w!ZZow;

Vi= | wEiZe, e ZoZoe e ZoZow; |, (8)
W{Z]Zowi EZE()ZOWI' W{EgZoWi

and

T T
WiTZl Ty T Wi
U, = w; ley,SEEoei
T
Wl- 21 Ey.si Zow,-

T

w; X EyﬁiZoei
T

€; ZozyyeiZoei
T

€; Eozy’gizowi

WIT X, Eyygi YoW;
e X%y Zow; | . (9)
W, 202y ., Zow;

Theorem 1. Let conditions A1-A3 hold and p > 1 be fixed. Then as
n — oo, it holds that

Aoi Aoi d
Vil ai| = (2i) | = NOvOVT, i=1,.p,
Aoi A2i

where V; and U; are given in (8) and (9).
3.2. Asymptotics with diverging p

When p diverges together w1th n, U;, V; in (9) and (8) are no

longer constant matrices. Let U : be a matrix such that (U : )?
=u"

Theorem 2. Let conditions A1-A3 hold.
(i) Asn — oo, p — oo and p = o(y/n),

T Aoi Aoi J
N Mi| —|Mi) | > NOL), i=1,...,p.
A2i

(ii) Asn — 00, p — 00, s/n = O(p) and p = o(n),

>) >
= 2

|
PR
r P
) = 2

|

BO
A~
S
SN—"

I

=

=

A2i

Theorem 2 indicates that the standard root-n convergence rate
prevails as long as p = o(,/n). However the convergence rate may
be slower when p is of higher orders than /n. Theorem 2 presents
the convergence rates for the L, norm of the estimation errors. The
rates also hold for the L; norm of the errors as well. Corollary 1
consider the estimation errors over p locations together, for which
we have established the result for L; norm only.

Corollary 1. Let condition A1 hold, and conditions A2 and A3 hold for
alli=1,...,p.Thenasn — oo and p — o0, it holds that

1 2| [Poi Aoi
*Z A | — | A
s | oy A2i .

it 2~ = oq1),

_ OQ) v

N p oD p_
Op(ﬁ) 1fﬁ—>oo and H_O(l)'

To derive the asymptotic properties of the estimators defined in
(5), we introduce some new notation. Fori =1, ..., p, let

) = Cov(y:, Z)),

2;z",g,» 0= COV(Z'[_1+]'8i,t+js Z,[_]Si,f)v

¥, = Cov(y:. z,_,),
i=0,1,2,...,
and

B = T, O+ Y (50,0 + 2,0

Jj=1

Let
w' Tl (2] )Twl w, Tyl ():O) e w b ():O)Tw,

Vi = w ):’ (): ) e e ZO(ZO) e e I'si ():O) wl ,  (10)
w/ )} ():0) w; e ):’ EH'w; w] ):0():0) w;

and the equation given in Box I.

Theorem 3 indicates that the estimators defined in (5) are
asymptotically normal with the standard +/n-rate as long as d; =
o(4/n). Note that it does not impose any conditions directly on the
size of p.

A4. (a) For y > 0 specified in A2(b),

supE wizhz [*7 < oo, supE[w/Eiz|" < o0,
P

supE lef 52 [ < o,

supE |w/ Yr|4+y < 09, supE |eiTyt|4+y <000

» P

and the diagonal elements of V; defined in (10) are bounded
uniformly in p.

(b) The rank of matrix E{/Z\,-} is equal to 3, where Z is defined
in (6).

Theorem 3. Let conditions A1, A2(a, b) and A4 hold. Asn — oo,
p — oo and d; = o(+/n), it holds that

. Zot Ao J
V@)V [ A | = (2] | = NO ), i=1,..,p,
)\,2,' )"Zi

where V; and U} are given in (10) and (11).
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w{ngzZi,si(zg)TTw,-
wTi 2,11 ):Z"vgi():}))T e
w; X Ezf!&.(Eg) w;

1

e XX, (Zp) e

W EIE, L (Z0) e W E T, (Z) W
‘ ‘ e{zgzzfﬂ (zg)Twi ) (11)
e 0%, (T W W EE, . (X)) w;

Box I.

The key assumption of Theorem 2 is A2(c), which decides the
fact that the effect of the dimensionality p only comes from E; in
Eq.(13)in the Appendix. We can relax this assumption by allowing
E, to be affected by p as well. Under the new relaxed assumption,
we may obtain a better convergent rate of estimator (3) by making
use of the fact that (3) is invariant if we divide both the numerator
and denominator by the same number, for example, a number
relating to p. This will be presented in Theorem 4. We propose the
new relaxed assumption:

A5. For y > 0 specified in A2(b),

’4+}/ |4+}/

max{supE |w{ Zoye| ", supE|w]Zy; ,
p p

4t
supE |e] Zoy| y] = 0(so(p))-
p

4 4
max{supE W]y 7 supE el ye| +V] = 0(s1(p))
p p
and the diagonal elements of V; defined in (8) is in the order of
s2(p), where so(p), s1(p) and s, (p) are numbers relating to p.

Denote C as a constant. When the number of nonzero elements
(or elements bounded away from zero) in w; increases with p but
is o(p), we may have s{(p) = o(min{so(p), s2(p)}). Simulation
scenario 2 is under this case. When there are only finite number
of nonzero elements (or elements bounded away from zero) in
w;, we might have s;(p) =< C, which is the case of simulation
scenario 1. The reason we assume the diagonal elements of V;
defined in (8) are in the order of s,(p) is because we can treat
w! X, 2Tw;, el ZpXoe;, w! o Zow; as the second moments of three
random variables w X, e/ Xox and w] XX respectively, where
the p x 1 random vector X has mean 0 and covariance matrix I,.

Theorem 4. Let conditions A1, A2(a, b), A3 and A5 hold. Asn — oo,

p — oo, if BL2 = o(n) and sy”*(p) = O(ps,’* (p)s2(p)), it holds

s2(p)
that
A

=) =0 (max{PS?“(m st ®) )
'):2:- )»2; , ’ ns;(p) ~ V/ns2(p) ) )

Let us consider some examples. (1) When so(p) =< p, s1(p) <

o

—_

C and s,(p) =< p, the convergence rate is max{%, W} (2)

When so(p) < p,s1(p) = /pand s;(p) < p,if p = o(n?),
the convergence rate is max{@, W } (3) When so(p) < C,
s1(p) < Cand s;(p) < C,if p = o(n), the convergence rate
is max %, ﬁ , which corresponds with Theorem 2. Theorem 4
indicates that under different situations of sq(p), s1(p) and s,(p),
we may obtain different convergence rates. These observations are
illustrated by simulation examples in Section 4.

4. Simulation study

To examine the finite sample performance of the proposed
estimation methods, we conduct some simulation under different
scenarios.

left:estimator (2.3) and right: estimator (2.5), p=25

- 4]
8 | 8
o | o} |
g 1 2 —
= 8] = = : °-
© | I — 8 o - = EL -
. et =
8 | - — -0 —
S T T T T T T T T T T
100 250 500 750 1000 100 250 500 750 1000
n
left:estimator (2.3) and right: estimator (2.5), p=100
B
< ] :
© ==
© 1
<9 s
s 5 <
g4 = ="
- o o 5
- T = =
S o % % o %

T T T T T T T T T
100 250 500 750 1000 100 250 500 750 1000
n

Fig. 2. Boxplots of MAE for estimator (2.3) (left panels) and estimator (2.5) (right
panels) with p = 25 (top panels) and 100 (bottom panels), n = 100, 250, 500,
750, 1000 for scenario 1.

4.1. Scenario 1

Moi» A1i and A; are generated from U(—0.6, 0.6). The spatial
weight matrix W used is a block diagonal matrix formed by a
/P X +/p row-normalized matrix W*. We construct W* such
that the first four sub-diagonal elements are all 1 and the rest
elements are all 0 before normalizing. This kind of W corresponds
to the pooling of ,/p separate districts with similar neighboring
structures in each district, see Lee and Yu (2013). The error ¢; ; are
independently generated from N (O, af), where we generate each
o; from U (0.5, 1.5).

For all scenarios, we generate data from (2.1) with different
settings for n and p. We apply the proposed estimation method
(2.3) and (2.5) (with d; = min(p, n'%?")) and report the mean
absolute errors:

1A ~ 1<

MAE(D) = ]; i —Ail,  MAE 5 ; MAE(i).
We replicate each setting 500 times.

Fig. 2 depicts two boxplots of MAE with p equal to, respectively,
25 and 100. As the sample size n increases from 100, 250, 500, 750
to 1000, MAE decreases for both methods.

Fig. 3 depicts the boxplots of the MAE for the original estimator
(2.3), the root n consistent estimator (2.5), and the estimator
(2.5) with the ridge penalty, where we choose the ridge tuning

parameter to be C x % in order to avoid the nearly singularity

problem 0(272», and C is chosen via cross validation. With n = 500,
the dimension p is set at 25, 49, 64, 81, 100, 169, 324 and 529
respectively. The MAE for (2.3) remains about the same level as
p increases; see the panel on the left in Fig. 3. This is in line with
the asymptotic result of Theorem 4 when, for example, s;(p) =< C,
So(p) =< p and s;(p) =< p. In contrast, the MAE for estimator (2.5)
increases sharply when p increases; see the panel in the middle.
This is due to the fact that Z; Z; is nearly singular for large p. Adding
aridge in the estimator certainly mitigates the deterioration when
p increases; see the panel on the right in Fig. 3.
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4.2. Scenario 2

Xoi» Aqi and Ay; are generated from U(—0.6, 0.6). The spatial
weight matrix W is constructed as follows. First, we construct a
/P * /P row-normalized matrix W*, where W* is chosen such that
the first two sub-diagonal elements are all 1 and the rest elements
are all 0 before normalizing. Then we treat W as a \/p x /p
block matrix and put W* into the main diagonal, 2nd, 4th, 6th
and etc. sub-diagonal block positions. This kind of W corresponds
to the pooling of ,/p districts (each district has ./p locations)
which the evenly numbered districts are connected and the oddly
numbered districts are connected but evenly numbered districts
and oddly number districts are separated. Each district has similar
neighboring structures. As p increases, the number of the locations
influencing one specific location increases in the order of ,/p. The
error ¢;, are independently generated from N (O, aiz), where we
generate each o; from U(0.5, 1.5).

Fig. 4 depicts two boxplots of MAE with p equal to, respectively,
25 and 100. As the sample size n increases from 100, 250, 500, 750
to 1000, MAE decreases for both methods.

Fig. 5 depicts three boxplots as Fig. 3. The MAE for (2.3) increases
steadily as p increases, which matches the result of Theorem 4

when, for instance, s1(p) =< /p, so(p) =< p and s(p) =< p. The
MAE for (2.5) after adding ridge penalty is slowly increasing as well.
This might be caused by the fact that, similar to A2(c), quantities
in condition A4(a) are also influenced by p since the number of
nonzero elements in w; is in the order of ,/p.

5. Real data analysis

5.1. European consumer price indices

We analyze the monthly change rates of the consumer price
index (CPI) for the EU member states, over the years 2003-2010.
We use the national harmonized index of consumer prices
calculated by Eurostat, the statistical office of the European Union.
For this data set,n = 96 and p = 31.

Fig. 6 presents the time series plots of the monthly change
rates of CPI for the 31 states. To line up the curves together, each
series is centered at its mean value in Fig. 6. There exist clearly
synchronizes on the fluctuations across different states, indicating
the spatial (i.e. cross-state) correlations among different states.
Also noticeable is the varying degrees of the fluctuation over the
different states.

Let y; consist of the monthly change rates of CPI for the 31
states. We fit the proposed spatial-temporal model (1) to this data
set with the parameters estimated by (3). We take a normalized
sample correlation matrix of y; as the spatial weight matrix W =
(wy), i.e. we let w;; be the absolute value of the sample correlation
between the ith and jth states for i # j, and w; = 0, and then
replace wj; by wi/ Y, wy.

Fig. 7 presents the scatter plots of y; ; against, respectively, the 3
regressors in model (1), i.e. wiTyt, Vit—1, wiTy[_1, for four selected
states Belgium, Greece, France and Iceland. We superimpose the
straight line y = A;x in each of those 3 scatter plots with,
respectively, j = 0, 1, 2. It is clear that the estimated slopes are
very different for those 4 states. Fig. 8 plots the true monthly
change rates of the CPI for those 4 states together with the fitted
values

Vie = B‘-\Oiw;ryt + Mt +/):21‘WfTYc—1- (12)

Overall y; ; tracks its truth value reasonably well. Fig. 9 shows
the out-of-sample forecasting performance of our model. For
the sake of comparison, predictions are made using our model
and the proposed generalized Yule-Walker estimator, and using
the (constant) SDPD model of Yu et al. (2008) and their Quasi-
Maximum Likelihood estimator. In particular, for each location,
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we leave out from the sample the last six observations and we
compute the (out-of-sample) forecasts with 1, 2, ..., 6 step ahead
forecasting horizon; then, we compute the average prediction
error over time (i.e. the mean of the 6 prediction errors). On the left
panel of Fig. 9, the two box-plots summarize the average prediction
error for the 31 locations obtained with our YW estimator and the
QML estimator of Yu et al. (2008), respectively. It is evident that our
estimator produces unbiased predictions while the QML estimator
appears to be biased. This advantage also reflects on the forecasting
average square errors, reported on the right panel of Fig. 9. In
conclusion, the SDPD model of Yu et al. (2008) has a satisfying
forecasting performance because several locations have similar
spatial structure and for those locations a model with constant
parameters is sufficient. Anyway, a marginal improvement is
observed for our estimator because several locations have quite
different structures and our model is able to capture this difference.
Finally, it is worthwhile to notice that the variability of the two
predictors appears to be the same.

To further vindicate the necessity to use different coefficients
for different states, we consider a statistical test for hypothesis

Hol)\.ﬂ:-”:)\.}'p, 120,1,2

for model (1). Then the residuals resulting from the fitted model
under Hy will be greater than the residuals without Hy. However
if Hy is true, the difference between the two sets of residuals
should not be significant, We apply a bootstrap method to test this
significance. Let Ag, A1, A, be the estimates under hypothesis Hy.

Define the test statistic

1< ~
U=->"ly—¥lh
n t=1

We reject Hy for large values of U. To assess how large is large, we
generate a bootstrap data from

v/ = ToWY; + A1Ye_1 + AWy + ef,
where {e]} are drawn independently from the residuals
& =Y — ¥,

and y; consists of the components defined in (12). Now the
bootstrap statistic is defined as

Vi = 2oWy: 4+ A1Ye1 + AWy

t=1,...,n,

* l - * * * *
U™ = - 3 Y7 — GoWye + Aiye + Wy,
t=1

where (0§, A7, A3) are the estimated coefficients for the regression
model

y; = AWy + MYe-1 + LWy + &,
The P-value for testing hypothesis Hy is defined as
P(U* > Uly1, .-, ¥n)s

which is approximated by the relative frequency of the event
(U* > U) in arepeated bootstrap sampling with a large number of
replications. By repeating bootstrap sampling 1000 times, the esti-
mated P-value is 0, exhibiting strong evidence against the null hy-
pothesis Hy. Therefore the model with the equal slope parameters
across different locations is inadequate for this particular data set.

t=1,...,n.

5.2. Modeling mortality rates

Now we analyze the annual Italian male and female mortal-
ity rates for different ages (between 0 and 104) in the period
of 1950-2009 based on the proposed model (1). The data were
downloaded from the Human Mortality Database (see the web-
site http://www.mortality.org/). Let m;; be the log mortality rate
of female or male at age i and in Year t. Those data are plotted in
Fig. 10. Two panels on the left plot are the female and male mor-
tality against different age in each year. More precisely the curves
{mi;, i =1,...,21} fort < 1970 are plotted in red, those for
t > 1990 are in blue, those with 1970 < t < 1989 are in gray.
Those curves show clearly that the mortality rate decreases over
the years for almost all age groups (except a few outliers at the
top end). Two panels in the middle of Fig. 10 plot the log mortal-
ity for each age group against time with the following color code:
black for ages not great than 10, gray for ages between 11 and 100,
and green for ages greater than 100. They indicate that the mor-
tality for all age groups decreases over time, the most significant
decreases occur at the young age groups. Furthermore, the fluc-
tuation of the mortality rates for the top age groups reduces sig-
nificantly over the years, while the mean mortality rates for those
groups remain about the same. This can be seen more clearly in
the two panels on the right which plot differenced log mortality
rates {y;¢, t = 1951, ..., 2009}, using the same color code, where
Yie = Mjr — Mj¢_1.

We fit the differenced log mortality data with model (1) with
the parameters estimated by (5) and d; = 20. Note that now
p = 104 and n = 59. Let the off-diagonal elements of the spatial
weight matrix W be

. 1
IR
We then replace wy by wjj/ Y; wy. Moreover, we can also fix a
threshold 7 and set to zero all the elements of matrix W such that
|x — w| > t (for simplicity, we fix T = 5 in this application, but
the results are substantially invariant for different values of 7).

Wij 1<i<j<104.


http://www.mortality.org/

B. Dou et al. / Journal of Econometrics 194 (2016) 369-382 377

Female log death rates

Female log death rates

lag differences

o+ '] o
— before 1970 ©

o — after 1990 o S
< 4 <
I I o

=
© _| ©
| |

e
0 _| © o
| I [

— <10 years ™
,C_’I i .°-| 4 — >100 years
0 9 19 31 43 55 67 79 91 1950 1961 1972 1983 1994 2005 1951 1962 1973 1984 1995 2006
age time time
Male log death rates Male log death rates lag differences

o [ o -
o N
| |
< <
I 1
© _| ©
| |
© | o |
I I
o _ o _
T T

0 919 31 43 55 67 79 91
age

1950 1961 1972 1983 1994 2005

1951 1962 1973 1984 1995 2006

time time

Fig. 10. Log mortality rates of Italian female (3 top panels) and male (3 bottom panels) are plotted against age from each year in 1950-2009 (2 left panels), against year for
each age group between 0 and 104 (2 middle panels). Differenced log mortality rates are plotted against year for each age in 2 right panels.

Table 1

Estimated coefficients for a selection of cohorts of different ages. The left column
is the estimated pure spatial coefficients Aq;; The middle column is the estimated
pure dynamic coefficient Ay;; The right column is the estimated spatial-dynamic
coefficients ;.

Age oo T oo Age Juoi i oo

5 0.41 —0.52 0.06 55 0.19 —0.88 0.28
10 0.20 —0.42 0.05 60 —0.09 —0.72 0.01
15 0.44 —0.65 0.18 65 0.22 —0.63 0.21
20 0.64 —0.78 0.40 70 0.21 —0.69 0.08
25 —0.04 —0.43 0.03 75 0.33 —0.59 0.22
30 0.78 —0.80 0.55 80 0.33 —0.89 0.27
35 0.11 —0.55 0.29 85 0.37 —0.76 0.18
40 —0.04 —0.66 —0.01 90 0.29 —0.62 0.16
45 0.29 —0.46 0.12 95 0.27 —0.77 0.26
50 —0.10 —0.45 —0.05 100 0.44 —0.69 —0.03
- _
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<
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Fig. 11. Observed time series (thin line) and fitted time series (bold line), for female
mortality rate for ages i = 60, 80, 100.

The results of the estimation are shown in Table 1, for a selection
of cohorts of different ages. Fig. 11 shows the fitted series for ages
i = 60, 80, 100.

6. Final remark

We propose in this paper a generalized Yule-Walker estimation
method for spatio-temporal models with diagonal coefficients.
The setting enlarges the capacity of the popular spatial dynamic
panel data models. Both the asymptotic results and numerical
illustration show that the proposed estimation method works well,
although the number of the estimation equations utilized should
be of the order o(4/n).
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Appendix. Proofs

We present the proofs for Theorem 2, Corollary 1and Theorem 4
in this appendix. The proofs for Theorems 1 and 3 are similar and
simpler than that of Theorem 2, and they are therefore omitted. We
also present a lemma (i.e. Lemma 1) at the end of this appendix,
which shows that condition A2 is implied by conditions A1 and
B1-B3; see Remark 1. We use C to denote a generic positive
constant, which may be different at different places.

Proof of Theorem 2. We first prove (i) of Theorem 2. We only
need to prove the assertions (1) and (2) below, as then the required
conclusion follows from (1) and (2) immediately.
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J/n
Therefore
Sup = Zé“)+az ZE(Z)"‘“ 72‘?(3)4_%(1)
= Tn,p + Op(l).

We calculate the variance of T, ,. Similar to (15), it holds that

Var (al NG Zé(l)> == Var( (])) {1+o0(1)}
=aj ’%Val‘ (ZW X1Ye-1&i [) {1+o0(1)}

t=1

Kl “ j
=2 |:w %1 By (0)Z{Wi + ) <1 - T)w %

j=1 n

X [y () + 2y, 0)] 2€w,} {1+o(D)}.

Calculating all the variance and covariance and summing up them,
by dominated convergence theorem and % — 1, it holds that

T,
Var TP — 1.
NEU T

Now it suffices to prove the asymptotic normality of T, ,. We par-
tition T, , into two parts via truncation. Specifically, we define

L Jln+G—1)sn
—_— T .
§ = Wi ZiYe—18ielywl 5y, e 1<ip
(== 1) s +1

and

DR Jln4+G—=1)sn

_ T .

§ = Wi Z1Ye-18icd w5y, e 151

t=(—1D(In+sn)+1
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Similarly, we have EJ@L , gj(z)R a

Top = ( Zé(m+a2 Z§(Z)L+a b ZSG)L)
N (jﬁ $oe0n g, L Zs(m RS ZS@R)
j=1

=T, +T5, (16)

nd &>, &% Then

Similar to computing the Var(T; ), it holds that

kn
v — v Z ML) | ot
ar( ) a ar(f é )

Lk,
= a2 Var( (”L) {14 0(1)) + 2

5 kn
= algvar (ZW Z1ye-18i, [1 {Iw] Z1y— 1811|<L1)

t=1
x {1+0(1)} + £*

knl
20nmn T
=6 [Var (""f z1yf—1Ei,fl{\mesti,ASL})

h—1
+2 Z <1 - ) Cov

(Wi ZaYe—1+58ic45l gl 2y, e gl <L)

W,'T21Yr—1Si,tI[\W,-T)Jﬂtﬂai,:ISL])]{1 +o} + 2"

where 2! is the sum of all the rest variance and covariance except
1 ko £(DL
Var <a1 7 it ) Therefore

Var (Tt
Var (2""’
oy

))—>1,

where we denote o’ as the asymptotic variance of T,; . Similarly,
we have

Var(Ty )

knl
o knln T ,
= o [Var (""z‘ ZIYHSlvf’uw,fszs,-,flﬂ})

In—1
J
+ZZ <1 B r) cov (W Z1Ye- 146, tﬂl{lw Y148 e451> 1)

n

WiTzlyt—lgi.tI{w;f):]y[]gi’[|>L})i|{l + O(l)} + QR'

itTy ( t? )
E exp : —exp| ——
a’U;a 2

where i = /—1 now. We bound M;, , as follows

exp itTy exp itTy .
a’Ua Jva'Ua

. itTy 1"_[ .
+ |Eexp - —
valUa =1

Define

M, =

M, <E

i (016" + o 5™ + o 5"
Jva'Ua

. L 2)L 3)L
kn it (alﬁéj( s azﬁéj( gt agﬁéj( ) )

+ Eex
]11 P va'U;a

exp

ex tz ULZ ex t2
P 2 a"U;a P 2/

Following the same arguments as part 2.7.7 of Fan and Yao (2003),
forany € > 0, it holds that M, , < € asn, p — oo. Hence

1< 1<
T T
E ;ytq(wi Yt)a ; EitYr—1

1< 1<
\/ﬁ xa E ZYtT_l}’i,t—l E Z Eit¥Yr—1 /v a’U;a
: =1 ;zln
- ZY[T_l(W,‘TYtq)* Z &i,tYe—1
n3 ni3
d
— N(0, 1).

_1
Substituting a by (U; ?)”a, it holds that

1< 1<
- Zy[Tq(W,-TYt)* Z i, tYe—1
n n
t=1 t=1
1< T 1<
E Zyrq%‘,t—l E Z] EitYe—1
1 ﬂti] «;7 n
E ;Y{.l(waYt—l)E ; EitYr—1

L aTN(O, Iy),

1
a' 1./nu; 2

which leads to the fact that

1< 1<
T T )
0 Zyrfl(w,' Yt)a Z EitYr—1
t=1 t=1
1< 1<
H ZytT_Ji,t—l E Z EitYr—1
t=1 t=1
1< 1<
- ZytT_l(WfTYt—l)* Z EitYr—1
ni3 ni3

LN, I).

To prove (2), let uslook at the (1, 1)th element ofifii. We have
lin (W-Ty)liy (W] y:)
n - t—1 iyt n — t—1 iyt
1< 1<
= (n ZlytT_l(WiTYr) -w ):1) (n Zlhfl(W,TYr) - E§Wi>
t= t=

1 n
+2w/ 3, (n D vy - ):{wi) +w'EEw.  (17)
t=1
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Using the same arguments as (14), the first term is Op(g) and the
second term is Op(ﬁ)‘ Hence given p = o(n), it holds that

% Z: (W Yr) ZYr 1(W ye)

t=1

— 1.
w X 2w

Applying the same arguments to the other elements of S(\fi, it
holds that

SIS -1 P
VX'X) ! = L.

To prove (ii) in Theorem 2, the required asymptotic result fol-
lows from (13) and (17) immediately when p = o(n) and \/n =
O(p). The proof is completed. O

Proof of Corollary 1. By Theorem 2, it holds that

Aoi Aoi
Mi | — | A
)\,2,' )LZi 1

1 p
0, — if — = 0(1),
o) w=ow
0, (3) if £ & 0 and
n Jn
for all i. The required asymptotic result follows from the above
result directly. 0O

P_ o(1)
n

Proof of Theorem 4. Let us look at term E; and E, in (13) first
under the new condition (A5). Similar to the proof of (14), it holds

that

p_o (@) p_o (@)
1 D n ) 2 P \/ﬁ
Hence

1 ;g 1 st'e) s w)
- Vi (W) — i,tYr—1 =0

n; =1 n; : b n NG
Similarly, we have

Isoy 'y st ®) | s
n Zytﬂyivf—l* Zgi,tYr_l =0, —— i
= n= n vn

TS e En ps ) sy )
_ Zyt—l(wi Vi-1)— EitYi—1 = Op + .
= ni= n Jn

For the first diagonal element of 5(7/)21 it follows from consider-
ing the three terms in (17) separately that

1 1
- ;yf,l(wiTyr)E ZYt—l(wiTYt)

1/4

ps1(p) (p)s
:op( ‘n +2 7

Similarly,

1< 1<

- Z Y[T_1J’i,t—1 = Z Yi—1Yit—1
n = n

1/4
_o, (ps;(p) N <szﬁ ®)

1¢ 1¢
= VW)= Y YWl ye1)
n t=1 n t=1

) + eiTEO)Zoei,

1/4, | 1/4
—o, (m(p) L% s, (P)) W EoEow;.
n Jn

psip) _ D)

Given % ‘(p) = o(n) and m = 0(1), we have
1/4 1/4
psi(p) (p)s;" (p)

= =o)L = o(s2(p)).
n NG

Divide both the numerator and denominator of estimator (3) by
s2(p), it holds that

>
IS4

x?_ﬁ :Oc¢@+”ww
W) /|, \ne® o Vine)

The required result then follows directly. O

—_

Lemma 1. Under conditions A1 and B1-B3, condition A2 holds with
y =4

Proof. It is apparent that part (a) of A2 is satisfied under A1 and
B1-B3. y; is strictly stationary because ¢; are i.i.d across i and
t and condition B3. Since the density function of ¢;; exists, a(n)
decays exponentially fast, see Pham and Tran (1985). Therefore
Zjo:o] a(j)# < oo. Now we prove A2(c) when y = 4.

We present a more general result first: for any p x 1 vector a
satisfying sup, |[a|l; < oo, it holds that

supE |a|Tyt|8 < 00.
p

Note that
o0 o0
Ve = ZAhS?](AO)Et—h = ZBh€t—h~
h=0 h=0
Then
Ela' y[ = =
o0
=E (etT—hlbfnbgzef*hz)

hi,hy.h3.he,h5.he h7 ,hg=0

T T
X (€t7h3 bh3 bh4 st—h4)
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X (sffhg th bhe st_hﬁ ) (€f7h7 bh7 bhg et_hS )
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hi.hy h3,hy g b, hy hg=0 \i1j1=1
p
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p
T
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00 p

Z [bhl blez ]ilfl

hy,hy,h3,he,hs,he h7,hg=0i1.j1,i2.j2,13.i3,14.j4=1
T T
X [bnzby, Tiyj, (Bas by, Jisjs [bn, bhg Jigja
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X Ejs,t—hgEig,t—h7 €jg,t—hg

o0

S >

hi,hy,h3,he,hs,he h7,hg=01i1,j1.12.j2,13.j3,i4.j4=1
T

X [bpsby, linj,
T T

X [bns by Jisjs [bhy g i

X E|8i1 Jt—hy 8]1 ,t—hy 81‘2,[‘7’13 8]2.[7114 8i3,f7h5
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o0

¥ )3
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h=0 g=0 i=1 j=1

T
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[byby | <
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where (Zﬁio |bh|)_ is the ith element of the column vector
1

> o [bal.

Since (Xp2o 1Bal); = Yheo (A" o)), = (252, IAMIS™
(Ao)|)ij where the row and column sums ofz,.l:0 ‘A" ‘ ]S T(Xo) ] are
bounded uniformly in p, it holds that the row and column sums of
Y heo IBu| are bounded uniformly in p. Note that

(Zum) (Z|BTa|) (gmmm)i,

where the row and column sums of > ;- ]BE | and |a] are bounded

uniformly in p. Hence the row and column sums ofz,fio |B£ ||a] are
bounded uniformly in p. It follows from (18) and (19) that

g p 00 p ) 4
supE fa'y.| sc[Z(me)iZ(Zw)J = 0(1).
i=1 1 g=0

h=0 Jj=
It is easy to prove that

T
sup || Zow;ll; < oo, sup || Z;will; < oo,
p p

sup || Xoeil[1 < oo.
p

Thus sup,, |w;Zoy:[l1 < 0o and etc.
The row and column sums of ¥ and X; are bounded uniformly
in p. Then

supw, 3 3Tw; = 0(1).
P

Similarly, we can prove the other diagonal elements of V; and U;
are bounded uniformly in p.
The proof is completed. O
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